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Gauge-invariant statistical mechanics and average action principle
for the Klein-Gordon particle in geometric quantum mechanics
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A gauge-invariant average action principle is presented that permits the formulation of a com-
pletely classical theory which is proved to be equivalent to Klein-Gordon quantum mechanics. In
this approach, here called geometric quantum mechanics, the particle motion as well as the space-
time geometry are determined simultaneously from the same average action principle. Quantum ef-
fects are proved to be related to space-time affine connections rather than to space-time metric ten-
sor components. In this way geometric quantum mechanics is made compatible with axiomatic ap-
proaches to both space-time structure and probability calculus.

I. INTRODUCTION

Different axiomatic approaches to space-time structure,
based on primitive concepts like light rays and freely fal-
ling particles, end up with assigning to space-time a Weyl
instead of the more restricted Riemann geometry of gen-
eral relativity. ' Recently, it has been proposed that the
existing gap between Weyl and Riemann geometry could
be closed if quantum mechanics is enclosed in the total
scheme.

On the other hand, it is commonly accepted that quan-
tum mechanics should be, in essence, a statistical theory.
But it is already well known that any natural axiomatic
approach to probability theory ends up with Laplace rules
of combining probabilities and not with Feynman quan-
tum rules. Also this gap should be closed in a logically
consistent theory.

In two recent papers (hereafter referred to as I and II,
respectively) it has been shown that traditional quantum
mechanics is equivalent, in some sense, to classical statis-
tical mechanics in Weyl spaces. ' The main results of
these works can be summarized as follows.

Either of these points of view are equivalent.
(a) The space-time is a Riemannian manifold. The sta-

tistical behavior of a spinless particle is described by the
Klein-Gordon wave equation and probabilities combine
according to Feynman quantum rules.

(b) The space-time is a generic affinely connected mani-
fold, whose actual geometric structure is determined by
the matter content. The statistical behavior of a spinless
particle is described by classical statistical mechanics and
probabilities combine according to Laplace rules.

In nonrelativistic applications the words "space-time, "
"Riemannian, " and "Klein-Cxordon" are to be replaced
with "space," "Euclidean, "and "Schrodinger, " respective-
ly.

It is evident that point of view (b) is the one consistent
with the axiomatic approach to both space-time structure
and probability theory. Traditional quantum mechanics,
based on wave equations and ad hoc probability calculus
[point of view (a)], appears to be merely a convenient

mathematical construct to overcome the complications
arising from a nontrivial space-time geometric structure.

In this paper the theory presented in I and II is refor-
mulated starting from first principles and extended to in-
clude gauge invariance, i.e., invariance with respect to an
arbitrary choice of the space-time calibration. Moreover,
the restrictive hypothesis of assuming a Weyl geometry
from the beginning is released, both the particle motion
and the space-time geometric structure being derived from
a single average action principle. For this reason it seems
appropriate to call the present theory geometric quantum
mechanics.

The space-time is supposed to be a generic four-
dimensional differential manifold with torsion-free con-
nections I &„——I & and a metric tensor g&„having the sig-
nature (+,—,—,—). Units are used where lf =c = 1.

The metric tensor components g„are regarded as arbi-
trarily prescribed fields, so that the theory describes the
motion of a spinless particle in an external gravitational
field.

In Riemann geometry the connections are assumed to
coincide with the Christoffel symbols [„„J.As shown in I
and II, the departure of the actual connections from the
Christoffel symbols accounts for quantum effects. There-
fore, to include quantum phenomena, the connections are
to be determined from the space-time matter content.

The overall physical picture is quite analogous to the
situation prevailing in general relativity Geometry is not
prescribed; rather, it is determined by the physical reality.

A result of geometric quantum mechanics is that the
actual space-time connections are integrable semimetric
Weyl connections [see Eqs. (11)and (12) below].

As is well known, in a Weyl space any physical quanti-
ty is characterized by its covariance properties and by its
Weyl type. ' By definition, the Weyl-type metric tensor
and connections are io(g&„)=1 and ia(I &„)=0, respec-
tively.

The paper is organized as follows. In Sec. II the funda-
mental average action principle is introduced and its lack
of invariance under electromagnetic gauge transforma-
tions is noted. In Sec. III the particle random motion is
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derived from this principle. In Sec. IV the space-time af-
fine connections are obtained from the same average ac-
tion principle and, finally, in Sec. V the connection with
traditional relativistic quantum mechanics is established.
Moreover, in order not to interrupt the thread of the arti-
cle, three Appendices are devoted to the technical aspects
of the theory.

