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The Feynman path-integral formalism is applied to study the quantum mechanics of the vacuum
Bianchi type-I cosmological model. A measure is obtained for the functional integral representing
the minisuperspace transition amplitude which allows the performance of the Arnowitt-Deser-
Misner (ADM) reduction within the path integral. This requires a careful analysis of the roles
played by the original coordinate time and the intrinsic minisuperspace time. The role of the im-
posed Feynman boundary conditions is discussed. The integrals are a11 evaluated to obtain the tran-
sition amplitude in closed form. An alternative scheme for evaluation of the transition amplitude is
presented to avoid problems related to the nonpolynomial nature of the ADM Hamiltonian.

I. INTRODUCTION

Grand unified theories (GUT's) of the strong, weak,
and electromagnetic interactions may be able to account
for the observed baryon asymmetry of the Universe. ' The
simplest GUT model [minimal SU(5)] conflicts with
searches for proton decay, however. Straightforward
analysis of the GUT phase transition within the standard
Friedmann-Roberston-%'alker cosmological models yields
too many magnetic monopoles. The failure of the most
naive models suggests that details of both the unification
and cosmological models may be important. In attempts
to build more successful models and cosmological
scenarios, one may argue that the closeness of the GUT
scale ( MGUT —10' ' GeV/c ) to the Planck scale
(Mp —10' GeV/c ) should not be ignored. Even the
"new inflationary model" which solves several long-
standing cosmological problems in addition to the mono-
pole problem contains several ad hoc features which
might be affected if gravity were included. The relation-
ship between the classical general theory of relativity
(GTR) and a theory of quantum gravity (QG) is unclear.
The nonrenormalizability of quantization of weak-field
gravity coupled to matter suggests (as for the Fermi
model of weak interactions) that GTR is a low-energy ef-
fective theory of a quite different QG. Several proposals
have been advanced for the nature of QG. These include
superstrings and supergravity, higher-derivative La-
grangians, generalized geometry, ' and generalized topol-
ogy" theories.

It may be, however, that QG requires a generalization
of the notion of quantization' and/or renormalizability'3
applied to an almost' standard Einstein-Hilbert Lagrang-
ian. At another level, this (modified) GTR Lagrangian
has been analyzed both classically' ' and quantum

mechanically' ' as a constrained dynamical system.
Since the constraints are in fact the generators of general
coordinate transformations (the invariance group of
GTR), this analysis can be couched in the language of
gauge theories —most usefully in the functional-integral
[or Feynman path-integral (FPI)] formalism2' 26 which
allows the most extensive use of the known classical ac-
tion.

It has long been recognized that the greatest obstacle to
the usual canonical quantization methods has been the
Hamiltonian constraint, the generator of time coordinate
transformations. Difficulties arise both due to the arbi-
trary choice of time in GTR compared to the c-number
role of time in quantum mechanics (or equivalently its
role in the definition of positive frequency in quantum
field theory) and due to the fact that the Hamiltonian
constraint is not linear in the canonical momentum conju-
gate to reasonable time variables leading to nonpolynomi-
al dynamical Hamiltonians after the reduction of con-
straints. "

In this paper, we examine the role of the Hamiltonian
constraint in QG by applying the FPI formalism to the
dynamical degrees of freedom of a spatially homogeneous
cosmological model. Similar quantum cosmology (QC)
analyses have been explored to illustrate various ap-
proaches to QG. ' ' ' ' The relationship of QC to QG
is unknown since the dynamical degrees of freedom classi-
cally absent by symmetry are neglected in QC. At the
classical level, it can be sho~n that generic cosmologies
are "velocity dominated" near the classical singularity-
i.e., spatial derivatives can be neglected compared to time
derivatives.

As a simple but nontrivial model we consider here the
vacuum Bianchi type-I model —the well-known Kasner
model. This model is described by three minisuper-
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space' variables related to the volume and anisotropic ex-
pansion scales. The dynamics is nontrivial (at the quan-
tum level) because the dynamical variables must obey the
Hamiltonian constraint equation. In this model, this con-
straint is just the usual Hubble's equation with the volume
expansion rate (Hubble parameter) proportional to the an-
isotropy energy density. In the Hamiltonian form of the
Einstein-Hilbert action, the role of the Hamiltonian
(called super-Hamiltonian) is played by the scalar product
of the lapse-shift (Lagrange multipliers) and Hamiltonian
momentum constraint "four-vectors. " In QC, the spatial
integrations are performed prior to variation of the action.
In the model considered here the momentum constraint
vanishes identically and the resultant QC action yields
Einstein's equations for the model. ' The modification of
the Einstein-Hilbert action suggested by Gibbons and
Hawking' has been used to eliminate total-derivative
(boundary) terms which might otherwise be expected to
play a ro1e in the quantum analysis.

