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The usual proof of the' CPT theorem does not apply to theories which include the gravitational
field. Nevertheless, it is shown that CPT invariance still holds in these cases provided that, as has
recently been proposed, the quantum state of the Universe is defined by a path integral over metrics
that are compact without boundary. The observed asymmetry or arrow of time defined by the direc-
tion of time in which entropy increases is shown to be related to the cosmological arrow of time de-
fined by the direction of time in which the Universe is expanding. It arises because in the proposed
quantum state the Universe would have been smooth and homogeneous when it was small but irreg-
ular and inhomogeneous when it was large. The thermodynamic arrow would reverse during a con-
tracting phase of the Universe or inside black holes. Possible observational tests of this prediction

are discussed.

I. INTRODUCTION

Physics is time symmetric. More accurately, it can be
shown! that any quantum field theory that has (a) Lorentz
invariance, (b) positive energy, and (c) local causality, i.e.,
¢(x) and #(y) commute (or anticommute) if x and y are
spacelike separated, is invariant under CPT where C
means interchange particles with antiparticles, P means
replace left hand by right hand, and T means reverse the
direction of motion of all particles. In most situations,
the effect of any C or P noninvariance can be neglected,
so that the interactions ought to be invariant under T
alone.

In fact, if one takes the gravitational field into account,
the Universe that we live in does not satisfy any of the
three conditions listed above. The Universe is not Lorentz
invariant because spacetime is not flat, or even asymptoti-
cally flat. The energy density is not positive definite be-
cause gravitational potential energy is negative. In a cer-
tain sense the total energy of the Universe is zero because
the positive energy of the matter is exactly compensated
by the negative gravitational potential energy. Finally,
the concept of local causality ceases to be well defined if
the spacetime metric itself is quantized because one can-
not tell if x and y are spacelike separated. Nevertheless, I
shall show in Sec. III of this paper that the universe is in-
variant under CPT if, as has been recently proposed,®—* it
is in the quantum state defined by a path integral over
compact four-metrics without boundary. This is a non-
trivial result because an arbitrary quantum state for the
Universe is not, in general, invariant under CPT.

The Universe that we live in certainly does not appear
time symmetric, as anyone who has watched a movie be-
ing shown backward can testify: one sees events that are
never witnessed in ordinary life, like pieces of a cup gath-
ering themselves together off the floor and jumping back
onto a table. One can distinguish a number of different
“arrows of time” that express the time asymmetry of the
Universe. (1) The thermodynamic arrow: the direction of
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time in which entropy increases. (2) The electrodynamic
arrow: the fact that one uses retarded solutions of the
field equations rather than advanced omes. (3) The
psychological arrow: the fact that we remember events in
the past but not in the future. (4) The cosmological ar-
row: the direction in time in which the universe is ex-
panding.

I shall take the point of view that the first arrow im-
plies the second and third. In the case of the psychologi-
cal arrow this follows because human beings (or comput-
ers, which are easier to talk about) are governed by the
thermodynamic arrow, like everything else in the
Universe. In the case of electrodynamics, one can express
the vector potential 4,(x) as a sum of a contribution
from sources in the past of x plus a surface integral at
past infinity. One can also express 4,(x) as a sum of a
contribution from sources in the future of x plus a surface
integral at future infinity. The boundary conditions that
give rise to the thermodynamic arrow imply that there is
no incoming radiation in the past. Thus the surface in-
tegral in the past is zero and the electromagnetic field can
be expressed as an integral over sources in the past. On
the other hand, the boundary conditions that give rise to
the thermodynamic arrow do not prevent the possibility
of outgoing radiation in the future. This means that the
surface integral in the future is strongly correlated with
the contribution from sources in the future. It therefore
cannot be neglected.

