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The principal features of classical Kaluza-Klein theories for scalar, vector, and gravitational
fields are reviewed and summarized. It is then argued that existing forms of the Kaluza-Klein An-

satz are potentially inconsistent on the quantum level due to functional-measure discrepancies. The
canonical functional measures for integer-spin fields, derived elsewhere, are used to demonstrate the
partial quantum consistency of toroidally compactified Kaluza-Klein theories of scalar, vector, and
gravitational fields in an arbitrary number of dimensions. It is shown that the use of any of the oth-
er popular functional measures found in the literature would lead to the inconsistency of Kaluza-
Klein compactifications. It is argued that the quantum consistency of field theories based on the
canonical functional measure is an automatic consequence of the transformation properties of that
measure under field redefinitions, with the full quantum consistency of all Kaluza-Klein theories
following as a special case of this general rule. Finally it is suggested that nontrivial measure factors
may act to stabilize the Kaluza-Klein Casimir effect.

I. INTRODUCTION

In its modern incarnation, the unification of gravity
with the other forces originally proposed by Kaluza and
Klein'. has attracted an enormous amount of interest. The
fundamental idea involved is simple and powerfully com-
pelling: spacetime is assumed to possess more than four
dimensions, and the higher-dimensional analogue of pure
Einsteinian gravitation is found to contain ordinary gravi-
tation together with vector and scalar field theories once
the higher-dimensional theory is reduced to four dimen-
sions.

This process of dimensional reduction to a four-
dimensional effective-field theory occurs automaticaily if
we assume that the physical ground state of our extra
space dimensions is a compact manifold of microscopi~
size, in contrast with the noncompact Minkowski-space
ground state for our four observed spacetime dimensions.
Given an appropriate choice for the structure of this com-
pact manifold, the four-dimensional vector fields which
appear after compactification can be arranged to
transform under the adjoint representation of any desired
compact symmetry group. Those nongravitational forces
in nature which were actually portions of dimensionally
reduced gravitation would have coupling constants which
were simply related to. the geometrical size and shape of
our compact manifold. General considerations (as well
as several quantum calculations ) would lead us to be-
lieve that the characteristic size of the compact manifold
must not be much larger than the characteristic length
scale of gravitation, namely, the Planck length.

In Sec. II I briefly review the principal features of clas-
sical Kaluza-Klein theory, as applied to dimensionally re-
duced theories of scalar, vector, and tensor (i.e., gravita-
tional) fields. For simplicity and ease of discussion, I
shall confine most of my attention to the case of a single
compact dimension added to n-dimensional Minkowski

space (i.e., theories based on a full spacetime ground-state
topology of M"&&5'). This approach generalizes trivially
to the case of an arbitrary number of toroidally compacti-
fied dimensions [i.e., theories based on a ground-state to-
pology of M"X (S') ]. Such a review is necessary both in
order to establish a framework for the following discus-
sion and because of the errors and confusion found in
much of the previous literature.

In Sec. III I shall suggest that although all the various
Kaluza-Klein Ansatzes described in Sec. II (and widely as-
sumed in the literature) are acceptable as classical
theories, they are potentially inconsistent on the quantum
level because of discrepancies in the functional measure
associated with the path-integral formulation of the
theory in its dimensionally reduced form. Although such
discrepancies would be removed by several popular regu-
larization techniques (which formally set all nontrivial
measure factors equal to unity), it is argued that these reg-
ularizations are inappropriate in situations in which the
underlying background topology of spacetime is not flat,
most notably in Kaluza-Klein theories. A general cri-
terion by which a quantum theory based on a Kaluza-
Klein Ansatz can be judged consistent is pointed out.

In Sec. IV I show that toroidally compactified Kaluza-
Klein theories of scalar and vector fields are self-
consistent on the quantum level. Next, I show that
toroidally compactified Kaluza-Klein theories of scalar
and vector fields coupled to quantized gravitation are also
self-consistent, at least with regard to the purely zero
modes of the functional-measure factors. Finally, I
demonstrate that toroidally compactified Kaluza-Klein
theories of gravitation which are based on the canonical
functional measure are self-consistent in this same way,
but that such theories based on other functional measures
for gravitation are not self-consistent. I note that these
results partially rely on an interesting relation between
massive and massless scalar, vector, and spin-2 fields.
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II. CLASSICAL FEATURES OF KALUZA-KLEIN
THEORIES

Consider the classical theory of a massless scalar field
in n +1 dimensions. The action is

S= f d"xdy[ ——,'(B~P)(B P)]
= f d"xdy[ ——,'(B„P)(B"(t)——,'(8 P)(cPP)], (2.1)

with (t =(tt(x,y). Now suppose that our (n+1)st space-
time dimension is compact, namely, that the physical
ground state of our space (about which all of our field
configurations represent small perturbations) is not
M" +', the (n +1)-dimensional Minkowski space, but in-
stead M"XS', the direct product of n-dimensional Min-
kowski space with the circle. If the value of our scalar
field is to be consistently defined, it must be periodic in
the spatially periodic y coordinate, i.e., P(x,y )

=P(x,y+2mL), where 2mL is the circumference of the
compact space S'. [Actually, we could also choose to de-
fine our scalar field as being "periodic with a twist" in the
compact dimension, e.g. , choosing (()(x,y ) =
—P(x,y+2nL). However, such twisted boundary condi-
tions lead to the absence of zero modes in the dimension-

In Sec. V I use formal arguments to demonstrate that
the specific quantum consistency results derived in Sec.
IV are actually automatic consequences of the structure of
the canonical functional measure for integer-spin fields,
which guarantees the quantum consistency of all such
theories connected by field redefinitions. This fact strong-
ly suggests that the canonical functional measure is actu-
ally the correct measure for a quantum field theory, and
indicates the quantum consistency of all Kaluza-Klein
compactifications, as well as the Higgs mechanism, the
background-field method, and other common procedures
in modern quantum field theory. I also show that the
canonical functional measures for half-integer-spin fields
and for auxiliary fields also ensure this automatic quan-
tum consistency for those theories as well.

