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Gravitational counterterms and Becchi-Rouet-Stora symmetry
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All one-loop quantum gravitational corrections to the Einstein action, involving the graviton and
the ghosts as bilinears, have been systematically determined in a class of Lorentz-covariant gauges
and in a manner which is explicitly Becchi-Rouet-Stora invariant. The procedure explains why cer-
tain miraculous relations arise in previous analyses.

I. INTRODUCTION

There have been many one-loop calculations in quan-
tum gravity, the most notable attempts being Refs. 1—4.
Practically all these investigations have focused on the
graviton and ghost bilinears (as indicators of the counter-
terms needed to renormalize the theory to first order in
Newton's constant G) although isolated studies of other
Green's functions and a selective two-loop calculation
should be mentioned. These latter valiant efforts under-
line the algebraic difficulties of the task in quantum grav-
ity.

From the outset it was recognized that gravitational
Becchi-Rouet-Stora (BRS) symmetry would provide
strong constraints on the structure of the Green's func-
tions and on the ensuing renorrnalizations. Yet every
analysis so far, although appreciating the importance of
BRS invariance, has contented itself with checking the
BRS identities in a slightly ad hoc manner and only with
reference to the Green's functions that were individually
studied. In this paper we wish to systematically catalog
the complete one-loop counterterms in a manner which
takes advantage of and explicitly realizes the BRS symme-
try of the quantum action. (The exercise obliges us to
adopt dimensional regularization in order to preserve the
BRS invariance. ) We restrict ourselves to the bilinears in-
volving ghosts and gravitons but also include the invariant
sources. %'e did not have the strength to go beyond these
terms as the calculations become notoriously diffi-

cult then.
Section II summarizes the BRS invariance properties of

the action and the resulting identities among Green's
functions; it was necessary to include this section to spell
out the notation, if for no other reason. In Sec. III we
categorize the possible counterterrns and show how they
are determined. The results appear in Sec. IV; cornpar-
ison with earlier work shows why remarkable relations be-
tween different amplitudes have a simple explanation.
The appendixes contain some of the relevant Feynman
rules and diagrams plus the basic dirnensionally continued
Feynman integrals.

Our work represents the first step of a more ambitious
undertaking: that of evaluating the three- and higher-
point functions in a way which automatically respects
gravitational BRS symmetry. No doubt, the same con-
siderations apply to the conformal R 2 theories.

II. BRS SYMMETRY OF THE
GRAVITATIONAL ACTION

We shall express all our covariants in terms of the
metric density

g p"=v' —g gp"=ri""+Kh"",

where g is the Minkowski metric, IC =32m.G, and the as-
sociated graviton field is h. The entire Lagrangian in-
cluding gauge fixing, ghosts, and invariant sources is
given in arbitrary (2l) dimensions by

pcT g pKQ vi
og

+dpC„D" i C +K(Ip„D""iC~+Ii„C"t)„C~)
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and it enjoys invariance under BRS transformations

5»=KD»A, C, 5C"=KC"()„C",
(2)

The general solution of (8) may be expressed in the usual
way as the sum of a gauge-invariant part' (square of cur-
vature, to this order) plus a BRS variation,

5C ~= 8—"/K, 5Bi =5'„5I——i„=o .

It is fairly well known that the gauge-fixing and source
terms, WI and Wl, respectively, do not share the full
gravitational gauge invariance (associated with coordinate
transformations) possessed by the classical Einstein term

Therefore at the quantum level it is the BRS sym-
metry which is directly relevant. Nevertheless, by ensur-

ing that the physical subspace has a zero ghost charge one
can prove that the unphysical degrees of g cancel out
against the ghost fields and that the physical, on-shell S
matrix becomes fully gauge invariant, which is all one
could wish for.

The BRS identities satisfied by the Green's functions
are derived by adding the usual source terms to (1), viz. ,

J„„(g"——" g"")+—C„J"+J„C",
by making a variation on the vacuum functional exp(i 8'),
and by noting the invariance of the functional measure
and the existence of a regularization —specifically,
dimensional —which properly defmes the amplitudes. In
this way after eliminating the 8 field one obtains

(9)

It only remains to catalog hG and extract the coefficients
b(,bz as well as those coefficients a; occurring in G. We
will find that not all the coefficients can be uniquely
found without as well studying the higher-order functions
(h, hR)—something which we have not done in this
paper or consulting other research. Consequently, we
will have at first to content ourselves with a determination
of seven independent a, b coefficient combinations as the
price of our timidity. The situation has a parallel in
Yang-Mills theory but, by contrast, there it is quite easy
to state and calculate all possible higher-point counter-
terms so the complete evaluation can be carried through
relatively painlessly. En gravity the problem assumes
mammoth proportions and this is just another facet of the
nonrenormalizability of the Einstein-Hilbert action. Still,
we can pick the last two coefficients bi, b2 by leaning on
the background-field calculations. '