The accepted explanation for the thermodynamic arrow
of time is that for some reason the Universe started out in
a state of high order or low entropy. Such states occupy
only a very small fraction of the volume of phase space
accessible to the Universe. As the Universe evolves in
time it will tend to move around phase space ergodically.
At a later time therefore there is a high probability that
the Universe will be found in a state of disorder or higher
entropy because such states occupy most of phase space.
Consider, for example, a system consisting of a number N
of gas molecules in a rectangular box which is divided
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into two by a partition with a small hole in it. Suppose
that at some initial time, say 10 o’clock, all the molecules
are in the left-hand side of the box. Such configurations
occupy only one part in 2V of the available 6N-
dimensional phase space. As time goes on, the system
will move around phase space on a constant-energy sur-
face. At a later time there will be a high probability of
finding the system in a more disordered state with mole-
cules in both halves of the box. Thus entropy will in-
crease with time. Of course, if one waits long enough, one
will eventually see all the molecules returning to one half
of the box. However, for macroscopic values of N, the
time taken is likely to be much longer than the age of the
Universe.

Suppose, on the other hand, that the Universe satisfied
a final condition that was in a state of high order. In that
case it would be likely to be in a more disordered state at
earlier times and entropy would decrease with time. How-
ever, as remarked above, the psychological arrow is deter-
mined by the thermodynamic arrow. Thus, if the thermo-
dynamic arrow were reversed, the psychological arrow
would be reversed as well: we would define time to run in
the other direction and we would still say that entropy in-
creased with time. However, the cosmological arrow pro-
vides an independent definition of the direction of time
with which we can compare the thermodynamic, psycho-
logical, and electrodynamic arrows. In the early 1960s
Hogarth® and Hoyle and Narlikar® tried to connect the
electrodynamic and cosmological arrows using the
Wheeler-Feynman’ direct-particle-interaction formulation
of electrodynamics. At a summer school held® at Cornell
in 1963 their work was criticized by a Mr. X (generally
assumed to be Richard Feynman) on the grounds that
they had implicitly assumed the thermodynamic arrow.
They also got the “wrong” answer in that they predicted
retarded potentials in a steady-state universe but advanced
ones in an evolutionary universe without continual
creation of matter. It is now generally accepted that we
live in an evolutionary universe.

Another proposal to explain the thermodynamic arrow
of time has been put forward by Penrose.” It is based on
the prediction of classical general relativity!® that there
will be spacetime singularities both in the past, at the big
bang, and in the future at the big crunch, if the whole
universe recollapses, or in black holes if only local regions
collapse. Penrose’s proposal is that the Weyl tensor
should be zero at singularities in the past. This would
mean that the Universe would have to start off in a
smooth and uniform state of high order. However, the
Weyl tensor would not, in general, be zero at singularities
in the future which could be irregular and disordered.

There are several objections which can be raised to
Penrose’s proposal. First, it is rather ad hoc. Why
should the Weyl tensor be zero on past singularities but
not on future ones? In effect, one is putting in the ther-
modynamic arrow by hand. Second, it is based on the
prediction of singularities in classical general relativity.
However, it is generally believed that the gravitational
field has to be quantized in order to be consistent with
other field theories which are quantized. It is not clear
whether singularities occur in quantum gravity or how to
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impose Penrose’s boundary condition at them, if they do.
Finally, Penrose’s proposal does not explain why the
cosmological and thermodynamic arrows should agree.
With Penrose’s boundary condition the thermodynamic

-arrow would agree with the cosmological arrow during

the expanding phase of the Universe but it would disagree
if the Universe were to start recollapsing.

The CPT invariance of the quantum state of the
Universe defined by a path integral over compact metrics
implies that if there is a certain probability of the
Universe expanding, there must be an equal probability of
it contracting. In order for the thermodynamic and
cosmological arrows to agree in both the expanding and
contracting phases, one requires boundary conditions

_ which imply that the Universe is in a smooth state of high

order when it is small but that it may be in an inhomo-
geneous disordered state when it is large. In Sec. IV it
will be shown that the results of Ref. 11 imply that this is
indeed the case for the quantum state defined by a path
integral over compact metrics. This means that during
the expansion phase the Universe starts out in a smooth
state of high order but that, as it expands, it becomes
more inhomogeneous and disordered. Thus the thermo-
dynamic and cosmological arrows agree. However, when
the Universe starts to recollapse, it has to get back to a
smooth state when it is small. This means that disorder
will decrease with time during the contracting phase and
the thermodynamic arrow will be reversed. It will thus
still agree with the cosmological arrow.