In Sec. VI I suggest that the nontrivial functional-
measure factors in Kaluza-Klein theories of gravitation
may serve to stabilize the Casimir effect in the one-loop
effective potential, preventing the compact manifold from
shrinking to zero size. A direct computation seems to in-
dicate that this stabilization does occur for the (4+ 1)-di-
mensional case.

Throughout this paper I shall use units in which
A=c =k =1 and all quantities are measured in GeV. My
metric convention will be spacelike, ii&„——diag( —1, +1,
+1, . . . , —1), which is most convenient in Kaluza-Klein
theories. I will adopt the usage of the rationalized
Newton's constant, 6=Sm6, with the n-dimensional
(rationalized) Planck inass being given by
Mpi k =(6)' (" '

~ In general, greek letters will range
over the noncompact spacetime coordinates, written as
x's, small latin letters will range over the compact space-
time coordinates, written as y's, and capital latin letters
will range over all spacetime coordinates, written as z's;
tildes will denote the higher-dimensional fields.

ally reduced version of the theory, resulting in a lack of
low-energy dynamics. ] Now if (I)(x,y) is piecewise regular
in the y coordinate, it can be expanded in a Fourier series

P(xp, y) = g P
(" ()x~)exp(iky/L) . (2.2)

It is important to note that each of the Fourier modes
P(")(x~) in the decomposition of P(x,y) is a completely
independent field. Under this Fourier decomposition, our
scalar action in (2.1) takes the form

+ y (~pl(k))(() '(t'( k))—
k=1

k+,4(k)4'(-k) (2.3)

where FM~ ——BMA~ —8~AM. Dimensionally reducing by
deleting all but the zero-mode (y-independent) portions of
our fields and absorbing the extra factor of 2mL into a
classical field redefinition, we obtain (after suppressing
the zero-mode marker) our modified action

S= f d"x[——,'(B„A )(8"A )+—,(B„A„)(BA &)] . (2.5)

Since our (n + 1)-dimensional vector field transforms
under the n-dimensional Lorentz group as the combina-

since
2n'L

dy exp[i(k+k')y/L] =2nL5k

Aside from the (classically) irrelevant factor of 2nL
multiplying the action (which can be absorbed by a field
redefinition), this is identical to the kinetic action for an
infinite set of massive four-dimensional charged scalar
fields, with masses given by m =k /L and charges pro-
portional to k. If we are confining our attention to ener-
gies low compared to the compactification energy scale
1/L, all of the scalar modes except the zero mode would
contribute negligibly to our results and can usually be ig-
nored. This turns out to be a general result: in all
Kaluza-Klein theories, whether involving interactions or
not, the full kinetic term of the theory in n +1 dimen-
sions reduces in n dimensions to a kinetic term and a
mass operator, with the masses of the eigenmodes being
proportional to the mode number and being inversely pro-
portional to the compactification length scale. Assuming
a sufficiently small compactification scale (on the order of
Mpi k), we are usually justified in neglecting all but the
zero-mode portions of the Fourier expansion in our
effective-field theory at normal energies.

Now consider the more complicated case of a massless
vector field A~ in n+1 dimensions. The full (n+1)-
dimensional action is

S= d"x y ——,'FM~FM"

= f d"x dy[ ——,'(8 A )(8 A ~)+ —,'(8 A )(8+2 M)],

(2 4)
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A~ ——P'(A~, gb), (2.6)

tion of an n-vector and an n-scalar, we may parametrize
it as

functions will simplify this result considerably.
First, if we choose scalar functions which satisfy the

condition D(o)B(cr) =[C(o)], our zero-mode (n +1)-
dimensional volume measure factorizes conveniently as

with P being a scalar and a, b being arbitrary constants.
Inserting this Kaluza-Klein Ansatz into our (n + 1)-
dimensional action (2.5) yields

g:—det(gM~ ) = [A (o )]"+ D (o )det(g„v)
—= [A(cr)]"+'D(o)g . (2.12)

& (a +b)2y2a+2b —2(a y)(any)

——,'(a„A„—a~„)(a~A"—a"A~)

Q
A„P ' (aug)(A "a"P—A "a"Q)

+aA p
' '(a p)(a"A"—a"A") (2.7)

Without this factorization, our n-dimensional action
would contain an infinite number of field interactions of
arbitrarily high order (T.his important condition is main-
tained in most recent papers on Kaluza-Klein theories,
but unfortunately is carelessly ignored in one of the most
influential. ) Next, we can eliminate explicit scalar-
graviton mixings by choosing to impose the condition

Since a, b are arbitrary, they may be chosen for purposes
of convenience, and the most convenient choice is clearly
a =0 and b =1, which eliminates scalar-vector mixings
and produces a particularly simple form for the dimen-
sionally reduced action, namely,

f d xdy( —4FMivF

m f d "x[ ~F~„F"——,
' (a~/—)(a"p)] . (2.8)

Thus, the theory of a free, massless (n +1)-vector particle
reduces to the theory of a free, massless n-vector particle
and a free, massless n-scalar particle. This is a very neat
and elegant result.

