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Hawking has proposed a wave function for the Universe which is CPT invariant and which ap-
pears to be dominated by smooth configurations when the Universe is small but by irregular config-
urations when large. He has argued that this behavior connects the thermodynamic arrow of time
with the cosmological arrow. Here it is pointed out that although the total wave function may have
the properties Hawking describes, an individual WKB component of it that is classically observable
generically will not be CPT invariant and will not have its thermodynamic arrow of time reverse if it

enters a recollapsing phase.

I. HISTORICAL BACKGROUND

The temporal asymmetry or arrow of time of our world
is one of the most striking facts of everyday experience,
and yet it is one of the deepest mysteries of physics. It
would seem very difficult to give a physical explanation
for the asymmetry, because all of the fundamental
dynamical laws of physics discovered so far are time sym-
metric in the sense of being CPT invariant. Of course,
physics has given a description of the arrow of time in the
form of the second law of thermodynamics: the entropy
of the Universe or of any of its subsystems which become
approximately isolated increases with time. However, it is
generally agreed that this is not a fundamental dynamical
law governing the microscopic evolution of the Universe
but is rather a restriction on the boundary conditions
which select the actual state for the Universe from the
many presumably allowed by the dynamical laws.

Someone might object that there is no mystery in the
arrow of time, for it is unlikely that the entropy of the
Universe (at least in a coarse-grained sense) is absolutely
constant, and then the future direction of time may be
simply defined so that the entropy increases in that direc-
tion. But the real mystery is why virtually all of the
many observed subsystems of the Universe have arrows
which point in the same temporal direction. An explana-
tion of the arrow of time could then not be expected to
show why entropy increases in one direction of abstract
coordinate time rather than the other, for that would be
merely a matter of definition, but rather why there is the
remarkable correlation between the directions of all of the
different arrows of time. For example, one of the arrows
could be used to define a positive direction of time, and
then what would need to be explained is why the other ar-
rows point toward the future thus defined.

It is generally accepted that if the thermodynamic ar-
rows of time (entropy increase) agree for virtually all sub-
systems of the Universe, then the radiation arrows (mass-
less fields being described more accurately by retarded
solutions rather than advanced solutions if source-free
solutions are dropped) and the psychological arrows
(remembering the past) will also agree.! However, there is
another arrow of time whose connection with the thermo-
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dynamic arrows is much less clear, and that is the expan-
sion of the Universe or cosmological arrow of time. It is
by no means obvious whether the thermodynamic arrows
should always point in the same direction as the cosmo-
logical arrow, but Gold? has proposed that they do. Then
if the Universe recollapses, the thermodynamic arrows
would reverse with respect to some well-behaved coordi-
nate time at the moment of maximum expansion and en-
tropy would decrease thereafter.

This proposal for relating the cosmological and thermo-
dynamic arrows of time is highly counterintuitive and
hence has not been generally accepted, though it would be
hard to rule out observationally if the Universe does not
recollapse for a very long time. Penrose® has pointed out
that even if the entire Universe does not recollapse soon,
the proposal would apparently imply that the normal ar-
rows of time would reverse for an astronaut who partici-
pates in a local recollapse by falling into a black hole.
Penrose considered this possibility absurd, though admit-
tedly it has not been tested.

Now a new element has entered the debate with
Hawking’s proposal for the quantum state of the
Universe,*~7 which he has argued® exhibits a strong ther-
modynamic arrow of time which agrees with the cosmo-
logical arrow. If Hawking’s proposal is correct and does
explain the thermodynamic arrow, it will solve one of the
greatest mysteries of physics. Clearly more work is need-
ed to check whether it really does.

In this paper I examine the much more modest question
of whether Hawking’s proposed wave function does have
an agreement between the thermodynamic arrow (assum-
ing this arrow is implied as claimed) and the cosmological
arrow. I argue that although there may be this agreement
when one averages over the entire wave function, the
agreement need not (and apparently does not) occur for
each component of the wave function that is accessible to
classical observations.

II. TIME SYMMETRY WITHOUT TIME SYMMETRY

Hawking has shown® that the quantum state for the
Universe is time symmetric in the sense of being CPT in-
variant if it is given by a path integral over compact
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geometries without boundaries.*~® Hawking does not ar-
gue that this symmetry by itself implies that the thermo-
dynamic arrow would reverse with the cosmological ar-
row if the Universe recollapses, but because that reversal
would naively seem to be a consequence, I must first show
that it does not follow from CPT invariance of the state.