It should be emphasized that this reversal of the ther-
modynamic arrow of time is not caused by the gravita-
tional fields or quantum effects at the point of maximum
expansion of the Universe. Rather it is a result of the
boundary condition that the Universe should be in a state
of high order when it is small and it would occur in any
theory which had this boundary condition as has been
pointed out by a number of authors.'>!3 The only way
that quantum gravity comes into the question of the ar-
row of time is that it provides a natural justification for
the boundary condition.

One might ask what would happen to an observer (or
computer) who survived from the expanding phase to the
contracting one. One might think that one was free to en-
close the observer or computer in a container that was so
well insulated that he would be unaffected by the reversal
of the thermodynamic arrow outside. If he were then to
open a little window in his spaceship, he would see time
going backward outside. The answer to this apparent
paradox is that the observer’s thermodynamic arrow, and
hence his psychological arrow, would reverse at around
the time of maximum expansion of the Universe, not be-
cause of effects that propagated into the spacecraft
through the walls, but because of the boundary condition
that the spacecraft be in a state of low entropy at late
times when the Universe is small again. The contents of
the memory of the observer or computer would increase
during the expansion phase as the observer recorded ob-
servations but it would decrease during the contracting
phase because the psychological arrow would be reversed
and the observer would remember events in his future
rather than his past.
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The prediction that the thermodynamic arrow would
reverse if the Universe started to recontract may not have
much practical importance because the Universe is not go-
ing to recollapse for a long time, if it ever does. However,
we are fairly confident that localized regions of the
Universe will collapse to form black holes. If one was in
such a region, it would seem just like the whole Universe
was collapsing around one. One might therefore expect
that the region would become smooth and ordered, just
like the whole Universe would if it recollapsed. Thus one
would predict that the thermodynamic arrow of time
should be reversed inside black holes. One would expect
“this reversal to occur only after one has fallen through the
event horizon, so one would not be able to tell anyone out-
side about it. This and other consequences of the point of
view adopted in this paper will be considered further in
Sec. V. Section II will be a brief review of the canonical
formulation of quantum gravity. In Sec. III it will be
shown that the quantum state of the Universe defined by
a path integral over compact metrics is invariant under
CPT. Despite this invariance it will be shown in Sec. IV
that the results of Ref. 11 imply that there is a thermo-
dynamic arrow because the inhomogeneities in the
Universe are small when the Universe is small but that
they grow as the Universe expands.

II. CANONICAL QUANTUM GRAVITY

In the canonical approach the quantum state of the
Universe is represented by a wave function W(h;,d)
which is a function of the three-metric 4;; and the matter
field configuration ¢, on a three-surface S. The interpre-
tation of the wave function is that |W(h;,do)|? is the
(unnormalized) probability of finding a three-surface S
with three-metric h;; and matter field configuration ¢,.
The wave function is not an explicit function of time be-
cause there is no invariant definition of time in a curved
space which is not asymptotically flat. In fact, the posi-
tion in time of the surface S is determined implicitly by
the three-metric h;;. This means that W(A;;,4,) obeys the
zero-energy Schrodinger equation:

HW(h;,40)=0 .

This equation can be decomposed into two parts: the
momentum constraint and the Wheeler-DeWitt equation.
The momentum constraint is

()4

(2.1

=87T%Y .
|i
It implies that the wave function is the same on three-
metrics h;; and matter field configurations ¢, that are re-

(2.2)

lated by a coordinate transformation. The Wheeler-
DeWitt equation is
[ 172 _3
-G —°R +167T, v=0, 2.3
[ Gukl ahijShkl +h7H +167T ) (2.3

m

<I>(’Tij,KEﬂlf‘o):fomd[hl/z]exp

2
Kg
— ;’sﬁ [ Keh'd’x (Why, )
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where
Giji = 5h _I/Z(hikhjl +hahj—hihy) .

It can be regarded as a second-order wave equation for ¥
on the infinite-dimensional space called superspace which
is the space of all three-metrics 4;; and matter field con-
figurations ¢y.