Similar results can be found in the case of the dimen-
sional reduction of a spin-2 field such as gravitation. Let
us begin with the Einstein-Hilbert action for gravitation
in n +1 dimensions,

(n —1)A'(tr) D'(o)
A (o ) D(cr)

(2.13)

Finally, we can eliminate explicit vector-scalar mixings by
choosing to set

B'(tT) C'(o )

B(tT) C(tT)
(2.14)

These three conditions combine to yield the unique rela-
tionships (modulo two unimportant constant factors
which can be absorbed into field redefinitions)

[A(tr)] '" "=B(o)=C(o)=D(o) . (2.15)

gp +oApA crA—1/(n —1)
gMN (2.16)

If we choose to relabel B(o ) =C(o ) =D(o ) as o, we ob-
tain the uniquely convenient gravitational Kaluza-Klein
Ansatz

S=— f d"x dy( —g}'~ R
2G

(2.9)
which yields the relations

The most general possible parametrization of our (n + 1)-
dimensional metric tensor in terms of n-dimensional gen-
erally covariant fields of rank two, one, and zero (i.e.,
fields which transform under the n-dimensional general
coordinate transformation group) is

g~„+B(o.)ApA, C(cr)A

C(o)A„D( )gMN

where A (o ), B(o ), C(o }, and D (o ) are arbitrary scalar
functions. Each component of the (n+1)-metric tensor
may be expanded in harmonics of the compact dimen-
sions, in this case a Fourier series

and

g
—=det(gM„}=o-'""-"det(g„„)

pv

g =0'—MN 1/(n —1)

S= f d"x( —g)'~ —R —,' oF„,Fi'"—
n 2 a@a'a~o'

4 n —1 g2

These produce the dimensionally reduced action

(2.17)

(2.18)

gM~(x )= g g~~(x ~)exp(iky/L) . (2.1 1)
(2.19)

Now if we substitute this expansion into (2.9), apply the
orthonormality condition for the Fourier modes, and
delete all but the zero-mode terms from our effective ac-
tion, we will obtain the dimensionally reduced form of the
gravitational action. In general, this will be a very com-
plicated expression, involving a wide range of mixings and
interactions between the scalar, vector, and tensor fields.
However, certain choices of our four arbitrary scalar

This is the actual justification for the ri =4 gravitational
Ansatz presented in Ref. 4, and gradually becoming more
popular in the literature.

Thus, on the classical leUel, we may choose a form of
the Kaluza-Klein Ansatz in which a field theory of pure
gravitation in n + 1 dimensions looks like a field theory of
gravity, electromagnetism, and a massless scalar field, all
in n dimensions.
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The above results were based on the dimensional reduc-
tion of pure n + 1 gravitation around an M"X 5' physical
ground state, but use of the preceding procedures for the
reduction of scalar and vector field theories, along with
simple iteration and field redefinition allows us to similar-
ly obtain the dimensionally reduced form of gravitation
around an M"X(S') ground state. Such a toroidally
compactified Kaluza-Klein theory yields n-dimensional
gravitation, m free n-dimensional Abelian vector fields,
and m(m+I)/2 free scalar fields. It should be noted
that all of these. theories actually do involve implicit
scalar-tensor mixings in the field equations. The scalar
fields correspond to dilation operations on the field
theory.

III. QUANTUM KALUZA-KLEIN THEORIES
AND THE FUNCTIONAL MEASURE

Most of the above results for classical Kaluza-Klein
theories were based on the special features of classical
field theory, not least of which is the ability to make arbi-
trary field redefinitions of our canonical variables. In a
quantum field theory, such field redefinitions must be
matched by corresponding changes in the functional mea-
sure associated with the path-integral formulation of the
theory, and, in general, do not merely change the form of
the naive action alone. Extra terms in the measure (or
equivalently in the effective action) must be taken into ac-
count if the quantum versions to the two theories connect-
ed by field redefinitions are to be identical.

This very important feature of quantum field
theories —the issue of the functional measure and its
behavior under field redefinitions —has been ignored in
the vast majority of discussions concerning quantum field
theory. This is for two very simple reasons. First, the
functional measure for most ordinary field theories is
trivial, with the measure factor being equal to unity.
Second, and more importantly, any nontrivial measure
factors are formally set equal to unity under several very
popular regularization schemes such as dimensional regu-
larization or g-function regularization. The dominance of
these regularizations has virtually eliminated functional-
measure factors from the recent thoughts of most theo-
rists.

However, as has been argued elsewhere, ' dimensional
regularization may be inappropriate in situations in which
the underlying background topology of spacetime is not
flat. This is because the dimensionality of such a space-
time may be extended in several different ways, with the
regularized values of divergent quantities being dependent
on the extension chosen, and hence ambiguously defined.
For example,

M XS'~M"XS' or M XS" or M X(S')", (3.1)

or any combination of these. Furthermore, dimensional
regularization does not respect the chiral or conformal
symmetries of our theory. g-function regularization may
be understood to suffer from these same difficulties be-
cause of its underlying similarity to dimensional regulari-
zation, ' and is anyway self-consistent to only one loop.
For these reasons, we should hesitate to ignore divergent

Depending on the symmetry properties of the compact
space B, these new field Qk may also transform under
additional "gauge symmetries. " A11 of this corresponds to
the factorization of gM~ into a combination of gz„, A&,
and P which we saw in the previous section.

Now if the process of Kaluza-Klein compactification is
to be consistent, the quantum theory based on the generat-
ing functional in (3.2) should be identical to the quantum
theory obtained by inserting the field redefinition Ansatz
(3.3). This requirement is simply that

Z= f [dQ]exp i f d"x d y W[Q]

= f [dQk]exp i f d"x d p W[Qk] (3.4)

with [dQk] being the functional measure for the quantum
fields Qk. In this expression, W[Qk] is simply defined by

~[Qk] =—~[Q[Qk 1] (3.5)

and, as discussed in the preceding section, our field redefi-
nition Ansatz Q[Qk] is chosen in order to yield a con-
venient form for W (or more precisely, for the dimension-
al reduction of W). (Actually, this statement is not quite
right. Contrary to popular wisdom, and the claims of
Coleman and 't Hooft, ' there are actually extra terms
appearing in the effective Lagrangian after such a change
of variables, as was shown in a paper by Gervais and Jer-
vicki" which has received insufficient notice. However,
these additional terms enter only at two loops and higher,
so I will neglect them in the context of this paper).