Classically, using the Dirac method, ' ' one obtains the
equations of motion by variation of the super-
Hamiltonian with respect to all degrees of freedom. The
constraints act as supplementary equations. At the end,
functions of the degrees of freedom may play the role of
coordinate conditions. In the procedure of Arnowitt,
Deser, and Misner' (ADM), functions of the dynamical
variables become coordinate conditions while their conju-
gate variables are obtained by solving the constraints. The
remaining degrees of freedom are regarded as truly
dynamical. The ADM Hamiltonian is obtained as the
negative of the momentum conjugate to the chosen time
variable. Its variation then yields the equations of motion
for the dynamical degrees of freedom. We show in Sec. II
that the invariance of the QC action under a change of the
time coordinate leads to the disappearance of the original
time parameter from the problem. This allows the im-
position of a canonical gauge (use of a canonical variable
to parametrized minisuperspace trajectories) without con-
flict between the role of the chosen canonical variable and
that of the original coordinate time. The use of this
gauge in the FPI quantization of the model according to
standard techniques for constrained systems leads to the
ADM reduction at the level of the path integral. The FPI
is evaluated in the Hamiltonian formulation using the
broken-path approximation. A measure is constructed
which performs a canonical transformation in the part of
phase space orthogonal to the dynamical degrees of free-
dom between the original nondynamical degree of free-
dom and a set of conjugate variables which are, respec-
tively, the Hamiltonian constraint and the canonical
gauge condition. The Jacobian of the transformation
(which would be the Faddeev-Popov determinant in a
quantum field theory) is the Poisson bracket between the
Hamiltonian constraint and the gauge condition and is not
unity. Integrating out the nondynamicaI degree of free-
dom with this measure yields the FPI which would be the
starting point for the ADM quantization using FPI for-
malism.

To define the functional integral, Feynman boundary
conditions are imposed in Sec. III. These require the posi-
tive (negative) square root to be taken when solving the

constraint for the ADM Hamiltonian for evolution into
the future (past). The classical behavior and canonical
quantization of the degrees of freedom of this model are
given in Sec. IV. The minisuperspace transition ampli-
tudes are given for both Dirac and ADM quantization.
The Dirac quantization imposes the Hamiltonian con-
straint on the wave function. In its operator form, this
becomes the Wheeler-DeWitt equation. ' The ADM
quantization uses the ADM Hamiltonian in the
Schrodinger equation with the role of time played by the
canonical variable in the gauge condition. '

In Sec. V the explicit evaluation of the path integral is
made beginning with the ADM starting point obtained in
Sec. III. The remaining integrations are performed to
yield the transition amplitude in closed form in agreement
with that obtained using the canonical ADM quantization
in Sec. IV. Finally, in Sec. VI, the transition amplitude
with the measure from Sec. II is recomputed by perform-
ing integrations in a different order. Both the dynamical
and nondynamical Gaussian integrations over momenta
are performed first. Then the integration over the lapse
[which in Sec. II yields (neglecting boundary conditions) a
5 function of the constraint] is performed to yield the (in-
finitesimal) Lagrangian form of the transition amplitude.
This method has been used for more complicated models
in which the ADM Hamiltonian is nonpolynomial.
Problems associated with the square root may be either
avoided or postponed. Conclusions are presented in Sec.
VII.