Any solution of Egs. (2.2) and (2.3) represents a possible
quantum state of the Universe. However, it seems reason-
able to suppose that the Universe is not just in some arbi-
trary state but that its state is picked out or preferred in
some way. As explained in Ref. 4, the most natural
choice of quantum state is that for which the wave func-
tion is given by a path integral over compact metrics:

Why,0)= [ _dIgu1d[$lexp( —Tlg,.8]) ,

where T is the Euclidean action and the path integral is
taken over four-metrics g,, and matter field configura-
tions ¢ on compact four-manifolds which are bounded by
the three-surface S with the induced three-metric 4;; and
matter field configuration ¢o. The contour of integration
in the space of all four-metrics has to be deformed from
Euclidean (i.e., positive definite) metrics to complex
metrics in order to make the path integral converge.!*!
The proposal that the quantum state is given by (2.4)
seems to give predictions that are in agreement with obser-
vation.® 11,16

(2.4)

III. THE CPT THEOREM

The precise statement of CPT invariance in flat space-
time is that the vacuum expectation values of bosonic
quantum field operators ¢(x) satisfy

(P(x1)p(x3) -+ d(x,))
=[N (—x)pT(—x3) - - - T (—x,0)1* .

In the case of fermion fields there is a factor of (—
where F is the fermion number and J is the number of un-
dotted spinor indices. In the case of asymptotically flat
spacetime one can formulate and prove CPT invariance
in a similar way in terms of the vacuum expectation
values of field operators at infinity.!” However, although
asymptotic flatness may be a reasonable approximation
for local systems, one does not expect it to apply to the
whole Universe. One therefore does not have any flat or
asymptotically flat region in which one can define the TP
operation x— —x. All that one has is a wave function
W(h;j,$o) which is not an explicit function of time. How-
ever, one can introduce a concept of time by replacing the
dependence of ¥ on h 172" the square root of the deter-
minant of the three-metric A, by its conjugate momen-
tum, the trace of the second fundamental form of S. One
defines the Laplace transform

(3.1)
1)F+J

(3.2)
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where Eij is the three-metric defined up to a conformal
factor and K is the trace of the Euclidean second funda-
mental form. The Laplace transform ® is holomorphic
for Re(Kg)>0. This means that one can analytically con-
tinue ® in Kz to Lorentzian values K; =iK E~of the trace
of the second fundamental form. Then | ®(h;;,Ky,do) | >
is proportional to the probability of finding a three-
surface S with the conformal three-metric h,], the rate of
expansion K; and the matter field configuration ¢,,.

Consider first the case in which one has only fields like
the gravitational field and real scalar fields which are in-
variant under C and P. The Euclidean action [ is real for
Euclidean (i.e., positive definite) four-metrics g, and real
scalar fields ¢. The contour of integration in the path in-
tegral (2.4) has to be deformed from Euclidean to complex
metrics in order to make the integral converge. However,
there will be an_equal contribution from metrics with a
complex action I and from metrics with the complex con-
jugate action (I)*. Thus the wave function W(h;;,¢o) will
be real. This implies that

@(hyj, K, $0)=0* (hy;,KE,$0) 3.3)
for complex K. In particular, this implies
(D(;;ij:KL7¢O)=q)*(i{ij,~KL7¢0) (3.4)

for real K;. Equation (3.4) is the statement of T invari-
ance for the quantum state of the Universe. It implies
that the probability of finding a contracting three-surface
is the same as that of finding an expanding one, i.e., if the
wave function represents an expanding phase of the
Universe, then it will also represent a contracting one.

Consider now a situation in which one has charged
fields, for example, a complex scalar field ¢. The wave
function ¥ will now be a functional of the three-metric
hy; and the complex field configuration ¢; on S. In the
Euclidean path integral (2.4) for ¥ one has to integrate
over independent field configurations ¢ and Q on the Eu-
clidean background g,, where ¢=¢, and ¢= ¢ on S.
The Euclidean action I[g,,,$, #] is no longer necessarily
real but

118y, 81=T"*[g,,,$,4] . (3.5
This implies
O(hyj, Ky, 0)=D*(hy;, —KL,8*) . (3.6)

Equation (3.6) is a statement of the invariance of the
quantum state of the universe under CT.