However, this classical consistency requirement that
(3.5) be satisfied is not sufficient to assure that (3.4) is

terms which are equated to zero under these regulariza-
tions, but which survive under other, more intuitively sim-
ple regularizations such as working on a lattice or using a
simple cutoff. Maintaining such a cautious approach,
terms derived from the functional measure of a quantum
field theory should be retained.

Following this line of reasoning, let us consider the La-
grangian path-integral formulation of a quantum field
theory based on some field Q in n +m dimensions. For-
mally, we have

Z= f [dQ]exp i f d"x d y ~[Q], (3.2)

with Z being the generating functional for our theory and
with [dQ] being the correct functional measure to be used
(we will discuss its form later on). Now suppose that we
compactify our theory to one in n dimensions via the
Kaluza-Klein approach (i.e., enforce periodic boundary
conditions on m of the spatial coordinates in the argu-
ment of Q, changing our background space to M"XB
with B being some m-dimensional compact manifold).
Under this compactification scheme, our original field Q,
which transformed under some representation of the ap-
propriate symmetry group in n +m dimensions will
decompose into some combination of independent field
Qk, each of which transforms under the same symmetry
group in n dimensions, namely,

Q =Q[Q» Qt] .
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satisfied; the functional measures must also be equal.
That is, [dQ] must factorize into

[dQl=[dQil [dQil. (3.6)

Unless this condition is satisfied, the classically correct di-
mensional reduction of a Kaluza-Klein theory will be des-
troyed by extra terms in the effective action corresponding
to discrepancies in the functional measure. Such terms
would enter at one loop, and since they derive from the
functional measure can presumably be interpreted as
quantum anomalies of the theory. '

Next, the behavior of the functional measure under the
process of dimensional reduction itself should be exam-
ined. Our new fields Qk can be expanded in harnionics of
the compact manifold, which eigenfunctions of the com-
pact portion of our kinetic operator

measures derived in Ref. 9 which will be utilized below
are only valid for energy scales low compared to Mpi
and hence low compared to our compactification scale.

IV. THE QUANTUM CONSISTENCY
OF KALUZA-KLEIN THEORIES

(4.1)

with

The abstract results presented above will become much
more clear once we investigate the consistency of specific
Kaluza-Klein theories. Let us begin with the simplest
possible theory, a massless scalar field in (n + 1)-
dimensional space, the quantum version of our first exam-
ple in Sec. II. %'e have

F= ——,'(a y)(aMy),

Qk(x y)= g Qk(x)h "(y), (3.7) Z= exp j "~ dy (4.2)

with n labeling the particular harmonic Ii(y). Dimen-
sional reduction is achieved by performing a functional
integration over all the nonzero modes, and discarding the
additional terms produced in the effective action, which
are suppressed by powers of the compactification length
scale. The surviving portion of the Lagrangian will con-
tain terms involving only the y-independent zero-mode
fields and which are of mass dimension n or lower, n be-
ing the dimension of our noncompact manifold.

Now since the harmonics on 8 constitute a complete
orthonormal basis set of functions, the expansion in (3.7)
is perfectly legitimate for all configurations Qk(x, y)
which are piecewise regular in y. Furthermore, our func-
tional measure ranging over a11 coordinate points can be
rewritten as a functional measure ranging over all non-
compact coordinate points and over all eigenmodes n.
That is,

Now the functional measure for a scalar field (in the ab-
sence of quantized gravitation) is trivial, being the flat
measure

[dA = / d4~ y) = / de"'( )= / [d4"'] . (4.3)
x,y x,k

Thus, the functional measure for a compactifled (n +1)-
dimensional massless scalar field factorizes exactly into
the correct functional measures for each of the massive
n-dimensional scalar field modes. The Kaluza-Klein pro-
cedure is perfectly consistent on the quantum level, being
unbroken by functional-measure discrepancies in this case.

The analysis is only slightly more complicated for the
case of the compactification of a massless vector field in
n + 1 dimensions. As shown in Sec. II, we have

w= ——,'(a A„)(aMA„)+-,'(a A )(a"A

Q dQk(x, y) = +dQk(x) .
x,y

(3.8)
with the most convenient parametrization of AM being
A~ ——(Az, P). Now the functional measure for a massless
vector field is once'again flat, being given by

However, for the dimensional reduction scheme to pro-
duce our desired zero-mode theory without being des-
troyed by anomalies corresponding to functional-measure
discrepancies, our functional measure must factorize into

[dQ1= +[dQ ]=+[dQ"1. (3.9)
k k, n

It should be noted that the functional measure for one
field mode can (and generally does) contain other modes
and other fields.

Although it is most reassuring if our functional mea-
sure factorizes exactly, any discrepancies in the non-zero-
mode field factors should not be viewed as being as seri-
ous as discrepancies in the zero-mode field factors. This
is because attempts at realistic Kaluza-Klein theories are
invariably based on compactification scales close to the
Planck length. Therefore, the effects of higher mode
fields in the action become significant only at energy
scales for which the (completely unknown) higher-mass-
dimension terms of full quantum gravity, are also becom-
ing significant, and our existing field theory is becoming
unreliable. Furthermore, most of the specific functional

[dA ]= Q dA = Q dA„dg =Q dA„'"'dP'"'
x,p x,p x,k

= Q [dAp ][dP' '] .
k

(4.5)

(Actually, the functional measure is more precisely given
by Q„dA&dgdrI, with g and g being the Faddeev-
Popov ghost fields. However, for Abelian-gauge fields
uncoupled to quantized gravitation, the functional in-
tegrations over the ghost fields are trivial and can be ab-
sorbed into our overall normalization factor. ) Again, the
functional measure factorizes perfectly, this time into the
product of the measures for each mode of the n
dimensional vector and scalar fields obtained by the
Kaluza-Klein procedure. This demonstrates the quantum
consistency of the Kaluza-Klein compactification of a
massless vector field in n +1 dimensions.