III. CATEGORIZATION OF THE COUNTERTERMS

5W 'Vyx()v 5W
~

5W' J 58'
(zKz 5J„)„"5I„„"5I„

using, in the process, the ghost equation of motion

~v 68'
K 5Ip„

One then passes to the effective action

1 =I +f g„iB~»B„g""/2aK

(4)
Let us first take note of the mass dimensions and ghost

numbers associated with the various dynamical variables
in the four-dimensional limit (l~2). These are set out
for quick inspection in Table I. Our BRS variation term
b,G in (9) has to be constructed out of the fields C, Ci,
Ii, I», and Kh"" and therefore the bilinear terms in G
can only involve

g" B„C„, g" Ip„, CI'I„,

I'—8' —f [J„„(g"" rl"")+—C„J"+J"C„],
so as to convert Eq. (4) into the equivalent statement

5I 51 5I 51
5g&" 5I~~ 5C& 5I~

I

Equation (7) is the fundamental BRS identity.
The purpose of our investigation is to extract the full

one-loop contribution to I', at least for all of the bilinears
and some of the source terms, so we make the loop expan-
sion

I (&) g+I (i)+I (2)+. . .
n=0

because they are constrained to have total ghost number
—1. Moreover, the one-loop pieces have to be associated
with two derivatives, as well as two powers of E, with I
and C in the particular combination

I~„Iq„+(d„C+d„C——q)/2K,

as one can discern in the original Lagrangian. The most
general bilinear G therefore involves seven coefficients

Quantity Mass dimension Ghost No.

TABLE I. Mass dimensions and ghost numbers of the fields and
constants.

S=classical action,

substitute in (7), and obtain the BRS invariance property
of the first quantum correction I'",

6S 6 6S 6
5g" 5II v 6II v 5g"

+

5 5S 5
6CI' 6Ip 6'

g,g,S,I
x,E

B,A,S

J~„
JA,

Jg,I„„,6

Ap„

0
—1

1

1

—1

3
3
2
2

0
0
0
1

1

0
I

—2
0
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G =K (aiB&h" 8"I„»+azB»hz&B"I„+a3d»h "B&I„"+a4B h& B»I&„+a&B"Ii&"B»I")

+K (a6B„C"8"I +a7B"C"BpI )

and produces the BRS-invariant counterterms

EG= —K hP b, ' (aiB"B»h "+a28&d h» +a3g"'d„B»h" +a4B h"'+a5q"'B~h»»)

KD—~"pCP(aiB„B I», +azrl&„"d"8 I„»+a38&dg» +a4B I&„+arrl&P I» )

K[—(C»d„I„»)—D""z+KI»B&C" KI&—C"B»'j(a6B"B,C"+a78 C") KC"—B„C"(a6B&BI»+a7B I») .

This of course needs supplementing by the generally co-
variant terms

&—g (biR +b2Rp R"") .

All quantities in (11) have been already defined except for
b,o '. This stands for the inverse graviton propagator
without gauge fixing, viz. , 5 S/5h5h.

It is quite obvious that if one wishes to find out the
several a; and b„b2 it is necessary to examine (a) the
graviton self-energy, (b) the I„„-C"and C„Cgra-phs
(which must be related to one another), and (c) the Iz-C-
C graphs, at the very least. In fact we shall find that,
even then, there is insufficient information to determine
all of the coefficients without making separate use of
background-field determinations of bi and b2

IV. EVALUATION OF THE COUNTERTERMS

(12)

To start, convert the graviton part of (11) into momentum space. We have the inverse propagator (not yet gauge fixed)

k 2
1

p~p+ 2 happ fvcT+ 7pl79vp) 2I 2 7pvgp(y 2 (kpkp'g~&p+kpk(y l~r+pk~k~'fjpp+kykp'g )

Substituting in (11) we arrive at the h -h part of KG,

++2 Y~,P ('QPN&»+'9»PPP ) —
2 ( '9»'gPP

+ ' 2(l —1) (9"NW»+ 9„»PpP „) 2P ~»P„P~—

+ 4 2 P ( 9pKVv»+ Pj's»gvK) gp~gg»
1 p

21 —I)

1

2P (&pd' P»+'9v»PpP +'9p»P P~+'9 NpP»).