Finally one can consider fields, such as chiral fermions,
which are not invariant under P. To deal with fermions
one should introduce a triad of covectors ef on S and
should regard the wave function W as a functional of the
e and the fermion field ¢, on S. The path integral repre-
sentation of the wave function is then

Wlef,po)= [ dlegld[¥ld[F]exp(—TTef, ¥, 91), (3.7)

where on S, ¥=1, and 9 =1,. The oriented triad ef on S
defines a directed unit normal e? u to S. The path integral
(3.7) is taken over all compact four-geometries which are
bounded by S and for which e° » points inward.
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The Euclidean action will obey
Tlep, ,91=T*[—ef, 99T, (3.8)

where ¥“=Cq* is the charge conjugate field and C is the
charge conjugation matrix. This implies

W(ef, ) =W*(—ef 9 . (3.9)

One can regard (3.9) as the expression of the CPT invari-
ance of the quantum state of the Universe because chang-
ing the sign of the triad ef not only reverses the spatial
directions, and so carries out the operation P, but it also
reverses the direction of the orientated normal to S, eﬂ.
Alternatively, one can consider the Laplace transform ®

O(@],Ky,p)=*(—ef,—K;,99) , (3.10)

where @7 is the triad in S defined up to a positive multi-
plicative factor.

It is clear that this proof of the CPT invariance of the
quantum state defined by a path integral over compact
metrics would apply equally well if there were higher
derivative terms in the gravitational action. In the case of
an action containing quadratic terms in the curvature, the
wave function ¥ could be taken to be a function of the
three-metric A;;, the second fundamental form K%, and
the matter field configuration ¢, For fields that are in-
variant under C and P, the wave function \P(h,J,K,j bo)
would be real for real Euclidean values of the second fun-
damental form K4. This implies that

W(h,'j,KL’;‘ﬁo):\I/*(hij, —KL’,(ﬁo) .

One can regard (3.11) as an expression of the T invariance
of the quantum state. The extension to fields that are not
invariant under C and P is straightforward. One can also
apply similar arguments to the corresponding quantum
state in Kaluza-Klein theories.

(3.11)

IV. THE INCREASE OF DISORDER

In Ref. 11 it was argued that the wave function
W(hij,¢0) can be approximated by a sum of terms of the
form

\I/O(a7¢)H\Pn(a7¢,an,bnycn)dn7fn) . (4.1)

The wave function ¥, describes a homogeneous isotropic
closed Universe of radius e” containing a homogeneous
massive scalar field ¢. The quantities a,,b,,...,f, are
the coefficients of harmonics of order n which describe
perturbations from homogeneity and isotropy.

One can substitute (4.1) into the Wheeler-DeWitt equa-
tion and keep terms to all orders in the “background”
quantities a and ¢ but only to second order in the “pertur-
bations” a,,b,,...,f,. One obtains a second-order wave
equation for ¥, on the two-dimensional “minisuperspace”
parametrized by the coordinates ¢ and ¢. The path in-
tegral (2.4) for the wave function implies that ¥o—1 as
a— — oo. One can integrate the wave equation with this
boundary condition.!® One finds that ¥, starts to oscillate
rapidly. This allows one to apply the WKB approxima-
tion
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W,=Re(Ce™) . 4.2)

The trajectories of VS in the (a,¢) plane correspond to
solutions of the classical field equations for a homogene-
ous isotropic Universe with a homogeneous massive scalar
field. The trajectories corresponding to W, start out at
large values of |¢|. They have a period of exponential
expansion in which |¢| decreases followed by a period of
matter dominated expansion in which ¢ oscillates around
zero with decreasing amplitude. They reach a point of
maximum expansion and then recontract in a time sym-
metric manner.