II. CONSTRUCTION OF THE PATH INTEGRAL

The general coordinate invariance of the Einstein-
Hilbert action leads to the appearance of constraints in its
Hamiltonian formulation. ' ' These constraints are in
fact the generators of coordinate transformations. It is
well known that construction of the FPI for this action
requires a procedure (e.g., that of Faddeev and Popov or
DeWitt ) to avoid overcounting paths which are
equivalent under a coordinate transformation. Heuristi-
cally, the Faddeev-Popov procedure is equivalent to fac-
torization of the 6&& ao -dimensional phase space of the
field into dynamical and nondynamical phase subspaces.
The dynamical phase subspace contains the degrees of
freedom of the three-geometry. ' The integration over the
nondynamical phase subspace is the integral over the
gauge group. The imposition of gauge conditions and the
inclusion of the Faddeev-Popov determinant in the mea-
sure are required for this factorization to allow the non-
dynamical field variables to be canonically transformed to
gauge and constraint variables.

This heuristic picture which becomes subtle and
nonunique in nonrenormalizable field theories is
straightforward and accurate in the quantum cosmology
"approximation. " The spatial dependence is removed at
the classical level (thus, of course, violating the uncertain-
ty principle) to cast this problem into the form of quan-
tum mechanics of a constrained system. %'e further spe-
cialize to systems in which the only remaining coordi-
nate freedom lies in specification of the lapse function
which defines the spacing in time between spacelike hy-
persurfaces. The foliation itself has been fixed by the
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(2.1)

homogeneity requirement. The homogeneous cosmologies
are described by a finite number of degrees of freedom-
e.g., volume scale factor, anisotropy matrix, and ampli-
tudes for spatially homogeneous nongravitational fields.
The classical evolution of the system follows a trajectory
in the minisuperspace whose axes are the canonical con-
figuration variables.

The primary quantum gravity issues which remain in
the truncated problem are factor ordering and the invari-
ance under change of time coordinate generated by the
still- nontrivial Hamiltonian constraint. Here we shall
concentrate on the latter issue. The factor ordering will
be implicit in the Hamiltonian form of the path integral
once a choice of canonical variables has been made.

The standard method for path-integral quantization of
constrained systems requires the imposition of an auxili-
ary (e.g., gauge) condition in the measure which at each
time step (in the "broken path" evaluation of the path in-
tegral) picks a single point on each trajectory of the flow
generated by the constraints. The use of this method and
choice of gauge conditions have been the subject of recent
discussion. In fact, it has been claimed (e.g., by Teitel-
boim ) that the gauge condition to be used here is not al-
lowed. The difficulties can be traced to the fact that the
Hamiltonian constraint generates the time evolution as
well as the time coordinate transformation. It appears
that fixing the gauge to select a point on the constraint-
generated trajectory will eliminate the dynamical evolu-
tion of the system. Furthermore, a choice of a canonical
gauge which in effect identifies a canonical variable as the
time will be inconsistent since the range of the canonical
variable will be fixed (in the definition of the transition
amplitude) but that of the coordinate time will not.

These objections to the use of a canonical gauge to fix a
point on each constiaint-generated trajectory are not ap-
plicable here. They result from the manner in which the
classical reduction of constraints is usually stated. For a
typical minisuperspace model, one identifies a canonical
variable with time (e.g., volume or trace of extrinsic cur-
vature) or equivalently fixes the lapse either after solving
the equations of motion (Dirac) or as the first step in the
ADM procedure. Actually, a choice of lapse is never re-
quired to construct the minisuperspace trajectory —i.e.,
the coordinate invarianee really means that the original
time parameter may be completely eliminated from the
description of the system since the minisuperspace trajec-
tory must be independent of its parametrization. At the
classical level, then, the identification of a canonical vari-
able with time really means that a canonical variable has
been selected to label points on the minisuperspace trajec-
tory since the original time parameter has disappeared.

A similar elimination of the original time parameter
occurs in the path integral. The minisuperspace models
considered here and elsewhere are characterized by de-
grees of freedom p~ ——(po,pz), qz ——(qo, qz), where
3 =O, l, . . . , iV —1 and J= 1, . . . , N —1 for a system
with iV degrees of freedom. The minisuperspace action
will generally have the Hamiltonian form

[f] dq~S = J dt QpA —a~A~qA]

where a is a rescaled lapse function and the Hamiltonian
constraint is

2~= —po'+ gp~'+ I'(qA) . (2.2)
J

The rescaling of the lapse and choice of q~ have been
made to yield the kinetic term in Eq. (2.2). This process
also prescribes a factor ordering. The signature is a gener-
ic property of minisuperspace. The potential V(qz) is
model dependent. The symbols [i] and [f] denote,
respectively, initial and final minisuperspaee configura-
tions. Thus [i]=(qo,q'„. . . ,g &), etc. It is assumed
that A has no explicit dependence on the coordinate time
t. In deriving Eq. (2.1) from the Einstein-Hilbert action, a
total time derivative has been discarded. Since this term
may influence the quantum mechanics of the model, it is
preferable to regard Eq. (2.1) to be a consequence of the
Einstein-Hilbert action as modified by Gibbons and
Hawking' to eliminate this boundary term.

