
PHYSICAL REVIEW D VOLUME 32, NUMBER 10 15 NOVEMBER 1985

Expansion isotropization during the inflationary era
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A solution of Einstein s field equations for a vacuum with flat, anisotropic three-space and a non-
vanishing cosmological constant is derived. It represents a generalization of the flat de Sitter solu-
tion to the anisotropic case. This solution describes a universe model entering the Guth inflationary
era at tj ——10 sec as an anisotropic Kasner universe, and terminating this era at t2 ——1.3X10
sec as an isotropic de Sitter universe. The mean expansion anisotropy has decreased by a factor of
order 10 ' during the inflationary era. The properties of this solution imply that the transition to
an inflationary era is not prevented by any amount of anisotropy. The mean expansion isotropiza-
tion of the most general homogeneous universe models with anisotropic curved three-space is es-
timated, and the anisotropy is now found to decrease by a factor of order 10 " during the Guth in-
flationary era.

I. INTRODUCTION

After the discovery of the cosmic background radiation
and measurements of its isotropy, anisotropic cosmologi-
cal models were investigated in order to define a class of
initial conditions that could lead to the observed proper-
ties of the Universe. One found that a class of anisotropic
universe models does exist, which develops towards isotro-
pic Friedmann universes due to a frictionlike action pro-
duced by the radiation and matter contents of the universe
models. ' But it was shown by Collins and Hawking
that this class represents a space of initial conditions of
measure zero in the space of all possible initial conditions.
These investigations were, however, restricted to space-
times with a vanishing cosmological constant.

More recently, Fabbri investigated the evolution of an-
isotropy in a low-density universe with a nonvanishing
cosmological constant, and found that the observed degree
of isotropy is obtained whatever the primordial anisotropy
may have been, if the sum of the cosmological constant
and the matter density is close to the critical value.

Because of the appearance of the inflationary universe
models, the possibility has appeared that the Universe
became isotropic already during this era. A preliminary
investigation of this possibility was undertaken by Barrow
and Turner. Their investigation was based on one gen-
eralized Friedmann equation for the scale factor, includ-
ing a term which represents an "anisotropy energy densi-
ty." They concluded that a universe with a large amount
of anisotropy will not undergo the inflationary phase. A
universe with only moderate anisotropy will undergo in-
flation and will be rapidly isotropized. Steigman and
Turner' and also Demianski" later showed that accord-
ing to the new inflationary models, large anisotropy in the
universe does not prevent inflation. Wald' recently in-
vestigated the asymptotic behavior of initially expanding
homogeneous cosmological models with a positive cosmo-
logical constant. He showed that such models of all Bian-
chi types except IX exponentially evolve toward the de
Sitter solution, with time scale (3jA)', and that the

behavior of type-IX universes is similar, provided that
there is not a positive spatial curvature that is too large.
Futamase' has investigated the effect of space-time an-
isotropy upon the shape of the potential V(P), associated
with a Higgs field P. He found that space-time anisotro-
py has an effect similar to that of temperature on the ef-
fective potential V(P), and that the effect of anisotropy
will not change the essence of the improved inflationary
scenario. Futamase did only consider the case when the
anisotropic energy density is less than the Planck energy
density. The effect of anisotropy on V(P) may be impor-
tant if the transition occurs near the Planck energy. An
analysis of this problem is, however, outside the scope of
the present work.

In a paper which appeared after this work was complet-
ed, Gonzalez and Jones' investigated the role of primor-
dial space-time anisotropy in two inflationary scenarios,
Planck time (l.inde' ' ) and the grand-unified-theory
(GUT) inflation. They find that in the GUT picture in-
flation can occur notwithstanding the presence of aniso-
tropy. However, the degree of inflation achieved is not
sufficient to contain the whole of the actual universe in
one coherent GUT time bubble if the initial (pre-GUT)
anisotropy were very large. In Planck-time inflation, on
the other hand, the actual universe was encompassed
within one Planck bubble even for extreme primordial an-
isotropy. Furthermore, it was found that anisotropy aids
inflation in the sense that the most anisotropic models in-
flate the most and so ultimately have the smallest final
anisoiropy.