The perturbation wave functions W, can be further
decomposed as follows:

\Iln =S\I/n(a’¢’an)bn’fn) V\Pn(a’¢’cn) T\Pn(a,¢’dn) *
(4.3)

The wave function TW, describes gravitational wave per-
turbations parametrized by the coefficients d, of the
transverse traceless harmonics on the three-sphere. The
wave function "W, describes the effect of gauge transfor-
mations which correspond to coordinate transformations
on the three-sphere parametrized by the coefficients cg of
the vector harmonics. The wave function *~¥,
parametrized by the coefficients a,, b,, and f, of the sca-
lar harmonics describe two gauge degrees of freedom and
one physical degree of freedom of density perturbations.
In situations in which the WKB approximation can be ap-
plied to the background wave function ¥, the perturba-
tion wave functions obey decoupled Schrodinger equations
of the form
T,

i-a-%"— =THTy, ,
where ¢ is the time parameter of the solution of the classi-
cal field equations that corresponds to ¥, via the WKB
approximation.

One can evaluate the perturbation wave functions
directly from the path integral expression (2.4) for the
wave function. Consider, for example, the gravitational
wave perturbations. One can regard them as quantum
fields parametrized by d, propagating on a homogeneous
isotropic background metric of the form

ds’=—N(t/dt>+e**"dQ;? ,

(4.4)

4.5)

where dQ,? is the metric on the unit three-sphere, if the
lapse function N is real everywhere, the metric (4.5) has a
Lorentzian signature and cannot be compact and non-
singular. However, I shall consider complex background
fields (N (2),a'(t),¢'(t)) such that at some value t=ty, N
is negative imaginary. The metric then has a Euclidean
signature at t=t, and will be regular and compact if
a'=—ow, da'/dt=iNe~%, and d, =0. The argument of
N will vary continuously with z. When N becomes real,
the metric will become Lorentzian. One can express the
perturbation wave functions as path integrals on these

backgrounds, e.g.,
v, (a,¢,d,)= fd[d,’, ]exp(—~f[a’,¢’,d,’,]) , (4.6)

where the path integral is taken over all gravitational

2493

wave perturbations d, on all regular compact background
fields described by a'(¢) and ¢'(z).

The path integral over d,, in a given background field is
Gaussian and therefore can be evaluated as

(detA)~2exp(—T[d,]) , 4.7
where A is a differential operator and
e | ., d da’'
4—d, .
2 |G e 4G “.8)

is the action of a solution of the classical field equations
for a perturbation d, on the given background with
d, =0 at t=ty and d, =d, at the location t=t, of the
three-surface S.

One expects the dominant contribution to the path in-
tegral (4.6) to come from backgrounds which are close to
solutions of the classical background equations. These
solutions will be Euclidean (N imaginary) at t=t¢, and
they will become Lorentzian in those regions of the (a,d)
plane in which ¥, oscillates and the WKB approximation
can be applied. In such a background the classical field
equation for d,, is

e3 d
iN dt

—di FiNe(n2—1) |d, =0 . 4.9)

In the region of the (a’,¢’) plane in which the WKB ap-
proximation can be applied and N is real, one can regard
Eq. (4.9) as a harmonic oscillator equation for the variable
x =exp(3/2a’)d, with the time-dependent frequency
v=exp(—a')(n2—1)!/2, If o' were independent of ¢, the
solution of (4.9) that obeys the above boundary conditions
is

sinvr

d,=d,—
" sinvry

(4.10)

where 7= f N dt.

Of course o’ will vary with ¢ but (4.10) will still be a
good approximation provided that the adiabatic approx1-
mation holds, i.e., |a’/N |, the rate of change of ', is
small compared to the frequency v. In the Euclidean re-
gion near ¢ =t,, this will be true because |d'/N | <e~%".
In the Lorentzian region it will be true for perturbation
modes whose wavelength v~! is small compared to the
horizon distance N /a’. For such modes

d

Zd,; =Nvd,cotvr . 4.11)

For t; in the region in which the WKB approximation
can be applied and for n >>1, the imaginary part of vry,
which arises from the Euclidean region near t=t,, will be
less than —i. This means that the real part of the Eu-
clidean action (4.8) will be 3ve>*d,?=+vx>2 The imagi-
nary part of the Euclidean action will be small. It will
give rise to a phase factor in W, which can be removed
by a canonical transformation of variables. Thus the per-
turbation wave function will have the ground-state form
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™y, (d,)=B exp][ — 53 vexp(3a)d,*]