Taken together, the preceding two results may be com-
bined and iterated to prove the quantum consistency of
the toroidal compactification of a massless vector theory
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2
"(/—gg —"(dMN)(~n(t'» (4.6)

with the functional measure for the scalar field given by

[dy) Q (
—00)1/2( —)1/4dy (4.7)

in n +m dimensions.
Now let us turn to the somewhat more complicated

case of the compactification of a massless scalar field cou-
pled to quantized gravitation. (For the moment, we are
simply interested in checking the quantum consistency of
the compactification procedure for the scalar field, post-
poning the question of the quantum consistency of the
gravitational compactification. ) Our Lagrangian in n + 1

dimensions is

and the two functional measures are equal, implying the
quantum consistency of a scalar Kaluza-Klein theory, at
least with regard to the purely zero-mode portion of its
functional factor.

The reason for this equality is very simple. If we sim-
ply discard all but the zero-mode portion of our metric
field in (4.6) and (4.8), it is easy to see that the crucial re-
quirement for our (n +1)-dimensional functional measure
to factorize properly is that the functional-measure factor
for a massless scalar field theory in n +1 dimensions be
equal to the functional-measure factor for a massless sca-
lar field theory in n dimensions and also equal to the
functional-measure factor for a massive scalar field theory
in n dimensions. That is, if

If we expand out W using the parametrization derived
in Sec. II, we obtain

[duly;M=0

(4.13)

, v' gg—~"a„yay+v' gA~a„ya, y

ByPBy(t —,' & gA—„A"—
ByPBy(tp . (4.8)

Now the functional measure for our compactified theory
depends only on those terms in the Lagrangian which are
quadratic in time derivatives. Therefore, only the first
term in (4.8) contributes, and this term can be rewritten in
an eigenmode basis as

y (
00 1/2)( —k —k')g y(k)g y(k')

k, k'
(4 9)

The functional measure for these scalar modes should be
given by'

ff dy(") = g [detkk( goog1 2/) (k+k' ])1 /2g0tp(k)
k X k

[dy ] Q (g 00) I /2g 1/4d y(k)

x, k
(4.11)

where we have suppressed the zero-mode indices of our
metric field. Likewise the remaining portion of (4.10) is

Q dy(k) Q Q (goog1/2)1/2
k x k

~ dy(k)
k

~ (goo)1/2g)/4gy(k) [gy )
x, k

(4.12)

(4.10)

Determining whether the expression in (4.10) is equal to
(4.7) appears somewhat difficult because of the complica-
tions involved in transforming (4.7) into an eigenmode
basis. Therefore, for now let us merely check the
equivalence of the two expressions in their zero-mode sec-
tor, i.e., show that the dimensionally reduced theory has
the correct zero-mode functional factors (later on, we
shall demonstrate their exact equality).

To check this equality in purely zero-mode functional
factors, we simply apply the process of dimensional
reduction to those fields in the Lagrangian which give rise
to the functional-measure factors, in this case the metric
tensor, retaining only the purely zero-mode components.
The functiorial measure in (4.7) assumes the form

[d0)y";M~0= g My";M~odd
X

then our consistency requirement is that

~P'M =0 ™P'M=0 ™P'M+0(n +1) (n) (n} (4.14)

Since MI)".M 0——MI)".M+0 ——(g )' g' for all dimensions
n, this consistency condition is satisfied. Thus the
functional-measure factor for our (n + 1)-dimensional
massless scalar field factorizes into the product of the
functional-measure factors for our massless zero-mode
and massive higher-mode scalar field theories in n dimen-
sions.

Simply iterating the above procedure demonstrates the
quantum consistency of a toroidally compactified
(n +m)-dimensional scalar field theory coupled to quan-
tized gravitation.

Similar relations demonstrate the quantum consistency
(in the zero-mode metric sector) of a compactified mass-
less vector field coupled to gravitation. The canonical
functional measures for massless and massive vector fields
in n dimensions are given by

M(n) ( 00)(n —2)/2 (n —3)/4a;M=0= g g
(4.1S)

~~(n) r 00 i(n —1)/2 (n —2)/4
M~o

implying that

MA("+Ml) 0
——(MA("),M 0)(M~(",M) 0)=MA"', M~o . (4.16)

p7 )MP P'

These relations ensure that the zero-mode portion of the
n-dimensional metric field factor in the functional mea-
sure for a massless (n +1)-dimensional vector field factor-
izes into the product of the factors for the functional mea-
sures of each of the n-dimensional modes. (The zero-
mode portion of the action contains separate massless and
scalar-vector fields, while all the nonzero modes consist of
massive vector fields, produced by a Higgs mechanism,
just as in the case of Kaluza-Klein gravitational nonzero
modes. ) The zero-mode portion of the (n + l, n +1)
component of the (n +1)-metric tensor (the o of Sec. II)
also factorizes correctly. Iterating these results for the
quantum consistency of the compactifications of vector
and scalar fields demonstrates ihe quantum consistency of
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all toroidally compactified massless vector fields in n +m
dimensions.