II. THE AVERAGE ACTION PRINCIPLE

Following the physical picture outlined in I and II, the
particle is supposed to undergo a motion in space-time
with deterministic trajectories and random initial condi-
tions taken on an arbitrary spacelike three-dimensional
hypersurface. In this way, according to the usual statisti-
cal interpretation of quantum mechanics, the theory de-
scribes a relativistic "Gibbs ensemble" of particles.

Both the particle motion and the actual space-time con-
nections can be obtained from the average stationary ac-
tion principle

~2
5 E f L(x(r),x(r))dr =0, (1)

7 ]'

where E denotes the expectation value, L, is the particle
Lagrangian, and ~ is an arbitrary parameter along the par-
ticle trajectory. The action integral appearing in Eq. (1)
must be parameter invariant, coordinate invariant, and
gauge invariant. All these requirements are met if L is
positively homogeneous of the first degree in x"=dx "/dr
and transforms as a scalar of Weyl type w(L)=0 The.
underlying probability measure must be gauge invariant,
too.

A suitable Lagrangian for the particle is

L (x,dx) =(m R/6)' ds+—A„dx", (2)

where ds=(g&~i'x")'~ dr is the arc length, R is the
space-time scalar curvature, and m a parameterlike scalar
field of Weyl type w (m) = ——,', which is to be interpreted
as the particle rest mass. The factor —,

' in front of the
space-time curvature is essentially arbitrary and its value
has been chosen for further convenience. The vector field

A& may be interpreted as the four-potential, due to an
externally applied electromagnetic field, and the
curvature-dependent factor in front of ds in Eq. (2) as the
"effective" particle mass.

As pointed out in Ref. 2, the field m is merely the
gauge transformation of the field m =const; therefore, no
field equation is needed for it. Since the quotient of two
such parameters m~ and m2 remains constant, a local
mass measurement is possible in Weyl space-time.

Lagrangian (2) is gauge invariant, provided the covari
ant components Az of the four-potential have Weyl type
w(A„) =0.

The field A& may be split uniquely in its gradient and
divergence-free parts, viz. (8&——8/Bx"),

Ap ——Ap —BpS . (3)

The divergence-free part A& may be interpreted as the
electromagnetic four-potential in the Lorentz gauge. The
Weyl types of S and A& are both zero.

For electrically neutral particles or in the absence of
external electromagnetic fields A&

——0, by definition, and
the total four-potential A„reduces to a gradient.

In classical electrodynamics, the gradient part of the
four-potential does not affect the particle motion, since
classical mechanics is based on a stationary action princi-
ple with fixed end points; therefore two Lagrangians
differing by a total differential are to be regarded as phys-
ically equivalent.

This is no longer true in a theory based on the action
principle (1), where an average is involved on the particle
random motion. In fact, the end-point terms in the varia-
tion of the action integral do not average to zero, in gen-
eral, and, therefore, Lagrangians differing by a total dif-
ferential are no longer dynamically equivalent. As a
consequence, the four-potentials A& and Az are not
equivalent, either.

All these considerations may be summarized by saying
that the average action principle (1) is not invariant under
electromagnetic gauge transformations A& —+A&+ B&S.

But it is already well known that quantum mechanics
provides a theory that is not invariant under electromag-
netic gauge transformations, since the four-potential (and
not the electromagnetic fields) appears explicitly in the
wave equation.

Then, principle (1) is at least compatible with general
symmetries of quantum mechanics. We will show in the
following that quantum mechanics can be deriued indeed
from principle (1), once the appropriate variations are tak-
en, and that it is just the gradient part of the electromag-
netic four-potential which leads ultimately to the ex-
istence of the quantum particle wave function.

III. THE PARTICLE RANDOM MOTION

The set of all space-time trajectories accessible to the
particle (i.e., the particle path space) may be obtained
from principle (1) by performing the variation with
respect to the particle trajectory, with fixed metric tensor,
connections, and an underlying probability measure.

This kind of variational problem may be handled in the
framework of the Hamilton-Jacobi theory in the calculus
of variations. As shown in Appendix A, the solution is
given by the so-called Caratheodory complete figure asso-
ciated with the Lagrangian

L(x,dx) =(m R/6)'~—ds+A&dx" (4)

written out in terms of the divergence-free part of the
four-potential alone.