—Be—¥12

(4.12)

The vector perturbation wave function *W,(c,) describes
a gauge degree of freedom and does not have any physical
significance. The scalar perturbation, which is a function
SW, (a,,by,f,) describes two gauge degrees of freedom
and one physical degree of freedom. A similar analysis
and use of the adiabatic approximation shows that this
physical degree of freedom is in its ground state when the
wavelength of the perturbation is less than the horizon
size during the period of exponential expansion. Thus at
early times in the exponential expansion, i.e., when the
Universe is small, the physical perturbation modes of the
Universe have their minimum excitation. The Universe is
in a state that is as ordered and homogeneous as it can be
consistent with the uncertainty principle. This ordered
state is not only an initial state for the expansion phase of
the Universe but it is also a final state for the contracting
phase because the WKB trajectories for ¥, return to the
same region of the (a,¢) plane and the perturbation wave
functions depend only on the position in this plane.

On the other hand, the perturbation modes are not in
their ground state when the Universe is large because in
this case the adiabatic approximation breaks down when
the wavelength of the perturbation becomes greater than
the horizon size during the period of exponential expan-
sion. Detailed calculations!! show that when the scalar
perturbation modes reenter the horizon during the
matter-dominated era, they are in a highly excited state
and give rise to a scale-free spectrum of density fluctua-
tions 8p/p. These density inhomogeneities provide the
initial conditions necessary for the formation of galaxies
and other structures in the Universe. The perturbation
wave functions are still in a very special state because
their phase factors have to be such that when they are
evolved according to the Schridinger equation, they will
return to their ground-state form when the Universe
recontracts. However, this special nature of the perturba-
tion wave functions would not be noticed by an observer
who makes the usual coarse-grained measurements. All
he would notice was that during the expansion the
Universe had evolved from a homogeneous, ordered state
to an inhomogeneous, disordered state. Thus he would
say that the thermodynamic arrow pointed in the direc-
tion of time in which the Universe was expanding. On
the other hand, an observer in the contracting phase
would feel that the Universe was evolving from a state of
disorder to one of order. He would therefore ascribe the
opposite direction to the thermodynamic arrow and would
also find that it agreed with the cosmological arrow.

The connection between the thermodynamic and
cosmological arrows should hold in models that are more
general than the one considered in Ref. 11 because it de-
pends only on the fact that the adiabatic approximation
should hold for small perturbations on “small” three-
geometries but not for perturbations on “large” three-
geometries. Thus one might expect that it would also
hold in models that allowed for the formation of black
holes as a result of the gravitational collapse of density
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fluctuations produced during the expansion. This would
mean that the thermodynamic arrow would reverse inside
a black hole. This is currently under investigation.

V. CONSEQUENCES

Are there any observable consequences of the prediction
that the thermodynamic arrow should reverse in a recon-
tracting phase of the Universe or inside a black hole? Of
course, one could wait until the Universe recollapsed or
one could jump into a black hole. However, the probabili-
ty distribution of the density parameter Q=p/p.; seems
to be concentrated at Q=1 (Ref. 16). Thus one would
have to wait a very long time for the collapse of the
Universe. On the other hand, if one jumped into a black
hole, one would not be able to tell anyone outside. Fur-
thermore, if the thermodynamic arrow did reverse, one
would not remember it because it would now be in one’s
future rather than in the past.

In principle it is possible to determine. from the present
positions and velocities of clusters of galaxies that they
developed from an initial configuration with very low
peculiar velocities. In a similar way it should therefore be
possible to calculate whether they will evolve to a state
with low peculiar velocities at some time in the future.
The difficulty is that on the basis of the inflationary
model, one would expect the value of Q for the presently
observed Universe to be equal to one to one part in 10%
Thus one would expect the Universe to expand by a fur-
ther factor of at least 10* before it began to recontract. In
this extra expansion other clusters of galaxies which we
have not yet observed would appear over the horizon and
their gravitational fields could have a significant effect on
the behavior of clusters near us. Thus it would seem very
difficult to make an experimental test of the prediction
that the thermodynamic arrow would reverse if the
Universe began to recontract.