Now let us turn to the slightly more complicated pro-
cess of checking the quantum consistency (with regard to

purely zero-mode functional factors) of a compactified
gravitational field. Using the parametrization of the
(n+1)-dimensional metric tensor derived in Sec. II, our
full action has the form

S= f d"x dy — ( —g)
26

= f d"xdy — ( —g)'I R — o( g)' F—&„F""
26 86

1 n —2 1/2 ())'(7() o
( —g)

86 n —1 g~

+terms linear or lower in p derivatives (4.17)

Now since we are only interested in checking the equality of purely zero-mode functional-measure factors, we may as-
sume that all fields except those acted upon by derivatives are purely zero mode, i.e., are reduced to their zero-mode com-
ponents. By using the techniques in Ref. 9, we find that the purely zero-mode functional-measure factors for each mode
field are given by

[d(k)]+(g00)1/2g1 /4(r ld(T(k)

[d/I(k) w ~
( 00)(n —2)/2 (n —3)/4 (n —1)/2dg(k)d~ (k)dry(k)g p 'g (4.18)

(k) q ~ g 00qn(n —3)/4 (n2 —5n 4)/8d (k)d (k)d v(k——)

(4.19)

(Actually, just as in the vector case, the nonzero modes of 0. and A& are eaten by the gauge components of the nonzero

g» modes, which become massive, in a Kaluza-Klein version of the Higgs mechanism as pointed out in Ref. 4; but this

has no effect on the functional-measure factors. ) On the other hand, the zero-mode canonical functional-measure factor
for the (n + 1)-dimensional gravitational field is given by

[d
—

]
a

Ia ( 00)(n+-1)(n —2)/4-(n —3n —8)/8d — d — d —N
+gMN 3 l i ~g g gM1V' QM

X,P

(n —3)/2( 00)(n+ 1)(n —2)/4g(n 3n —8)/—8dg
x,y

where the second line incorporates the functional-measure
factors obtained from the Jacobian of our change of func-
tional variables (with only the zero-mode portion of the
Jacobian being retained). Now the functional-measure
factor in (4.19) is equal to the product of the functional-
measure factors in (4.18), implying the quantum con-
sistency of the compactification of an (n + 1)-dimensional
gravitational field.

Once again, combining and iterating the above results
for gravitational, vector, and scalar fields demonstrates
the quantum consistency of toroidally compactified
(n +m)-dimensional gravitation.

It is interesting to note that the above consistency re-
sults are partly a consequence of the very strong similarity
between massless integer-spin fields in n +1 dimensions
and massive fields of the same spin in n dimensions. For
scalar, vector, and spin-2 fields, the functional-measure
factors in the two cases are identical, as are the number of
physical polarizations, i.e., on-shell states. This appears
to be a general consequence of the structure of the I.a-
grangian and the form of the canonical functional mea-

[dg»]Fujikawa= Q g' " "
dg»dr)&dry (4.20)

and is derived by naively assuming the absence of any
nontrivial point permutation Jacobian under the Becchi-
Rouet-Stora-Tyutin (BRST) extension of a general coordi-
nate transformation. Even if we removed the g

sure for integer-spin fields.
It is important to point out that the above quantum

consistency proof for a compactified gravitational field is
not a trivial result, nor is it an automatic consequence of
any functional measure we might choose. It is a direct
consequence of the form of the canonical functional mea-
sure for gravitation, and if we had instead chosen to use
any of the other functional measures for gravitation
which are given in the literature, we would have
discovered the quantum inconsistency of Kaluza-Klein
theories based on a compactified higher-dimensional grav-
itational field. For example, the gravitational functional
measure suggested by Fujikawa'3 has the form
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functional-measure factors from our vector and scalar
functional measures, this Fujikawa measure would still
yield discrepancies in the functional factors of o after
compactification, resulting in the quantum inconsistency
of Kaluza-Klein theories. The gravitational functional
measure sketched out by DeWitt'

[dgpv]Dewitt= +8' dgpv ~ (4.21)

would also produce discrepancies in the functional mea-
sure of Kaluza-Klein compactifications of gravitation. It
is important to emphasize that these discrepancies are in
the zero-mode sectors of the compactified theories, and
hence would be present at low and medium energies; they
cannot be argued away as being offset by the new physics
entering at Planck-mass energy scales.

THE CANONICAL FUNCTIONAL MEASURE
AND FIELD REDEFINITION

We have just seen that the choice of the canonical func-
tional measure for gravitation appears to result in the
quantum consistency (at least with regard to purely zero-
mode functional factors) of toroidally compactified
Kaluza-Klein theories, while using, for example, the
Fujikawa or De%'itt gravitational functional measures
does not. We have also seen tliat the canonical functional
measures for scalar and vector field theories result in the
quantum consistency of their toroidal compactifications
as well.

This is no accident. As we are about to see, these re-
sults follow as special cases of the general transformation
properties of the canonical functional measure under field
redefinitions, which formally ensure the quantum con-
sistency of any two theories connected by field redefini-
tion. This general conclusion will also establish the quan-
tum consistency of Kaluza-Klein theories with regard to
nonzero-mode functional-measure factors and nontoroidal
compactifications as well. In this section, capital latin
letters will represent completely general field indices.

Consider a Lagrangian W containing quantum fields

Qz (which may be either bosonic or fermionic). If these
quantum fields gz have integer spin and are physical (i.e.,
propagating), the canonical functional measure for this
theory has the form

r 1/25zW

5(a,g„)5(a,g, )
[dg ]= Q sdet

5zW
[dgg ]= Q sdet

1/2

dg~ .

(5.2)

Since the Lagrangian of our two theories connected by
field redefinitions are defined to be identical, our two
quantum theories are identical, i.e., have the same gen-
erating functionals

Z = g exp E x (5.3)

if and only if the two functional measures (5.1) and (5.2)
are identical. Such a quantum consistency condition is
automatically satisfied by the canonical functional mea-
sure.