CPT is expressed in terms of an antiunitary operator 6
which turns particles into antiparticles ( C), takes the mir-
ror image ( P), and reverses velocities ( 7). The usual CPT
invariance of the dynamical laws of physics means that 6
commutes with all constraints and symmetry generators
of the dynamical laws (e.g., with the Hamiltonian H).
This implies that if a state ¥ obeys the dynamical laws, so
does the CPT-reversed state 6y, but the two states need
not be equal, so CPT invariance of the dynamics does not
imply CPT invariance of the state (y=0v). Thus the usu-
al CPT theorem does not preclude a time-asymmetric
state, such as a state in which entropy increases monotoni-
cally with time throughout an expansion and subsequent
recontraction of the Universe.

- However, not only the dynamics but also the state is
CPT invariant in Hawking’s prescription for the wave
function of the Universe, so it might appear that the
Universe must expand and recontract in a time-symmetric
manner. This would indeed be the case if the Universe
has a CPT-invariant wave function consisting of a single
WKB wave packet concentrated around a particular clas-
sical solution which expands from a big bang and then
contracts to a big crunch. But if the wave function for
the Universe consists of a superposition of many classical
wave-packet components, it is very easy for the whole
wave function to be CPT invariant even if all of its com-
ponent parts are highly time asymmetric. For example, if
the components 1, are all concentrated near classical evo-
lutions with classical time parameters and all have entro-
pies monotonically increasing with these time parameters,
then 6y, are CPT-reversed wave packets with the oppo-
site sense of the time parameters and hence with entropies
monotonically decreasing with respect to them, and
¢¥=23,, (¢, +64,) is a CPT-invariant wave function all of
whose components ¢, and 6y, are time asymmetric. This
can occur even if each classical evolution has a succession
of both expanding and contracting phases. Hence if the
entropy increases monotonically during an expansion
phase of any component wave packet, it need not decrease
during a subsequent contraction phase even if the total
wave function is CPT invariant, as each individual wave
packet need not be CPT invariant.

III. TIME ASYMMETRY OF HAWKING’S WAVE
PACKETS

Now the question arises as to how the entropy behaves
in each of the component wave packets of Hawking’s pro-
posed wave function and whether the wave packets them-
selves behave in a time-symmetric manner. Of course, the
full wave function would be very difficult to calculate.
However, a Friedmann-Robertson-Walker (FRW) minisu-
perspace model with a minimally coupled homogeneous
scalar field ¢ on three-spheres of radius a has been
analyzed.®”%10 The oscillating part of this (real) minisu-
perspace wave function 1(a,¢) may be decomposed into
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complex wave packets which represent an ensemble of
classical FRW universes. In the regime where the WKB
approximation is good, the integral curves of the normals
to the surfaces of constant phase of the wave packets
satisfy the classical FRW-scalar-field equations with
respect to an internally defined Lorentzian time parameter
t which varies monotonically along each curve or trajecto-
ry in the (a,¢) plane. The dominant wave packets enter
the WKB regime along trajectories which come from
points where a =a, is very small, ¢ =¢, is very large, and
the scalar curvature of the three-sphere is balanced by the
potential energy density of the ¢ field in the Einstein sca-
lar constraint equation so that ¢ =0 and ¢ =0 there (with
the overdot denoting d/dt). These trajectories undergo a
long period of inflation or exponential expansion for a ()
from aq to very large values, while ¢(¢) decreases in mag-
nitude slowly from ¢q until it nears a minimum in its po-
tential. Then ¢(2) oscillates about the minimum and a (¢)
behaves as in a dust-filled FRW universe, since the pres-
sure of the ¢ field averages to near zero over each of its
oscillations. If the minimum of the ¢ potential (with any
cosmological constant absorbed into it) is zero or negative,
eventually a(z) reaches a maximum (for our k=+1
FRW model) and then recontracts until it becomes very
small or zero.