A better bet would seem to be to study the inflow of
matter into a black hole. At least in principle this is a sit-
uation that we ought to be able to observe with some ac-
curacy. However, on the basis of classical general relativi-
ty, one might expect the boundary of the region of high
spacetime curvature not to be spacelike, as it is in the
Schwarzschild solution, but to be null, like the Cauchy
horizon in the Reissner-Nordstrom or Kerr solutions. If
this were the case, the behavior of the matter and metric
on the brink of the quantum era would depend on the en-
tire future history of infall into the black hole. Merely to
observe the infall for a limited period of time would be in-
sufficient to determine whether or not the thermodynamic
arrow of time reversed near the region of high curvature.
Clearly more work has to be done on the classical and
quantum aspects of gravitational collapse.

One might think that the CPT theorem implied that all
the baryons in the Universe would have to decay into lep-
tons before the Universe began to recollapse and that the
leptons would be reassembled into antibaryons in the col-
lapsing phase. If this were the case, one could disprove
the proposed “no boundary” condition for the Universe if
one could show that the observed value of Q was such
that the Universe should begin to recollapse before all the
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baryons had decayed. However, what the CPT theorem
implies is just that the probability of finding an expanding
three-surface with a matter configuration of baryons is
the same as that of finding a contracting three-surface
with a matter configuration of antibaryons. This require-
ment is no restriction at all because the two three-surfaces
can merely be the same three-surface viewed with dif-
ferent orientation of time: reversing the orientation of
time and space interchanges the labels, baryons, and anti-
baryons. Thus the CPT invariance of the quantum state
of the Universe does not imply any limit on the lifetime of
the proton. In any case, we certainly do not observe
baryons changing into antibaryons as they fall into a
black hole.

To sum up, the proposal that spacetime is compact
without boundary implies that the quantum state of the
Universe is invariant under CPT. Despite this, one would
observe an increase in (coarse-grained) entropy during an
expansion phase of the Universe. However, it seems diffi-

~cult to test the prediction that entropy should decrease
during a contracting phase of the Universe or inside a
black hole.

Note added in proof. Since this paper was submitted for
publication a paper by Don Page has appeared [following
paper, Phys. Rev. D 32, 2496 (1985)]. In it he questions
my conclusion that the thermodynamic arrow of time
would reverse in a contracting phase of the universe or in
a black hole. My conclusion was based on the fact that
the wave function ¥ went exactly into 1 as one goes to

= — o0 On a null geodesic in the a,¢ plane. This would
imply that ¥ was not oscillating at large negative a and
therefore that all the classical Lorentzian contracting
solutions would have to bounce at a small radius. At the

bounce one could apply an analysis similar to that in Ref.
11 to show that all the inhomogeneous modes were in
their' ground state. This would mean that the inhomo-
geneity would decrease in the collapsing phase and there-
fore that the thermodynamic arrow of time would be re-
versed.

Page has pointed out however that even at large nega-
tive a, there might be a small oscillating component in the
wave function. This would arise from complex stationary
points in the path integral over compact metrics that were
near to the Lorentzian metric which started with an infla-
tionary expansion, reached a maximum radius and then
recollapsed to zero radius without boundary. Although
the amplitude of this oscillating component would be
small, its frequency would be very high. It would there-
fore correspond to an appreciable probability flux of clas-
sical solutions in the WKB approximation.'® One would
not expect the inhomogeneous perturbations about such
solutions to be in their ground state when the solution
recollapsed because the adiabatic approximation used in
Ref. 11 would break down. There is thus no reason for
the thermodynamic arrow of time to reverse in these solu-
tions. Similarly one would not expect it to reverse inside
black holes.

I think that Page may well be right in his suggestion.
In that case the two main results of this paper that are
correct are, first, that the wave function is invariant under
CPT, though this does not imply that the individual clas-
sical solutions that correspond to the wave function via
the WKB approximation are invariant under CPT,
second, that the classical solutions, which start out with
an inflationary period, will have a well-defined thermo-
dynamic arrow of time.
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