The transition of an anisotropic universe into an infla-
tionary era, and the evolution of anisotropy during this
era, will be investigated in the following way. In Sec. II
Einstein's field equations will be solved for an anisotropic
space-time with flat three-space and a nonvanishing
cosm. ological constant. The solution represents an aniso-
tropic generalization of the de Sitter space-time. This
solution is used in Sec. III to investigate if a large amount
of anisotropy will prevent the transition to an inflationary
era. The behavior of the solution is shown to imply that
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such a transition will happen at a point of time which de-
pends upon the magnitude of the cosmological constant,
and which does not depend upon the amount of anisotro-
py. The decrease of anisotropy for this solution during
the inflationary era is calculated

In Sec. IV the investigation is extended to space-times
with curved three-space. The decrease of the average ex-
pansion anisotropy for the most general homogeneous
universe models during the inflationary era is estimated in
Sec. V. The results are summarized in Sec. VI.

anisotropy. Summarizing Eqs. (9) and using Eq. (6) gives

H =A —3H (13)

(R/R) =Ho +a /2R, Ho ——(A/3)'~

Putting this into Eq. (12) gives

3 =2(1 Ho—/H ) .

(14)

Substituting Eqs. (10) into Eqs. (8) and using Eq. (13)
leads to

II. ANISOTROPIC GENERALIZATION
OF THE DE SITTER UNIVERSE

In Secs. II and III we shall consider anisotropic world
models with flat three-space, or Bianchi type-I spaces.
The line element has the form

ds =dt [R;—(t)dx'], i =1,2, 3 .

For later comparison two special cases will be noted be-
fore the equations are integrated in the general case. If
the cosmological constant vanishes, A=O, integration of
Eqs. (13) and (14) with H(0)=ao and V(0)=0 give

H =1/3t, V=(3~2a/2)t .

Substituting this into Eq. (10) and integrating gives

The directional Hubble factors H; are defined by

H;=Rg/R; .

The average scale factor is given by

R =(R)R2R3)'

R;=R;Ot ', p;= —,(1+~2K;/a) .

(2) From Eqs. (10) and (12) it follows that
3 3

(3)

(17)

(18)

A "volume scale factor" will also be useful,

V=R

The average Hubble factor is

H= —,(H)+H2+H3) .

Equations (2)—(5) give

H = —,
' (lnV)'=(lnR)

(4)

Hot
R1 ——R2 ——R3 ——e (19)

This is the Kasner solution of Einstein's field equation,
which describes an empty anisotropic universe with a van-
ishing cosmological constant. From Eq. (15) it is seen
that a Kasner universe has a constant average expansion
anisotropy, 3 =2. A plane-symmetric Kasner universe-

2 1as 81=72= 3, P3= —3.
An isotropic universe has a =0. In this case Eqs. (14)

and (10) give

R"„=AS"„. (7)

With the line element (1) the field equations may be given
the form'7

(lnV)" +H, +H, +H3 A, ——
(VH)) =(VH2)'=(VH3)'=AV .

(8)

The field equations for a vacuum with a nonvanishing
cosmological constant may be written

H =Hocoth(3Hot) .

Integration of Eq. (14) gives'

V=(a V 2/2HO)sinh(3Hot) .

(20)

(21)

This is the flat de Sitter solution which describes an emp-
ty isotropic universe with a nonvanishing cosmological
constant.