The resulting complete figure is a geometric entity
formed by a one-parameter family of hypersurfaces
S(x)=const, where S(x) obeys the Hamilton-Jacobi
equation ( g&"g„z——8& )

g& (a„s—A„)(a~—A„)=m (5)

and by a congruence of curves intersecting this family,
given by

dx"/ds=g""(BQ —A„)/[gi (BP—A )(8+—A )]'~

(6)
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IV. THE SPACE-TIME GEOMETRY

The actual space-time affine connections are obtained
again from principle (1) by performing the variation with
respect to the fields I „„for a fixed metric tensor, particle
trajectory, and probability measure. To solve this varia-
tional problem it is expedient to transform the average ac-
tion principle (1) in the form of a four-volume integral,
viz. ,

r

5 f d4x[(m2 R/6)(g„„j"j—")]'~2+A~" =0, (9)

where 0 is the space-time region occupied by the
congruence (6) and j"is given by Eq. (8}. The equivalence
between variational principles (1) and (9) is proved in Ap-
pendix B. The main advantage of putting variational
principle (1) in the form (9) is that in this way familiar
variational techniques of field theories can be exploited.

Since the connection fields I &„are contained only in
the curvature term R, the variational problem (9) can be
further reduced 'to

5 f~Rv' gd x —=0. (10)

In obtaining Eq. (10) the Hamilton-Jacobi equation (5)
has been used. The geometric principle (10) states that the
average space-time curvature must be stationary under a
variation of the fields I z„(principle of stationary average
curvature}.

The extremal connections I &„arising from principle
(10) are found in Appendix C, using standard techniques
of field theories, as

[A ) + i
(p Qi+p+A g gApp )

with

The congruence (6) yields the actual particle path space.
The underlying probability measure on the path space
may be defined on an arbitrary three-dimensional hyper-
surface intersecting all of the members of the congruence
(6) without tangencies.

The measure is completely identified by its probability
current density j" (see Appendix B).

Moreover, the measure being independent of the arbi-
trary choice of the above-mentioned hypersurface, j"
must be conservative, viz. ,

8j"=0 .

Since the trajectories are deterministically defined by
Eq. (6), j" must be parallel to the particle four-velocity
(6), and hence we can write

ji'=pv' ggi'"(—BQ A„),—
with some p~O.

Gauge invariance of the underlying measure as well as
of the Caratheodory complete figure requires that j"
transforms as a vector density of Weyl type w (j")=0 and
S as a scalar of Weyl type w(S)=0. From definition (8)
we see that p transforms as a scalar of Weyl type
w (p) = —1. The quantity p may be called the scalar prob-
ability density of the particle random motion.

Q„=B„(lnp) . (12)

and the fundamental relation (12), yielding the gauge field
P„,may be written as

Dpp=O . (14)

In Eqs. (13) and (14) D& denotes the double-covariant
Weyl derivative with respect to the coordinate x" (Ref. 2).
We see that in geometric quantum mechanics the proba-
bility density (and not the rest mass m, as claimed in Ref.
2) behaves as a constant with respect to double-covariant
derivation.

When written out explicitly, Eqs. (13) and (14) form a
set of two coupled partial differential equations for the
quantities p(x) and S(x). To any solution fp, Sj of these
equations it corresponds to a particular random motion
for the particle. '

V. THE KLEIN-GORDON EQUATION

The connection with traditional quantum mechanics is
made by observing that Eqs. (13) and (14) may be cast in
the familiar Klein-Gordon form, viz. ,

[(i /v' g)8~v' ——g A„)g""(—i d„A„)P—
—(m —R/6)/=0, (15)

where g=v p exp( —iS) and R is the Riemannian scalar
curvature built out from the metric tensor g&„only. The

0

curvature R is related to the Weyl curvature R by the for-
mula5

R=R 3[2g""4' 4' +(—I/& g)~i« gg ""4—' —)l . '

According to point of view (a) considered at the begin-
ning of this work, in the Klein-Gordon equation (15) any
explicit reference to the underlying space-time Weyl struc-
ture has disappeared. In this sense, we may say that the
Weyl structure is hidden in the Klein-Gordon theory. It
should be stressed, however, that in geometric quantum
mechanics no physical meaning is given to the complex
quantity g and to the Klein-Gordon equation (15). Rath-
er, the dynamical and statistical behavior of the particle,
regarded as the classical particle, is determined by Eqs.
(13) and (14), which, although fully equivalent to the
Klein-Gordon equation (15), are expressed in terms of
quantities having a more direct physical interpretation. '

As previously anticipated, Eqs. (11) and (12) show that
the resulting connections are integrable Weyl connections
with a gauge field P&. The same relationship between
geometry and space-time matter content was exploited
also in I and II.