The path integral may be expressed formally as the
minisuperspace transition amplitude

(ff] I [t])= J„,„,~[p~,q~, a]e" (2 3)

To evaluate (2.3), we require an explicit form for the mea-
sure and boundary (or equivalent) conditions to define
integrals. The integral is to be taken over all possible
paths between [i] and [f] in minisuperspace. If we imag-
ine each path to be parametrized by t, we see that the
gauge freedom means that paths which are merely
reparametrizations of other paths are gauge equivalent
and thus overcounted in the path integral. [Note that Eq.
(2.3) must be independent of t; and tf so that t transla-
tions are included in the group of transformations under
which the paths are equivalent. ]

Since aA which plays the role of Hamiltonian in Eq.
(2.1) is t independent, the "brpken path" representation of
the path integral may be used. Here (schematically) we
replace a sum path by a path with a t-ordered product of
sums over points on each path labeled by each t value.
This yields the same overeounting of paths which are
equivalent under reparametrization. To eliminate the
overcounting in this representation, we apply the standard
methods used for constrained systems. A gauge condi-
tion is imposed to select a single point on each trajectory
generated by the constraint A (considering only those tra-
jectories which lie in the minisuper phase subspace in
which A =0). (In fact, one may use the flow generated
by any function of the canonical variables multiplied by
the constraint which vanishes when A =0.) Clearly, A
generates the classical minisuperspace trajectories for all
possible t parametrizations. The role of the gauge condi-
tion will be, to select a single point on each trajectory to
correspond to each t value —i.e., to fix the t parametriza-
tion. Before the gauge is imposed, the invariance under t
reparametrization allows a given value of t to be associat-
ed with an arbitrary point (subject to differentiability and
ordering) on each trajectory. This is illustrated in Fig. 1.
A gauge condition which fixes the point on each trajecto-
ry corresponding to fixed t is, for example, that a fixed t
corresponds to a specific value of go. (See Fig. 1.) The
precise implementation of this gauge is as follows: In the
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gp

~~

~ ~ ~ ~

where we require qz =—qq, qq =—qq. The notation a'=a5t
in Eqs. (2.6) and (2.8) shows that all t dependence has
disappeared to make the path integral manifestly t in-
dependent as required. No restriction on allowed t values
at the end points is ever made.

Substitution of Eqs. (2.6) and (2.8) in the path integral
(2.3) allows immediate identification of the integrations
over a' as representations of 5(A k). Thus, at each k
value, the 3=0 minisuperphase subspace integrations
have the form

FIG. 1. The role of the gauge condition. On a graph of the
timelike canonical variable qo vs a schematic projection of the

other degrees of freedom qJ, the minisuperspace trajectories are
indicated schematically by the solid lines. The dashed and dot-

ted curves are among an infinite number of curves which can be

, drawn to indicate points on the trajectories labeled by a given

fixed t value. The dashed line is the choice of trajectory param-

etrization made in this paper.

"broken path, " label each t value by an ordered number k
where 1&k(n (Ultim. ately the limit n~oo is taken. )

Define

=exp(ip05qo)
I s =o,~=o (2.10)

for po and qo evaluated such that 9' =0 and A =0. The
gauge condition requires

5qp ——6k (2.11)

le= I dppdqp5(9')5(A )
I I~, 9'IPB

I exp(ipo5qp), (2.9)

where 5qo ——qp —qp '. Since the Poisson bracket is the
appropriate Jacobian, lo can be reexpressed ' as

lp = I d 8 dA 5( S )5(A )exp(ipp5qo)

h=(qfo —qo)/n .