We now return to the general case. Integration of Eq.
(13) gives the mean Hubble factor for this solution,

Equations (9) give

b,H; =H; H=K;/V, —3

g K, =O. (10)

Equations (10) may now be integrated. By suitable adjust-
ment of the spatial coordinates, the integration constants
R 0 may be chosen so that the usual asymptotic form for
large t is obtained. The result is

The constants K; are proportional to the anisotropy of the
Hubble parameters. The average expansion anisotropy is
defined by' R; =2 ~ sinh '( —,'Hot)cosh '( 2Hot), —(22)

Using Eq. (10) we get
3

A=a /H V, a= —,
' gK; (12)

The constant a is proportional to the average expansion

where the constants p; are given in Eq. (17) and satisfy
Eq. (18). This solution represents the anisotropic generali-
zation of the de Sitter universe. It represents a special
case of a solution found by Saunders, describing a Bianchi
type-I space-time with a nonvanishing cosmological con-
stant, which also contains dust. From Eqs. (15) and (20)
it follows that the average expansion anisotropy of the
solution (22) is given by
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2 =2/cosh2(3Hot) . (23)

For small Hot the general solution takes the form (17).
In this limit the general solution has the same form as the
Kasner solution. For large Hpt the general solution ap-
proaches the isotropic de Sitter solution. Thus the
universe described by the solution (22) develops from a
Kasner universe with arbitrary anisotropy to the isotropic
de Sitter universe.

The plane-symmetric special case of the solution (22) is
represented by p~ ——p2 ———,, p3 ————,', which gives '

R i =R2 ——2 sinh ( H t)—
R3 =2 csch' ( —,

' Hot)cosh( —,
' Hot) .

(24)

These expressions show that the plane-symmetric de Sitter
universe develops from a cigar singularity of Kasner type
toward an asymptotically isotropic de Sitter universe.

III. DOES LARGE ANISOTROPY PREVENT
TRANSITION INTO AN INFLATIONARY ERAT

Equation (14) has been used by Barrow and Turner9 to
show that large anisotropy prevents transition into an in-
flationary era according to Guth's original inflationary
scenario. In this section I show that their argument is not
valid. Although Steigman and Turner, ' and later Demi-
anski, "have shown that according to the new inflationary
scenario transition into an inflationary era is not prevent-
ed by large anisotropy, the argument of Barrow and
Turner has recently been repeated by Hakim, so its non-
validity should be pointed out.

The characteristic feature of the inflationary era is that
space-time expands exponentially owing to the repulsive
gravitation of a dominating vacuum energy. This vacuum
energy is due to Higgs fields, which produce a large
cosmological constant. Before the inflationary era there is
a radiation-dominated period. %'hile the radiation density

p diminishes during the expansion, the vacuum energy
density pp remains constant. In the isotropic universe
models p=po at a point of time ti ——10 sec, and the
universe enters the vacuum-dominated inflationary era.

%'e now consider the situation that the universe is an-

R„R3
Jl

6.0—
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2.0

0.0
0.0 2.0 3.0

FIG. 2. Expansion factors for a plane-symmetric generalized
de Sitter universe.

(R/R) =Ho +Ho csch (3Hot) . (25)

Thus the domination of the anisotropy term does not
depend upon the magnitude of a. In other words the
magnitude of the anisotropy parameter a does not affect
the time scale of the transition to the isotropic de Sitter
solution. The time scale is determined solely by the value
of the vacuum energy density, which determines the con-
stant Ho. This value is a result coming out of the GU
theories. Given this value of Ho, a GUT time ta is de-
fined by tG ——(2HO) '. From the GU theories it follows

isotropy dominated at the point of time when the radia-
tion energy density becomes less than the vacuum energy
density. Then Eq. (14) is valid with a /2R »Ho . The
argument of Barrow and Turner is that the universe
shows the Kasner anisotropic behavior 8 ~ t' when the
anisotropy dominates (when a »2HO R ), which
prevents transition into the de Sitter phase. According to
this argument the inflationary era will not happen if the
constant a is too large.

What invalidates this argument is that according to the
solution (21) I'or Eq. (4) of Barrow and Turner ) the mean
volume expansion parameter, V=A, is proportional to
the anisotropy parameter a. Inserting the solution (21)
into Eq. (14) gives

R), R3
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FIG. 1. Expansion factors for a plane-symmetric Kasner
universe.

FIG. 3. Expansion (and contraction) velocities for a plane-
symmetric Kasner universe.
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tgRl, tgR3
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moments of the inflationary era, when the radiation densi-

ty has ceased to be important for the evolution of space-
time, but the expansion is still anisotropic.