Hawking has pointed out™’ that there are an infinite
number of periodic trajectories which never go to a =0 to
become singular but rather continue to bounce each time
a becomes very small by having ¢ become sufficiently
small there compared with ¢ itself that the pressure of the
¢ field is negative. In addition to this countable set of
nonsingular periodic trajectories, there also appears to be
an uncountable set of nonsingular aperiodic perpetually
bouncing trajectories.!! Hawking has argued that the
wave function ¥(a,4) corresponds to a superposition of
wave packets whose trajectories in the WKB or classical
limit are these nonsingular oscillating solutions.®’

Halliwell and Hawking!? have extended this FRW
minisuperspace model to include linear perturbations of
all the inhomogeneous or anisotropic gravitational and
scalar-field modes. They found that these modes are in
their ground states near a =aq, ¢ =@, along each classical
trajectory in the (a,¢) plane but become excited by the
mechanism of parametric amplification when their wave-
lengths expand beyond the horizon size during the infla-
tionary phase. Thus one goes from a smooth, homogene-
ous configuration when a is small to an irregular, inho-
mogeneous configuration when a is large. Hawking ar-
gued? that this represents an increase in disorder or entro-
py which is the thermodynamic arrow of time. Further-
more, Hawking assumed that each classical trajectory will
recontract in a time-symmetric manner and that the per-
turbations will go back to their ground states when a
reaches ao again.'*® Hence he concluded that the ther-
modynamic arrow is tied to the cosmological arrow and
would reverse during a contracting phase, with possible
observational consequences for matter contracting locally
into black holes.

However, only a discrete countable set of the classical
trajectories (labeled by ¢, with a, determined by the re-
quirement that ¢=0 and ¢=0 at a =a, and ¢=d¢o)
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recontract in a time-symmetric manner after the first ex-
pansion of a(t). A larger but still countable set of period-
ic solutions returns to a=0 and ¢ =0 at a =a, and ¢=d
only after more than one expansion and contraction cycle.
There is no reason to believe the entropy S(¢) of the per-
turbations in these would oscillate in the same way a (¢)
does even if it did return to its original low value upon the
eventual return to a =a, and ¢=¢,, which itself appears
unlikely. Furthermore, there appears to be an uncount-
ably much larger fractal set of nonsingular aperiodic solu-
tions which never returns to @ =0 and ¢ =0 simultaneous-
ly,!! in which case there would be no argument for S (t)
ever returning to its original value. ,

Even more crucially, all of these nonsingular trajec-
tories, countable or uncountable, form only a discrete set
of Lebesgue measure zero out of the continuum of trajec-
tories which start with @ =0 and ¢ =0 at arbitrary ¢=d,.
The probability measure given to each trajectory by the
wave function appears to be nearly independent of ¢, for
large ¢y (Refs. 9 and 10) rather than being concentrated
on the discrete values of ¢, which give nonsingular trajec-
tories, so it is apparently incorrect to characterize the
wave function as being a superposition only of wave pack-
ets which represent nonsingular oscillating universes.®—%12
Although the Lorentzian (oscillating) part of the wave
function ¥(a,$) is predominantly a superposition of wave
packets whose classical trajectories have ¢ =0 and ¢=0
simultaneously somewhere, say at ¢t =0 (and are thus only
a one-parameter family of trajectories rather than the gen-
eral two-parameter family of classical solutions of the
FRW-scalar-field equations), all but a set of measure zero
of these trajectories eventually reach @ =0 and hence are
singular.

Because nearly all of the classical trajectories given by
the wave function are not time symmetric about any time
other than ¢t =0 [where @ =0 and ¢ =0, though the WKB
approximation for the wave packets breaks down near
there so that the Lorentzian time ¢ and classical evolution
a(t) and ¢(¢) are not physically meaningful there], one
would not, expect the entropy of the inhomogeneous and
anisotropic modes to be symmetric around any later time
either. If indeed it is correct to conclude from the linear
analysis for these modes!? that the entropy is very low
along each trajectory near t =0 (Ref. 8), the most natural
behavior to expect would be that the entropy simply in-
creases monotonically with ¢ thereafter, all the way until
the Universe recollapses completely to a (¢)=0. As noted
in Sec. II, this time-asymmetric behavior along each indi-
vidual classical trajectory for ¢ >0 does not violate the
time symmetry (CPT invariance) of the full wave func-
tion, because for each wave packet having one asymmetry
there is also its CPT-reversed wave packet having the op-
posite asymmetry. (For the dominant wave packets which
give trajectories with ¢ >0 which would come from a =0
and ¢=0 at t =0, the CPT-reversed wave packets simply
give the extensions of the trajectories to ¢ <0.) Thus there
is no reason to believe anything strange will happen to the
thermodynamic arrow of time in our component wave
packet if the classical Universe described by it begins to
contract (or even if a part of it such as the matter and
space inside a black hole collapses, or if a ball of gas con-
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denses to form a star, or if any other gravitational con-
traction occurs).