This is very easy to show. If our quantum field redefi-
nition is to be well defined, it must be nonsingular, imply-
ing that the superdeterminant of its Jacobian is nonzero,
and the change of functional variables may be inverted to
yield Qz ——Q~[g&]. Therefore, using the chain rule, the
functional-measure factor in (5.1) can be rewritten as

(5.1)

with sdet being the superdeterminant. Now suppose that
we choose to write our theory in a new form by using the
field redefinition gz ——Q~ [Q~]. The new Lagrangian for
our theory is simply defined by W[gii]=—W[Q~[gri]]
(actually, as noted previously, this naive change of vari-
ables procedure is not quite right, and extra terms must be
added to the effective action at two loops and higher), and
the canonical functional measure for our new theory is
given by

52$
sdet

5(5oQ~ )5(5oga)
=sdet

5Qc

5Q~

52M

5(Bpgc)5(BpgD )

5Q

5gg

=sdet
5Qc

sdet sdet
5g„5(&pgc)5(&pgD )

5QD

5Qg
(5.4)

On the other hand, the remaining piece of the functional
measure in (5.1) transforms as

5Q~
dg& ——sd«dg~,

L

(5.5)

with the new measure factor produced being the super-
determinant of the field redefinition Jacobian. Combining
these two results, we find that

1/2

52M
sdet

5(5og~ )5(~oga)

=[dg~]

5(a,g, )5(a,g, )

5Qc 5QE
Xsdet sdet dgz

5Q~ 5 F

1/2

dg~

(5.6)
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=ldQ~] (5.7)

and

[dQz ]= ff sdet
1 /2

~Q~&Qa
1/2

=EdQ~] .

Taken together, these results strongly suggest that the
canonical functional measure, besides being the most
elegant and simplest to derive, is also the correct function-
al measure for a quantum field theory.

Although the above manipulations are purely formal
and abstract, they are buttressed by the special case of the
quantum consistency of various toroidally compactified
Kaluza-Klein theories which was worked out and checked
at length in Sec. IV above. Furthermore, purely formal
arguments are necessitated by the absence of any com-
pletely satisfactory means of regulating the Feynman path
integral, and as noted by DeWitt, ' they tend to acquire a
consistency and logic of their own.

VI. STABILIZING THE KALUZA-KLEIN
CASIMIR EFFECT

As previously mentioned, realistic Kaluza-Klein
theories require that the compact manifold have an ex-
tremely small size. This is because the coupling constants
g for the gauge forces produced by the compactification
are each given by the ratio of 2mV2G to a particular
root-mean-square circumference of the compact mani-
fold. In order for Kaluza-Klein theories to yield any of

with the two extra Jacobian factors exactly canceling out.
This automatic consistency of the canonical functional

measure under change of field variables ensures that any
two field theories connected by field redefinitions both
have the same functional measure and are hence identical
on the quantum level. Among other results, this formally
establishes the quantum consistency of the Higgs mecha-
nism, the background field method, the Kaluza-Klein An
satz, nonlinear o. models, and many other standard pro-
cedures in modern quantum field theory which either im-
plicitly or explicitly rely upon field redefinition.

Exactly similar arguments may be used to demonstrate
the quantum consistency of the canonical functional mea-
sures under field redefinitions for the cases of half-
integer-spin fields and nonpropagating auxiliary fields.
For these cases, the relevant identities are

1/252M
dQ~

~Q~ &(~OQa )

1/2

dQ~

the coupling constants observed in nature, the circumfer-
ences of the compact manifold must be no more than 1 or
2 orders of magnitude longer than the Planck length.

A plausible explanation for the extremely small size of
the compact manifold follows as one of the most interest-
ing results of an analysis of the quantum dynamics of
Kaluza-Klein theories. As Appelquist and Chodos first
demonstrated, the one-loop effective potential for a
Kaluza-Klein theory of gravity exhibits the Casimir ef-
fect, causing any compact manifold to shrink in size. In
particular, for a (4+ 1)-dimensional compactification,
they obtained the expression

A,' 5pjeff(~e ) = +
(2mo, R5)

C

with I.=2mo, '~ Rq being the effective circumference of
the compact dimension, P= —0.394, and Ao being our
momentum-space cutoff. The first term of this potential
has the form of a large induced cosmological constant,
while the second term represents an attractive potential,
causing the size of the compact manifold to shrink down
to a minimal value. This is merely a form of the well-
known Casimir effect, caused in this case by the vacuum
fluctuations between the two "plates" y =0 and y =2mR5.

While this result is desirable in some ways, it does
present certain difficulties. The large induced cosmologi-
cal constant term is endemic to all theories of quantized
gravitation, and must simply be "renormalized" to the ob-
served value of zero. However, the attractive potential it-
self also presents a problem since its value is minimized
only when the radius of the compact manifold has shrunk
completely to zero. This may simply be an artifact of our
one-loop quantum gravitational calculation„and it is pos-
sible that higher-loop terms in the effective potential
would serve to stabilize the theory at a finite-size radius.
But such higher-loop contributions would only become
non-negligible at energy scales for which the full theory of
quantum gravity becomes important, and this raises
severe problems. First, the resulting size for the stabilized
compact radii would presumably be equal to or smaller
than the Planck length, resulting in gauge coupling con-
stants much too large to correspond to those observed in
nature. More importantly, our entire Kaluza-Klein
analysis would probably break down at such energy scales.
We do not yet possess a full theory of quantum gravity,
and the additional Planck-mass-suppressed terms in the
effective action expansion of full quantum gravitation are
completely unknown to us; these additional terms would
contribute significantly to Kaluza-Klein theories at
Planck-mass energy scales and above. Therefore, our
Kaluza-Klein picture should only be taken seriously at
length scales for which the higher-loop quantum effects
can be ignored.

The instability of the one-loop effective action appears
to be a problem endemic to Kaluza-Klein theories, wheth-
er based on toroidal compactification or not. ' Attempts
have been made to cure this instability through the addi-
tion of large numbers of scalar or spinor matter fields to
the theory. The one-loop contributions of these additional
fields can stabilize the effective potential at a compact cir-
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Z = f [dgM~ ]exp(iS [gM~ ]) . (6.2)

If the functional measure contains positive powers of the
dilation scalar o. which parametrizes the size of our com-
pact manifold, this will reduce the relative weighting for
those total field configurations in which o. is small, partly
off setting any contrary effect from the action itself.

