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Path-integral quantum cosmology. II. Bianchi type I with volume-dependent source
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The Feynman path-integral formalism is applied to the degrees of freedom of the Quid-filled Kas-
ner (and related) cosmological models. The measure constructed for the vacuum analysis is used to
effect the Arnowitt-Deser-Misner reduction to dynamical degrees of freedom within the functional
integral. The Hankel transform of the minisuperspace transition amplitude is obtained. A pertur-
bation expansion about the classical vacuum solution is presented.

I. INTRODUCTION ds = Nd—t +e (e ~) dx'd"x (2.1)

In the preceding paper' (paper I), we discussed the
motivation to study the role of the Hamiltonian constraint
in the quantization of gravity via the quantum cosmology
approximation. In paper I, the Feynman path-integral
(FPI) formalism was applied to the degrees of freedom of
the vacuum Bianchi type-I (Kasner) cosmological model.
The reduction scheme of Arnowitt, Deser, and Misner
(ADM) was performed at the level of the functional in-
tegral. A closed-form expression for the minisuperspace
transition amplitude was obtained. Here we report the
generalization of these results to the fluid-filled Kasner
(and related) models. The fluid pressure is assumed to be
isotropic. The measure constr'ucted in paper I to factor
out the phase space of the nondynamical degree of free-
dom remains valid and is used here. The major complica-
tion caused by the introduction of a volume-dependent
source is the nonpolynomial character of the ADM Ham-
iltonian. A procedure developed in paper I is used, how-
ever, to reduce the functional integral to a single ordinary
integral which is just a Hankel transform.

In Sec. II the classical problem is described with regard
to subsequent calculations. The ADM procedure is used
to obtain an exact classical solution for the dynamical de-
grees of freedom. As is well known, z the fluid-filled Kas-
ner models are anisotropy dominated near the singularity
and Frielmann-Robertson-Walker fluid dominated far
from it.

In Sec. III the path-integral quantization and ADM
reduction are described. - In Sec. IV the original formula-
tion of the FPI with the measure of Sec. III is evaluated
by first performing the Gaussian integrations over all mo-
menta. The closed-form expression is obtained and
evaluated in the limits of negligible and dominant sources.
Finally, in the Appendix, an expansion of the Lagrangian
transition amplitude about the classical vacuum solution
is constructed. It is shown to agree with the appropriate
limit of the closed-form amplitude. Conclusions are
presented in Sec. V.

II. THE CLASSICAL SOLUTION

The metric is again (paper I) the Bianchi type-I cosmol-
ogy

where N, Q, and p;J are functions of t only, the spatial
volume is g' V, and

p;J =diag(p++V 3p,p+ —W3p, —2p+) . (2.2)

The classical Einstein equations may be obtained from the
action

dP dQS = Gt p ++~ —ex%
f0 dt dt

(2.3)

where p and p~ are, respectively, conjugate to
P:—(P+,P ) and Q (for p =

~ p ~
),

2A =p ptt +F(Q—), (2.4)

and [i] and [f] denote, respectively, the initial and final
minisuperspace configurations. The lapse % has been re-
scaled to absorb inconvenient factors so that
a =4Ntr/3g '~ V. These models contain a volume-
dependent source term F(Q) which takes on the values
pe, I e, and Ae for dust, radiation, and the cosmo-
logical constant, respectively. Isotropic scalar curvature
would have the form —ke for k & 0 ( k &0) spatially
closed (open). Of course, F(Q) may be any combination
of these special cases.

To compare most easily with the quantum formalism,
we shall obtain the classical solution by means of the
ADM reduction. We follow paper I, eliminate t depen-
dence to express the dynamics in terms of Q, and solve
Eq. (2.4) for —pti =H~DM(p, P,F). Thus we find

HADM = + [p +F(Q) ]' (2.5)

The significance of the + is identical to that in paper I so
that we shall restrict discussion to the positive-"energy"
case with Qf & 0;. The negative-energy case may be put
in by hand at any time. Equation (2.5) represents a signi-
ficant complication over the vacuum model because the
extraction of the square root cannot be explicitly per-
formed and HzDM is no longer co~served with respect to
Q time. The solution to Hamilton's equations from (2.5)
can be found, however, since p is still a constant of the
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motion. The general solution is

pdQ'
(2.6)

no [ 2 P(Qi)]l/2

If E(Q)=ae, the integrations may be performed exact-
ly, but the result is not particularly illuminating. Equa-
tion (2.6) reduces to the Kasner solution as Q~ —ao.
The anisotropy P decays exponentially as Q~oo. If
a & 0 (i.e., the closed model), the range of Q is finite since
P must be real. The relationship P(Q) is single valued
(given the phase of the square root). It is only when P(t)
and Q(t) are required (e.g., for t the comoving proper
time) that a single parametrization Q(t) cannot be used.