All the relevant equations of the present theory may be
written out in a manifestly double-covariant (i.e.,
coordinate- and gauge-invariant) form.

The Hamilton-Jacobi equation (5) and the continuity
equation (7) may be condensed in a single complex equa-
tion for S(x), viz. ,

exp(+ iS)g""(iD&—A& )(iD„—A„)exp( iS—)
—(m —R/6) =0 (13)
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As a final physical remark, we observe that the pres-
ence of the Riemannian curvature term in Eq. (15) is
needed to have gauge invariance. When gravitational
fields are negligible, however, the curvature R vanishes
and Eq. (15) reduces to the Klein-Gordon of special rela-
tivity, written out in curvilinear coordinates.
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APPENDIX A

In this appendix it is shown that the Caratheodory
complete figure formed by the congruence (6) solves the
variational problem (1) of the text.

In order to understand the meaning of the average in-
volved in Eq. (1) of the text we need the notion of the
Gibbs ensemble in relativistic mechanics. This notion is
given in Ref. 6. Roughly, a relativistic Gibbs ensemble of
particles may be assimilated to an incoherent globule of
matter moving in space-time. More exactly, a relativistic
Gibbs ensemble is given by (i) a congruence of timelike
curves in space-time (the path space of the particle) and
(ii) a probability measure defined on this congruence.

We may construct a relativistic Gibbs ensemble as fol-
lows.

Let E, a three-parameter congruence of time-like curves
in space-time, be given by

x"=x"(r,u ), (Al)

where u" (k =1,2, 3) are the parameters and r is an arbi-
trary parameter along each curve of the congruence. For
the sake of simplicity, let us suppose that the congruence
covers a region 0 of space-time simply; i.e., one and only
one curve of K passes through each point of Q. Then, we

may regard Eq. (Al) as a change of coordinates from the
x" to the new coordinates y" (y =r,y =u ), whose Jaco-
bian is nonzero in Q.

Let us consider the action integral

r2f L(x(r, u ),x(r, u"))d~,
7

$

(A2)

with Lagrangian L homogeneous of the first degree in the
derivatives x&=Bx&/Br.

This integral depends, of course, on the parameters u .
Since we have one-to-one correspondence between the
values of u and members of the congruence IC, we may
introduce the notion of probability that the particle fol-
lows a sample path having parameters u in some three-
dimensional region 8 as

pro&(&)= f p(u")du'du~du',
BCR

~2I=E f Ldr
1

=f,f p(u ")L(xi'(r, u "),x"(~,u "))d~ du 'du du
7

$

(A4)

B BL
B. "B-".. BL—p =0~

Bx"

that is, since p does not depend explicitly on ~,

B BL
Bx"

which coincides with the Euler-I. agrange equations asso-
ciated with the action integral (A2). This means that the
actual congruence must be a congruence of extremals, or,
equivalently, that the particle obeys equations of motion
(A5) with probability one

Even if the congruence is extremal, however, we are left
with nonvanishing surface terms in the variation of I,
Viz. ~

(A5)

5I=f,p(u )du'du du

The last term on the right-hand side is a four-dimensional
volume integral extended to the zone between the hyper-
planes y =~& and y =v2 in the y coordinates.

In the x coordinates these hyperplanes are mapped on
two three-dimensional hypersurfaces in space-time, name-
ly, the hypersurfaces r(x")=xi and r(x")=r2[r(x") is ob-
tained by solving Eqs. (Al) with respect to r]. These hy-
persurfaces, however, being merely the result of the pa-
rametrization of the congruence J, are to be regarded as
essentially arbitrary.

The integrand in Eq. (A4) depends on the four un-
known functions x" (y"), on their first derivative
Bx"/By, and on the coordinates y" themselves. There-
fore, the variational problem 5I=0 is reduced to a stan-
dard problem of variational calculus for multiple in-
tegrals, well known in field theories. The solution of this
problem yields the functions x"(r,u"), i.e., the actual
congruence that renders the average action stationary.

The Lagrangian density in Eq. (A4) is represented by

A=@(u )L(x"(r,u ),x",(r, u )),
in which x",=x" and ~,u are the independent variables.

According to the standard prescription, the Euler-
Lagrange expressions are given by

B
'

BA . B BA BA+
Bu~ Bx"k B~ Bx", Bx~ '

where x"j,=Bx"/Bu . In this case, however,
BA/Bx "k =0, and consequently the fixed equations
E(A) =0 reduce to

(A3)

where p(u ") is some probability density defined on R 3.