According to Guth's model the inflationary era lasts
from tG —1.0X10 sec to t2 ——1.3X10 sec, which
increases the flatness of the Universe by a factor of order
10 . During this time the average expansion anisotropy,
as given in Eq. (23) (see Fig. 5), decreases by

A(t, )/A(t, )=e "'"'=10-'". (26)

-2.0
0.0 1.0 2.0 3.0

IV. ISOTROPIZATION OF UNIVERSE MODELS
%'ITH SPATIAL CURVATURE

FIG. 4. Expansion {and contraction) velocities for a plane-
symmetric generalized de Sitter universe.

that tG ——10 sec. In the isotropic case the point of time
t& for transition into the inflationary era equals tG An.
anisotropy-dominated universe, described by Eq. (22), will
show a transition from a Kasner era to an isotropically,
exponentially expanding era at the same point of time.
Thus large anisotropy will not prevent transition into an
inflationary era.

It should be pointed out that the feature of Eq. (25) be-
ing independent of the anisotropy parameter may be a
consequence of the limitation to Bianchi type-I cosmolog-
ical models in Secs. II and III. The most general anisotro-
pic cosmological models will be investigated in Sec. V.

As an illustration the development of a plane-
symmetric Kasner universe and a plane-symmetric gen-
eralized de Sitter universe are shown in Figs. 1—4. The
Kasner universe develops from a cigar singularity,
through an isotropic moment to a pancake singularity.

The plane-symmetric de Sitter universe develops from a
cigar singularity of Kasner type toward an asymptotically
isotropic de Sitter universe. Initially the expansion law
for the geometric mean expansion factor is Kasner type,
R ~ t', but at about the GUT time there is a transition
to exponential expansion.

The general anisotropic solution (22) describes the first

The Bianchi type-I universes have a vanishing spatial
curvature. Now, one of the main results of the inflation-
ary scenario is that it shows how a spatially curved
universe develops towards a flat universe during the infla-
tionary era. The Universe is expected to have a curved
spatial geometry while entering the vacuum-dominated in-
flationary era.

To see how curvature affects the dynamical evolution
of a vacuum-dominated universe, the de Sitter solution
with hyperbolic three-space will first be briefly con-
sidered. It is given by

R =Ho 'sinh(Hot), (27)

5H; = 3HEH;+p, ;R—', (28)

which represents Milne's kinematical universe, as
transformed to a general relativistic universe model of the
hyperbolic Friedmann type. &%en t~ co the solution
(27) approaches the form (19). Thus an isotropic universe
with hyperbolic three-space develops from a Milne
universe with curved three-space toward a flat de Sitter
universe. The spatial curvature, E ~R, decreases ex-
ponentially with time for Hot & 1.

The most general homogeneous universe models are the
Bianchi spaces of types VII, VIII, and IX. The evolution
of anisotropy in a restricted class of such models with a
nonvanishing cosmological constant was investigated by
Fabbri. The evolution of the directional expansion aniso-
tropy is given by

A

2.5—

2.0-

where the coefficients p; are of order unity for the most
general models, and R' is the curvature of three-space.
For a plane-symmetric space, R& ——Rz, of Bianchi type-
VIII, the spatial curvature is

1.5
R*=—6k /R3 (29)

1.0

0.5

0.0
0.0 1.0 2.0 3.0

—' =t/tg
4.0

where k is a constant. In this case integration of Eq. (28)
gives

3
61 k' J (V/R ')—dr0 i=1

(30)

FICi. 5. The average expansion anisotropy for plane-
symmetric Kasner and de Sitter universes.

which generalizes Eq. (10).
The curvature-driven part of the directional anisotropy

1s
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3

A, =-,' g (aH, /H), '. (32)

(Mf;/H), = —(18k 1u,;/V) J (V/R3 )dt . (31)

A curvature-driven mean expansion anisotropy is defined
by

so that

Pa =PF +Pc + 2(PFPc )1/2

During the exponentially expanding era we get
—3t/tG —2t/tG

p~ cce p~ cce (40)

In order to get an estimate of the decrease of this expan-
sion anisotropy during the inflationary era, we make use
of the flat-space solution, given in Eqs. (21) and (22).
This leads to

A, (t2)/A, (tG)=e ' '=10 '". (33)

crJ ——(e~)»;(e t)»J+(et)»J(e ~)»; .