III. PATH-INTEGRAL QUANTIZATION

As discussed in paper I, the transition amplitude be-
tween points (P ', Q') and (Pf,Qf) in minisuperspace is
given by

&[f] I [']&=&&~Qfl&' Q'&= f ~(p,pn, P,Q,a)e",
(3.1)

where S is the action (2.3). The integration is over all
paths between the initial and final states. The ADM
reduction can be performed in the path integral if the
measure is given by (see paper I)

n

&(pp, P,Q,a)= lim (2m) 3" g d p dp" d P dQ da' ~pn ~5(Q —Q' —kh)5(Q" —Q )5(P"—P ),
n —+~ k=1

(3.2)

ik

2 [(p )' (pii—)'++(Q" ')] (3.3)

where b, =—(Q —Q')/n and a'=—a5t. In this broken-path
approximation the action (2.3) takes the form

n

g y pk. (Pk Pk —i)+pk (Qk Qk —i)

I

the full field theory.
(4) The remaining 5 functions must be included to have

the same number of q and p integrations for each minisu-
perspace variable.

It was shown in paper I that the measure (3.2) allows
the nondynamical part of minisuper phase space to be fac-
tored out so that the transition amplitude (3.1) becomes

In Eqs. (3.2) and (3.3), k refers to the value at the kth
time step (see discussion in paper I) so that k =0 (k =n)
is the initial (final) value. As shown in paper I, the impo-
sition of Feynman boundary conditions on the path in-
tegral (3.1) requires a'&0 to be the range of integration.
The factors in the measure (3.2) may be understood as fol-
lows.

(1) Inspection of Eqs. (3.2) and (3.3) shows that for each
k the integration over a' is the Fourier transform of a 5
function of the constraint. (This is actually the principal
part. Imposition of Feynman boundary conditions modi-
fies the value, but not the interpretation. This is discussed
in paper I.)

(2) The factors 5(Q —Q' —kb, ) define a canonical
gauge causing the Q degree of freedom to be identified as
nondynamical. If

Q =9' =—Q —Q' —kb

and I' =A then

1= f dQdP5(Q)5(P)= f dQdpn J( Q, ,PQp n)

X5[Q(Q,Pn)]5[P «,Pn)]
(3.4)

& [f] I [i]&
= f ~(p P)e " " (3.5)

n n —1

&(pP)= lim (2m) "gdp +d P (3.6)

and

nf dp
~ADM n dQ p dQ ADM(P~I ~ (3.7)

with H&DM given by Eq. (2.5). At this stage, however,
one is confronted with the nonpolynomial character of the
ADM Hamiltonian. In paper I, it was shown that the
transition amplitude could be constructed directly from
Eqs. (3.1)—(3.3) by first performing all the integrations
over momenta and only then integrating over o.". This al-
lows postponement of the taking of the square root while
still keeping track. of the constrained dynamics via the
measure (3.2). In Sec. IV, we shall show that this pro-
cedure yields the (Hankel transform of the) transition am-
plitude in closed form.

at each k. The Jacobian J of the canonical transforma-
tion is just

~ IQ,PIn~„~ where I, I denotes the usual

Poisson bracket.
(3) The term

~ pn ~
is just the Poisson bracket between

the constraint A and the gauge condition S and is just
the Jacobian of the requisite canonical transformation.
The choice of canonical gauge 9'=0 ensures that the
source terin F(Q) does not contribute to the Jacobian.
This Jacobian becomes the Fadeev-Popov determinant in

IV. EVALUATION OF THE TRANSITION
AMPLITUDE

for

& [f] I [i]&
= f ~(P,Q,~')e ' (4.1)

The Gaussian integrations over momenta are identical
to those of paper I (Sec. V). The transition amplitude be-
comes
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&(P,Q,a')= lim (i/2ir)" gdQkd Pkda'k(a'k)

X5(Qk —Q' —kb, ) (4.2)

where SL, is the (infinitesimal) Lagrangian form of the
minisuperspace action and

(5pk)2=
( p pk —i

)

2

and

y {[(5pk)2 g2]/2 rk aikF(Qk —i)/2I
k

Integration over a' (with the restriction 0&a'& ao im-
posed by Feynman boundary conditions) yields

& [f] ~
[i]) lim (i /2~)3n /2 2nf g d2pkp{F(Qk —1)/[+2 (5pk)2] j

3/4Z' ( IF(Qk —1)[(5pk)2 +2]I i/2)
n~oo k

(4.4)

where X„(x) is a modified Bessel function of the second kind.
Here we may note that [especially since IC3/2(x) may be expressed in closed form in terms of elementary functions]