Therefore, the average action integral appearing in Eq.
(1) of the text may be written in a more transparent form
as

X (r2, u ")5x1'(r2,u ")Bl.

k p k(ri, u )5x (ri, u ) =0.
Bx"

(A6)
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aL/ax (v, u")=0. (A7}

Now, let us specialize Lagrangian I. with Lagrangian
(2) of the text. Comparing this Lagrangian with L, as de-
fined in Eq. (4) of the text, we find

aL/ax~=aL/ax~-a„S .

Then, condition (A7} yields

(A8)

aL/ax~=a„S (A9)

along each member of the congruence X.
Moreover, we observe that Lagrangians L and I.,

differing by the total differential dS, lead to the same
Euler-Lagrange equations and therefore we may safely re-
place L by L in Eqs. (A5).

In conclusion, the congruence that renders the average
action (Al) stationary must be (i) a congruence of curves
that are extremal with respect to Lagrangian L and (ii) a
congruence satisfying the integrability conditions (A9).

Now, it is a well known result of the Hamilton-Jacobi
theory in the calculus of variations that such a congruence
is given by Eq. (6) of the text, provided S(x") obeys the
Hamilton-Jacobi equation associated with the Lagrangian
L(x",x"), namely, Eq. (5) of the text.

APPENDIX 8

In this appendix the current density j& is introduced
and the equivalence between the average action (1) and the
four-volume integral (9} of the text is proved. This pro-
vides a useful connection between ensemble averages and
four-volume integrals appearing in field theories.

The four-dimensional integral (A4) is expressed in
terms of the y coordinates (r,u"). Obviously, it can be ex-
pressed in terms of the x coordinates too.

To this purpose it is convenient to introduce the current
density j"associated with the relativistic Gibbs ensemble.

The surface element normal to the hypersurface
r(x")=const is given by

The terms containing the Euler-Lagrange equations of
motion have been set to zero, since the congruence is sup-
posed to be extremal.

In Eq. (A6) the quantities 5x" at v=ri and ~=rz are
the displacements between the points P and P+5P, where
the curve x& and the varied curve x"+5x" intersect the
hypersurfaces ~=~i and ~= rq,' then 5x"(~i,u ") and
5x"(r2,u") are tangential to these hypersurfaces, respec-
tively.

But, as previously noted, the hypersurfaces r(x")
=const are essentially arbitrary, so that the displacements
5x"(~i,u ) and 5x~(vz, u") must be regarded as arbitrary
as well. Therefore, 5I=0 implies

P=j 7TII (83)

f f~dcrp f— J'~do~= f ap&d x =0, (85)

where 0 is the strip enclosed between the essentially arbi-
trary hypersurfaces ~(x")= ~& and r(x")=rz.

The same result may be found by taking the derivative
of Eq. (83) with respect to w and using well-known prop-
erties of Jacobian determinants.

Passing to the x coordinates, the integral (A4) becomes

I= f~LJ 'd x, (86)

where

a(x,x',x,x )J=
a(~, u', u, u )

is the appropriate Jacobian. We observe that, by defini-
tion, J=(ax"/a~)m. „=x"n.„so that we have

I= f~[L(x",x")/(x"m„)]d x . . (87)

The Lagrangian L being homogeneous of the first de-
gree in the x", the term in square brackets in Eq. (87) is
homogeneous of degree zero in the x". Then, we may re-
place x" with the current j"=Ax& without affecting the
integral, obtaining

I=f L (x I',j I')d x,0
where definition (83) has been used.

We have just proved that the average action I may be
converted in a four-volume integral of the Lagrangian
L(x",j"), obtained by replacing formally the variables x"
with the current components j". When this formal substi-
tution is made in Lagrangian (2) of the text, Eq. (9) is ob-
tained. This substitution does not alter the functional
dependence of the average action integral I on the connec-
tion fields I &, so that variational problems (1) and (9) of
the text are equivalent as long as the variation is per-
formed with respect to these fields.

(88)

so that Eq. (A3) becomes

prob(8) =f,p du 'du du =f,j"d o.„. (84)

Notice that Eq. (83) does not define j" completely, its
direction being still undetermined. Then, we are free to
choose the current direction parallel to the congruence E
at each point; i.e., j"=M" for some I,.

The independence of the underlying measure on the
chosen hypersurface w=const is expressed analytically by
the fact that p =@(u ', u, u ) does not depend on v expli-
citly.