+~5 P ('9pNaP»+re»PpPv) ('9pPl~»—P
I —I

This has to be added to the R contributions associated with

R„„=—,
' B h„„—8"BP„„—8"B„h„„— (14)

Combining the two contributions we arrive at the entire one-loop BRS-invariant, graviton counterterms:
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f (I)+ & ~2hz%.(p)bye(

1 4
&& «4+ 4 b2)[(ri „ri/. +ri..g// )p +(g.~p~. +ri„~~i.)p' —(g„~ip.+g,~~„+g„~~ +~,~~„)p2]

+(bi+ —,b2 —ai —2a3) 2p&W/ p„+ (/)„/J//p +'/l/Nd//. )
L

b i +b2(1 —l /2)
+

2l —2

4
2—&2 —~4 —2~5 P ('QpN&/, +'/IaV'tv)+ rim/'Qpv

1

(15)

The fact that only three independent kinematic covariants occur in (15) is a statement that BRS invariance requires tu/0

independent relations to exist in the most general expansion of the graviton self-energy II,

K//JV PKPiU /IPV i +P 7K/g/jjV 2+ ( 9Kjll l/V+IgKVQA/l)P t3 + ( 9K/P/lPV+ gplPKPA, )P 4
—2 4 4 2

namely,

+ ('9~yP &v+'/)~NMy. + /1/ NH//+ gal~~)P t5,

t3+t5 =0, +(I —1 )&2+t3 t4=04(l —1)

The first of these relations is explicitly obvious in the paper of Capper and Namazie but the second (which is miracu-
lously satisfied) is only implicit in their work. Specifically, we have the following connections between their coefficients
and ours:

1 J
Tt& ——b&+ ~ b2 —ai —2a3,

bi+b2(1 II2)—
4(l —1)~

(&2+Qy+ 285 )

2(I —1)

1

2 t3 ——t5 ——,b2+ —,a4,

I 4—
1 ]b) + 2 b2 ——,a) —a3

All told then, the graviton self-energy offers a method of determining three of our nine coefficients.
Next we turn to the other bilinears. The most informative one is associated with the Iz„-C transition element which

can be read off from (11) after making the replacement

D c~=a c+8"c —q 8 c+&(&)P

In this manner we have the two-point function

hG DX I(ai+2a4+2a7)B"I&„B C"+2[(l—l)a2 —a6]B"8"Iz B.c+[a4—a3+2(1 —1)a5+a6+a7]B Iz"8 CI . (19)

Here we need to perform a calculation from scratch to work out the associated self-energy,

—iX""i=2[(l —1)az —a6]p"p "pi ——,
' (ai+2a4+2a7)(P~ "+gp")+p g""p&[a4—a&+(21 —2)a5+a6+az] . (20)
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See Appendix 8 for some relevant details. Our results are

1 a(2/ —6/+3)
4 (2/ —1)(2/ —2)

%ith these numbers at hand we attain our limited objec-
tive, inasmuch as we may extract all the coefficients
within (9) and (11). These are summarized below in the
four-dimensional limit /~2:

Aa i+2a&+2a7 ——— I,

a/I (5—2/)aI
2/ —1

'
8(2/ —1)

(23)

%'ithout tackling the one-loop corrections to the higher-
point functions —and we are understandably reticent
about treating them —it is not possible to proceed further,
not unless we make use of other results. Fortunately, the
graviton self-energy was determined via the background-
field method by 't Hooft and Veltman, ' who arrived at the
coefficients b, and b2 of the (gauge-invariant) R terms
in a particular background gauge:

bi —— +0(/ —2), bz —— +0(/ —2) .I 7I
120 ' 20

a i+2a3+4(1 —/)(a2+aq)+2a6 —— I,(1—l)a
2/ —1

and, comparing against (17), we observe that this supplies
us with two new, independent coefficients. We get no fur-
ther information from the ghost self-energy C C, m-erely
reconfirmation of the last two combinations in (21),
though it is always nice to have separate checks on the
work.

The final contribution of interest to us is the I-C-C
term, the last part of (11). It is not very difficult to ex-
tract the two coefficients a6 and a7 providing that we go
to the zero-momentum limit at the I leg; this effectively
corresponds to looking at source I independent of x and

prov&des

b, GvK I„[a6(C"d 8 C BCBI'8 C)—+2a7C"8 "d C] .

(22)

An evaluation of the corresponding Feynman graph (Ap-
pendix 8 contains pertinent details) yields the next two
coefficients:

ai = —( —, + —,'~+2o,")I,
a2 ———

~ (1+2a)I,
a3 ————,

' (1+ ,' a)I—,

a4 ——( —,'+ —,'a+a )I,

2a6 ————,aI,
a7 ——2, aI,1

bi =I/120,
b2 ——7I/20 .