The shear energy density is defined by

Po= 2sg~ ~

1 gJ

This energy density is governed by the equation

(35)

(36)

( 1/2) 3a 1/2+ qg e (37)

where g is a factor of order unity. Integration gives

p
1 =pe 3a+e 3a pe3ag ddt (38)

0

which is a generalization of Eq. (30).
In an era dominated by the vacuum energy density it is

a good approximation to write R* ~ e . Then

e cc sinh /
( —,'Hot) .

Thus for t &H0 ' the volume expansion is exponential,
exp(a) ccexp(IIot). From Eq. (31) we may define a flat-
space anisotropy energy density p~ and a curvature-driven
anisotropy energy density p, by

C e —6a

The decrease of anisotropy is not so great in a universe
with curved three-space as in a flat universe, but the an-
isotropy of the expansion velocity still decreases very con-
siderably during the inflationary era.

V. "MIXMASTER DESCRIPTION"
OF EXPANSION ISOTROPIZATION

In order to make connection with a wider part of the
literature that has treated anisotropic cosmological
models, I will give a short discussion of the problem using
the form of the line element which has become usual in
connection with the so-called mixmaster universe
models. 24

Bianchi spaces of arbitrary type may be described by a
line element of the form

ds =dt e(e ~)~Q—'QJ, (34)

where 0' are one-forms that are not exact in general, and

P is a symmetric traceless matrix. The angle averaged
Hubble parameter is H =ci. The main contribution to the
anisotropy of the expansion rate is described by the tensor

Thus p+ decreases by ]P and p by & 9 dunng the
inflationary era.

It was shown by Salucci and Fabbri that the evolution
of expansion anisotropy in a universe filled with a perfect
fluid endowed with vorticity is not affected significantly
by the matter velocity field. Thus the results deduced
above are valid for the most general anisotropic, homo-
geneous universe models.

VI. CONCLUSION

There is an infinity of possible initial conditions for the
expansion pattern of our Universe. Only one of these
represents an isotropic expansion. Thus there is a priori a
vanishing probability that the Universe started with an
isotropic initial expansion. As stated by Misner, Thorne,
and Wheeler, the fundamental cosmological question
then, is why the isotropic Friedmann metrics should be a
more accurate approximation to the real Universe than an
anisotropic Kasner metric.

The present article gives an answer to this question. An
anisotropic generalization of the de Sitter universe has
been discussed, which includes infinitely many initial ex-
pansion conditions. According to this model the Universe
is initially in a Kasner era. It enters the vacuum-
dominated inflationary era in an arbitrarily anisotropic
phase. During this era the average expansion anisotropy
decreases by 10 ', and the Universe develops into a de
Sitter phase. The Universe comes out of the inflationary
era with isotropic expansion, and the. phase transition at
the end of this era leads the Universe into an isotropic,
radiation-dominated Friedmann era.

The kinematical properties of the generalized de Sitter
solution shows that an arbitrarily great anisotropy at the
GUT time will not prevent the transition into an infla-
tionary era. The point of time for this transition and the
time scale with which it happens are independent of the
state of anisotropy of the universe, and depends only upon
the magnitude of the vacuum energy density.

The anisotropic generalization of the de Sitter universe
investigated in Sec. II is still peculiar in that it has a flat
three-space. . When the curvature of three-space is includ-
ed into the analysis, the equations contain a curvature-
driven component of the expansion anisotropy. Even if
the decrease of anisotropy during the inflationary era is
less, when this is taken into account, than in the case of a
flat three-space, the decrease of anisotropy is still ex-
tremely great. For the most general homogeneous cosmo-
logical models the average expansion anisotropy decreases
by a factor of order 10 " during the Guth inflationary
era.
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