This implies aj"=0,since by Gauss s theorem we have

de~ =7T~du du du (81) APPENDIX C

where m.z are the Jacobian determinants

a(u ',u, u ) a(u ',u, u )
(82}

etc. Then, the current density j"is defined according to

In this appendix Eqs, (11) and (12) of the text are de-
rived. Similar results have been already obtained by vari-
ous authors in a completely different context, namely, the
Brans-Dicke theory of gravitation. "

Let us start from Eq. (9) of the text, which is to be
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In order to evaluate 5R, we pose

(C3)

where I„"„I are the Christoffel symbols, built out of the
metric tensor g&„.

Being the difference between two connections defined
on the same manifold, the fields T»~ transform as the
components of a tensor. For the sake of mathematical
simplicity the connections I &„are assumed to be sym-
metric, i.e., I &„——I „„,so that we have also T„„=T„„.

The curvature R with respect to the connections I &„ is
related to the Riemannian curvature R with respect to the
Christoffel I„„I by a well-known formula of differential
geometry, viz. ,

R —R+Vgco —g Tcrv Tpg +g""Tpv Tg~ (C4)

varied with respect to the connection fields I „with
fixed j"and g„„.

The connections being only contained in the curvature
R, we find

xg„„jj" m —R 6 ' R=O. Cl

Once the variation is performed, we may safely insert
into Eq. (Cl) the actual current j",given by Eq. (8) of the
text with S(x") obeying the Hainilton-Jacobi equation (5)
of the text. After this substitution is made, Eq. (Cl)
reduces to Eq. (10) of the text, viz. ,

xp —g R= d xp —gR =0. C2

where

~A gPYT A, gPA. T v

Taking the variation of Eq. (C4) we get

5R =V2„(5' ) g"—"(T „5T„2.+T„2. 5T „
—T~„5T2 T2—5T„) .

(C5)

(C6)

Notice that, during the variation, the metric tensor
components g& are held constant, so that 6I &„——5T&
and the Riemannian covariant derivative 7& commutes
with the 5 operation. We assume the variations 5I & to
be symmetric too, viz. , 51 „,=5I „„.

In Eq. (C6) the contravariant vector 5' is found from
Eq. (C5) as

5co =g""5T„—g""6T„„".

Equation (C6) can be rearranged as follows,

(C7)

(C9)

Inserting Eqs. (C8) and (C9) into Eq. (C2) and perform-
ing a partial integration we find

5R =V2(5' )+(g""T2 gl' Tz —" g" T2 —")5T„„~

+g" T„„5Tg (C8)

Since 5T&„5T», the——last term in Eq. (C8) can be
symmetrized, obtaining

I d xv' —g pI (Viplp)5' —+5T„„"[g~"T2. g~ T2.
" g—" T2. "+—(g ~T p"52.—+g ~Top 52.)1I =0

where surface terms have been set to zero.
Putting $2 =(V2plp) =82(lnp) [see Eq. (12) of the text] and inserting Eq. (C7) into Eq. (C10) we get

J„d'x& gp5T„.'[ g—""A+g""T—2," g" T2,." g"—T2,'+ ,—(0"@+F52.+—(g"T.,"52.+g"T.,"8)J =o,

where +=g»P~ as usual. Now, since 5T& " 51 &„are arbitrary —f—ields, we are led to the "field equations"

T2o"+ 2&A,,.(4 +g T P )+ 252(4'"+g T i") .

(C10)

(Cl 1)

(C12)

Contracting with respect to the indices p and A, we get or, equivalently, lowering all indices,

P"+g I'T ~"=0. (C13) gl A2.=T2.i +T2,„~ (C17)

Inserting this relation back into Eq. (C12), the terms in
parentheses vanish and the field equations may be put in
the simpler form

(C14)

These equations can. be further simplified as follows.
Multiplying Eq. (C14) by g» and contracting, we obtain

(C15)
1

»X 2 gp2, 4Y+gv2, 4 p gilA 2 (C18)

Equations (C17) can be solved with respect to Tz„„ex-
plicitly by subtracting Eq. (C17) from the sum of the two
equations obtained from Eq. (C17) itself after a cyclic per-
mutation of the indices A, ,p, v and exploiting the symme-
try of T2&„with respect to A, and p.

The result is

which inserted back into Eq. (C14) yields

g""A=g". T2,"+g" T2," (C16)

Raising the index A. and inserting Eq. (C18) into Eq.
(C3) we find Eq. (11) of the text, with the gauge field P&
given by Eq. (12) of the text.
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