(24)

However it is not clear that these special values of bi, b2
are the appropriate ones for arbitrary a given that the R2
counterterms are gauge dependent, " unlike the Yang-
Mills case. Thus (24) may only be strictly correct in the
limit a~1, although all the earlier formulas are, of
course, exact for any a.

Perhaps others, endowed with more perseverance and
stamina, will be able to include higher powers of the grav-
iton field in (10), obtain the coefficients for these, and
bring to completion the full BRS counterterms program,
given our choice of gauge fixing. A parallel exercise can
of course be initiated for other, non-Lorentz-covariant
gauge choices. '
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APPENDIX A: FEYNMAN RULES

Denote the graviton propagator (h&„h„i,) =bz~i by a wavy line. After the gauge-fixing choice (1),

k a„,„,(k) = (n„l ni,„+n—„„r/„„) (1+a)n„,n—„„P

(1+2a)+ q (2r/„i„q»+2q~»k„ki q„Jerk~ r/„ski —k» 'I/i»k„—kp pic„—») . —
2k

FIG. 1. The ghost-graviton-ghost vertex. FIG. 2. The ghost-graviton-source vertex.
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We make much use in our computations of the contrac-
tions

kzd&2„„(k)=(2—21)[(1+a)rl„„—(1+2n)kpk„/k ],
k 5~2„„(k)=(1—1 —2a)F12„

+(1—1)(1+2a)krak„jk
k2k«b, «2»(k) =a(kl„qp» kpr—ll„„k„r—12p),

q "q~q"q "b,„l„„„(k)= aq —/k
Denote the ghost propagator (C"C ) =b,"„by a dashed
line. From (1) and (18) we get quite simply

LP„(k)=8„'/k 2 .

The interactions can also be read off from (1).
The graviton-ghost vertex, (h„„C2C"), p, depicted in

Fig. 1, is described by

1 "2,.= —,'& fq~«„C+k.g)+N(q~. +q.P, )]

with momenta directed as shown. Let the solid-wavy line
be associated with the source I~, then the (I h„„C2 ),
vertex is obtained (Fig. 2) as

1 p p 2,
= 2!'& Iqp(21 pre! +rl r12p)

)

+q (npp212 +rip r12p)

(q +k)2(n—ppn~+ npoV~)] .

The only other interaction we shall require involves the
source II„, represented by a solid line. With reference to
Fig. 3 we have the vertex (I2 C"C") described by

II Q++

FIG. 3. The ghost-ghost-source vertex.

APPENDIX 8: FEYNMAN INTEGRALS
AND SELECTED GRAPHS

By making appropriate contractions, every integral we
come across in our calculations can be expressed in terms
of the two basic integrals:

d"k 1I=—i
(2~)2l k2(q+k)2p2! —2

1 (2—1)I'(1 —1)I (1 —1)
(4n. ) I"(21—2)

1

!~2 16+(2—1)

—1
d"k q' =(3—21)I

(2~)2I k 2(q +k )4p2l —2

I-2 16m 2(l —2)

Notice the antisymrnetry under ghost interchange
( q, !Msgr, v).

Such integrals arise in the one-loop diagram for the I-C
correction of Fig. 4, viz. ,

d 'k b,""P~(k)
&p "(P)=&' f „,[rlppr12«P' ».+rl„r12p(P— k) P2.n„pal —o][(P—k)"kp o'+(P »I—P~rl""] . —

(2 )2l (p k)2 PP o» Po

when constructing the scalar invariants

P«P P &po ~ P«'9 &po ~ P & «~po

They also come in the ghost self-energy which has been separately evaluated. We will not report anything about this cal-
culation except to mention that the coefficients are in perfect agreement with the expected counterterm,

z X I(al+2a4+2a7)B C&B C"—[a&+2a3+(4—41)(a2+a5)+2a6]B CB 8 CJ

aA ahazN
V P & V P V

FIG. 4. The source-ghost quantum correction. FIG. 5. The source-ghost-ghost correction.
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that has been noted in (21). The last computation is associated with Fig. 5 and the three-point function.
It is enough for our purpose to set the I momentum equal to zero in order to find a& and a7.

I i,
""—+ —iK [(as+2aq)q (q"5i+q "Pj„')+2asq"q "qi ]

d k 5 ~rs(k)=K f i [(q +k)priori+(q +k)~ripe ] [(q +k)l'keg ri&—i'(q +k)rqs](2~)2l P (q+k)

X[(q+k)"k 5$ g"—(q+k)~ii],

whereupon we form the independent invariants ri„~ I i&" and q&5 „Ii" to arrive at the quoted coefficients (24). We
have suppressed other details which are plainly irrelevant; there is sufficient information above for the interested reader
to reproduce our results if he is so moved.
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