IV. WHAT HAPPENS TO THE WAVE FUNCTION
WHEN THE UNIVERSE GETS SMALL?

In view of the expectation expressed in Sec. III that the
entropy will increase monotonically with time along each
of the classical trajectories whose wave packets are includ-
ed in the total wave function, even when these trajectories
collapse to a =0, one may ask what happens to
Hawking’s assumption that the Universe is smooth and
homogeneous when small.® If the perturbations continue
to grow along each classical trajectory in the (a,4) plane,
they will not be small when a reaches zero. This is not in
contradiction with the results of Ref. 12, because there the
perturbation wave function depends on the trajectory in
the (a,¢) plane and not just on the position in this plane
as assumed in Ref. 8. Hence the Universe need not be
smooth and homogeneous when small.

One may next ask how the wave packets giving inho-
mogeneous and/or anisotropic collapse fit in with the ex-
pectation that the wave function goes to a constant when
the size a of the three-space goes to zero.!~!%!2 In as
much as this expectation is based on an estimate of the
contribution of real Euclidean extrema to the path in-
tegral and ignores the contribution of complex Euclidean
extrema such as the classical Lorentzian trajectories dis-
cussed above, it probably is not strictly correct. However,
the Lorentzian trajectories which start with ¢=0 and
¢=0 at a =ay and ¢=¢, typically return to a =a, at
much larger values of ¢. Because the corresponding wave
packets are thus much more spread out when they return
to @ =a, and continue on to a =0, they do not make
much of a correction to the total value of the wave func-
tion there, though they would greatly affect its derivatives
which would otherwise be zero there.

Another possibility is that the wave function really does
go to a constant with zero gradient at a =0, whether or
not Hawking’s path-integral proposal implies this. Then
the contribution of the parts of the wave packets which
collapse to a =0 after each contraction rather than bounc-
ing (reflecting) at nonzero a must be canceled. This could
be done by adding new wave packets of the opposite sign
and opposite phase gradient coming out of a =0. The
parts of these which fail to bounce after each contraction
would also need to be canceled by adding a second set of
new wave packets, and so on ad infinitum in what should
be a convergent process for calculating the wave function
in a finite region of superspace. In this case, a wave pack-
et contracting toward a =0 would, by the time it got
there, be completely canceled by another wave packet, but
what the observed effects of this could be are not clear.
In one sense the sum of the two wave packets would be
fading out of existence as one followed them toward
a =0, but an observer in one of the wave packets could
only test conditional probabilities, with one of the condi-
tions certainly being his own continued existence, so that
he presumably could not become directly aware of his de-
creased absolute probability (or, more accurately, measure)
of existence. Thus he might just gradually fade away
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without knowing it, all the while observing his universe
getting smaller and more disordered.

Whichever is the correct form of the wave function at
small a, it seems highly unlikely that it can consist only
of wave packets which are both approximately classical
and also have a strong thermodynamic arrow of time
which reverses with the reversal of the expansion. Thus it
does not seem that Hawking’s proposal for the wave func-
tion of the Universe gives a rigid connection between the
thermodynamic and cosmological arrows of time.

However, if Hawking’s proposal does explain why the
thermodynamic arrows of all the observed subsystems of
the Universe point in the same direction, that would be a
remarkable achievement, since there are so many of them.
One might then simply say that by 50-50 chance we hap-
pen to be living in the expanding phase of our wave pack-
et. Actually, it would not be surprising if the relative
probability of our being in the expanding phase is much
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closer to unity, because this phase is predicted to last an
arbitrarily long time,!° and hence during the subsequent
recollapse all stars may have burned out and there may
not be much around except for large black holes continu-
ally coalescing.
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