This intuitive argument can be made precise by calcu-
lating the additional terms in the one-loop effective poten-
tial which derive from the functional measure. Since the
functional measure is independent of R, it enters the effec-
tive action as a one-loop effect; this can equally be seen by
using measure ghost fields to bring the functional measure
into the effective action, and by noting that the resulting
diagrams (with no external ghosts) enter at one loop. For
the definition of the one-loop effective potential used in
Ref. 4, we have

Z[rT, ]=exp —V,rr(o, )o, ' ' f d x dy (6.3)

Now if we use the canonical functional measure for gravi-
tation in 4+ 1 dimensions which was given in (4.1), we
can follow the exact procedure of Ref. 4 to calculate the
contribution of this measure factor to the one-loop effec-
tive potential. Just as in Ref. 4, the zero-mode fields and
ghosts do not contribute (their apparent contribution is
exactly canceled by their measure factor contribution).
The nonzero field modes contribute a factor of
exp 6+„+kino, to Zfo.,], partly coming from the

initial measure and partly from a change of variables

cumference greater than the Planck length. But the sheer
number of these additional fields which must be "put in
by hand" to balance the one-loop attractive gravitational
contribution is prohibitively huge, ranging in the hun-
dreds or thousands. (This fact has led to Mark Rubin's
aphoristic observation that "one graviton is worth ten
thousand scalars. ") The need for so many extra matter
fields completely negates the principles of simplicity and
elegance which were the chief motivations for Kaluza-
Klein theory in the first place.

However, all the above derivations of the one-loop ef-
fective potential completely ignore contributions from the
functional measure, and it is possible that such contribu-
tions may serve to stabilize the Casimir effect at a cir-
cumference longer than the Planck length. (Appelquist
and Chodos" examine the measure only to dismiss it, part-
ly because of the conflicting functional measures suggest-
ed by Fradkin and Vilkovisky, 't Hooft, and DeWitt
this dismissal is justified by the use of dimensional or /-
function regularizations, which eliminate any measure
factors. Yasuda' claims to show that no terms from the
functional measure appear in the effective potential for
quantum gravity, but his analysis is based on the use of
Fujikawa's gravitational functional measure, which we
have seen above is probably not correct. In most of the
remaining papers on the Kaluza-Klein Casimir effect, the
functional measure is never even mentioned. ) This possi-
bility is quite easy to understand. Our quantum generat-
ing functional (or partition function) has the form

Jacobian factor. Finally, the nonzero ghost modes contri-
bute a factor of exp ——,

' g„gk incr, to Z[o, ]. Thus,
the total additional factor contributed through measure
effects is

exp 16+gin(o, '~ ) (6.4)

We can freely multiply this factor by a numerical con-
stant if we wish (since such a constant can always be ab-
sorbed into the normalization of Z) yielding

exp 16+g ln(2mrT, ' R5)
n k

(6.5)
which corresponds to an additional term in our effective
potential of

d4k4 V,rr(o, )= —16+ ' f &
ln(2iro, '~ R&) . (6.6)

2rrR 5 (2~)~

Now if we cut off our momentum at A=o, '
Ao, with

Ao being the cutoff in our standard coordinate system
(o., =1), we have

A +04 4

2~c32~2 32~2 ' (6.7)

and if we cutoff our infinite mode sum at mode numbers
X whose masses are equal to this energy scale,
X =2%R50, '

Ao, we obtain

1/3
5 Veff(cr, ) = ( —16)(4'irR 5o., '~ Ao)

7T 5

p 4 —2/3Ooc
327T2

in(2~o '"R )

AO5
ln(2n. o., 'i R5) . (6.8)

Therefore, the total one-loop effective potential, including
both the new term and the terms previously derived in
Ref. 4, is

Ao' 5p
V,rr(o, ) = +8~ I.'

A,5

lnL, , (6.9)

with p= —0.394 and with L =2mcr, '~ R5 being the effec-
tive circumference of the compact manifold. This poten-
tial has its minimum at

L = ( —25+P) '~ =2.50
Ao Ao

(6.10)

Our Casi'mir effect does stabilize, but the stability point is
cutoff dependent.

Next, we can use the relation f d x d kl(2') =1 to
rewrite our factor as

d'4k
exp 16+ f 41n(2mcr, '~ R5) f d xdy

2rrR 5 (2~)
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Such a cutoff-dependent result is not as bad as it might
seem. Since we lack a full theory of quantum gravity, we
must cut off all our calculations around the Planck mass
anyway in order to avoid having to dea1 with the higher-
mass-dimension terms in the effective action expansion of
quantum gravity. Furthermore, Hawking has speculated
that the formation of quantum black holes might provide
a natural Planck mass cutoff for quantum gravity. ' In
any event, it is encouraging that the above calculation
yields a stability length which is (somewhat) longer than
our cutoff length scale; if it had been shorter, our approxi-
mation would have been inconsistent and the result com-
pletely untrustworthy. Even for the above stability
length, our entire calculation should not be taken too seri-
ously. This is because our gravitational functional mea-
sure was only derived for length scales long compared to
the Planck length, and we are extending its use to scales
of comparable length.

If we were to choose our cutoff at Ao ——(Sm6) 'r, the
(rationalized) Planck mass, which is the natural mass
scale for quantum gravity, the value of the gauge-coupling
fine-structure constant a(g)=g /4m which results is al-

most exactly one. This is not too close to the realistic
value of, e.g. , a(g)=0.02 for our known forces at the
grand-unified-theory (GUT) scale, but such a wide
discrepancy is not surprising given the toy model feature
of our (4+ 1)-dimensional theory and our speculative
choice of a gravitational cutoff energy. Calculations
based on a more realistic choice of compact manifold
might yield larger values for the numerical coefficient in
(6.10), and hence smaller coupling constants for theory.
Still, the coupling constant obtained by the simple
analysis above is generally more realistic than those ob-
tained in Ref. 6 through the addition of 1000 extra species
of spinor matter fields into the theory. This is highly en-
couraging.
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