Eq. (4.4) lends itself to expansion about the infinitesimal vacuum solution characterized (see paper I) by
e=(5P b, )'—=0 The . results of this expansion are given in the Appendix. In this model, however, it is possible to
proceed further without approximation. To perform the integrations over P" define a new variable X —=P"—P" ' and
include in the measure a factor of unity of the form f d P5(P"—Pf) so that

k=1

1 f d 1, g$ d X"exp i AP,f—P' —g X"
4m k=1 k=1

(4.5)

lz (2m)——3/2i'/ b, 'exp{ —id[A2+F(Q)]'/2I . (4.7)

The product over k causes the argument of the exponen-
tial to become an integral over Q. Combining everything
and performing the angular part of the A, integration
yields (for b, & 0 required by the positive-frequency choice
for HADM )

The kth integral in Eq. (4.4) takes the form (suppressing
k)

l —=4m.[iF(Q)] / f XdX&o(AX)[X —& ]

X+3/2([F(Q)(X' —& )]' )
(4.6)

Evaluation of this integral yields

is the vacuum transition amplitude obtained in paper I.
Equation (4.9) represents the expansion of Eq. (4.8) to

linear order in F/A, . To continue the expansion yields
divergent integrals. We note that the perfect-fluid form
of F(Q) decays away exponentially near the classical
singularity Q= —oo so that in this regime F(Q}«A, is
meaningful even as A,~O. It is also possible to explore the
limit Q~no where for a perfect fluid F(Q) &&A, . The
dominant term in Eq. (4.8) for

~

Pf—P'
~

—+0 is

Q~
'I

&[f] ~
[i])=~exp i f dQ—F'/ (Q), (4.11)

where ~ is an (infinite) normalization factor from the A,

integral. Equation (4.11) is the expected transition ampli-
tude for the isotropic model.

& [f] ~
[i])= f A, dA, JO(A,

~

pf —p'
~

)

Q~
Xexp —i f dQ[A, +F(Q)] /

f F(Q)dQ

(477)[
~

pf p'
~

(Qf Q') ] / (4.9)

i (Qf—Q')

(2 )[
~
Pf Pi

~

2 (Qf Qi)2]3/2

(4.10)

[If F(Q)=ae, the integration in Eq. (4.8) may be per-
formed. ] Equation (4.8} is recognized to be a Hankel
transform.

It is clear (see paper I) that the vacuum transition am-
plitude results for F(Q)=0. In fact, Eq. (4.8) may be
rewritten as a perturbation expansion in F(Q). We find

& [f] I [i]&
= & [f] I [i]&~=0

V CONCLUSIONS

The formalism of path-integral ADM reduction applied
in paper I to the vacuum Bianchi type-I cosmology has
been applied here to a type-I model containing a volume-
dependent source term. This source term may, for exam-
ple, be interpreted to be a perfect fluid, cosmological con-
stant, isotropic spatial curvature, or a combination
thereof. Even though the ADM Hamiltonian is nonpoly-
nomial, the calculation may be carried sufficiently far to
express the amplitude for transition from an initial to a fi-
nal point in minisuperspace as the Hankel transform of a
known function. The quantum behavior again reflects the
classical behavior as has been determined by an analysis
of the transition amplitude in the small- and large-volume
limits. The model behaves as the vacuum solution near
the classical singularity and as an isotropic universe far
from it. Construction of physically interesting quantities
from the transition amplitude will be given elsewhere.
Finally, it was shown'that the closed-form result evaluat-
ed near the singularity can be obtained through a pertur-
bation expansion of the infinitesimal (Lagrangian} transi-
tion amplitude about the classical vacuum solution. It
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suggests that the perturbation expansion may be useful in
more complicated models where a closed-form transition
amplitude cannot be obtained.
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APPENDIX: EVALUATION OF THE TRANSITION
AMPLITUDE AS A PERTURBATION ABOUT

THE CLASSICAL VACUUM SOLUTION

After expression (4.4), we define a parameter e which
we regard to be small for all Q values. It is then possible
to expand about the classical vacuum solution e=O. The
decaying exponential in the modified Bessel function will
kill off terms with powers of e greater than zero. Thus, a
consistent approximation requires that only terms with
negative powers of e be considered. In this approximation
(4.4) becomes

([f] ~
[i])= lim (i/2m. )

"~ (iA)"

A transformation to the variables g is performed as
described in Sec. IV. Performance of the X integrations
yields

(t )3n/2
([f] I

[i]&= »m (2~) ""(2S)"
n~~e 2K

X f d'~e""& "
X g I [I/ih —F(Q")/2A, ]e '~~] .

(A2)

The approximation requires only that terms linear in
F(Q) be kept. Thus (A2) becomes

([f]
~
[i])= lim

N~oo 2'
X f AdAJo(A,

i

P/ —P'
i

) e

Qf
X 1 —(i/2A, ) f F(Q)dQ

(A3)

F Q"
X 2 k -31- ek2

k 2

(A 1)

Integration yields Eq. (4.8) showing that the perturbation
about the vacuum solution may be performed at an earlier
stage in the calculation than was done in Sec. IV.
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