At each t value impose the gauge condition

(2.4)
for all k. The evaluation of po at A =0 requires a
prescription for the sign of the square root. Straightfor-
ward evaluation of the pp integral in Eq. (2.9) yields

+k:—qo —qo —kb, =0 .k i (2.5) lo =2 cos[
I HADM(pq~qJ )

I
4 j (2.12)

Equation (2.5) causes qp to label the minisuperspace tra-
jectories and thus to play the role of time. No explicit re-
lationship between qp and t is required so the confiict im-
plied in Ref. 34 does not occur.

Given the gauge condition (2.5), we can begin to con-
struct the path space measure P'(p~, q„,a). The analysis
in Ref. 35 suggests the choice

~(p q ~) (2 )
—(x —1)n

n n —1 d ji

&& II H dpAq'o5(qfp qp)—2'

&( g dp$dq"

&&5(&k)
I I~k +kIPB I

(2.6)

where u'=a5t, the first Dirac 5 function imposes the
same number of pp and qp integrations, and

BA k BSk BA k BSk
I~k~ k IPB =go

(2.7)
is the standard Poisson bracket. In this representation,

n

=exp ' g gp~(qa —q~
k=1

where

N —1
1/2

HADM = po — g pJ + V(qA )
J=1

(2.13)

is the ADM (dynamical) Hamiltonian [obtained by solv-
ing the constraint (2.2) for po]. Equation (2.12) should be
regarded as the result obtained using the principal part of
5(A ).

. cx 25(A )—: da'exp i po —pe —V+ie
2m' 2

III. BOUNDARY CONDITIONS
AND THE ADM QUANTIZATION

Classically, the variation of HADM yields the minisu-
perspace trajectory Iqz(qp)J for J= 1, . . . , N —1. If qp
is a "good" trajectory label (i.e., time coordinate), it will
vary monotonically along the trajectory. If the initial and
final minisuperspace trajectories are given, the sign of
HADM fixes the direction of motion of the system point
on the trajectory. HADM & ( & )0 is appropriate for
qo &( & )qIi. Since HADM formally plays the role of an
energy, the correlation of its sign with the qo direction
may be regarded to be equivalent to Feynman boundary
conditions.

These boundary conditions may be imposed on the path
integral via the usual ie prescription which we use to
redefine 5(A ) in Eq. (2.9). Rather than the Fourier
transform representation which yields the principal part,
we use (with k suppressed)

—~ ~k(p~ q~
gk k k —1 (2.8)

(3.1)
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where e&0. Evaluation of Eq. (3.1) and performance of
the po integration by the calculus of residues yields rather
than Eq. (2.12)

exp( —i IH~DM I
~» ~&0

Ip ——

-p(+i IH~DMI~), «0. (3.2)

Using this result, the path integral (2.3) becomes

&[fl I
[i]&'-

= hm (2~)-'"-""
n~ca

f g Q dj gdqy5(qf qg)

Xexp i g gpg5qg
k J

+ i g I H~DM(pz qa )
I
~

k

ds2 ~2di2+e20(e2p) dxidxJ (4.2)

for i,j=1,2,3 and repeated indices summed. The vari-
ables have been chosen to yield an Einstein-Hilbert action
in the form of Eq. (2.1) where

9'0=— po=po ~

q=—(ql q2)=(P+ P—) =—I)' P=—(Pl,P2) =(P+,P
where Pn and P are conjugates of Q and P, anda:4Nn/3Vv g has —been defined to absorb inconvenient
factors with g the determinant of the spatial metric and V
the integral over the spatial coordinates. One may impose
T topology to yield finite spatial volume. The action is
defined to absorb a total time derivative proportional to
dpn/dt The Hamilton. ian constraint in the form of Eq.
(2.2) with V(q„)=0 is

(3.3)
where the upper (lower) sign is taken for b, &(&)0 and
5qj=qq —qq with qq qq at——qo and qq ——qJ at qo.

k k k —1 ~ 0 i i n f f
Equation (3.3) represents a reasonable definition of the
path integral for a minisuperspace model in which the
ADM reduction has been performed at the classical level.
[For b sufficiently small, exp( —iH&DMb, ) should be a
good approximation to the evolution operator even though
HADM is, in general, qo dependent ]

IV. THE VACUUM BIANCHI TYPE-I MODEL

The formalism of Secs. II and III are applied to the
vacuum Bianchi type-I (Kasner) cosmology. The classical
and quantum analysis has been given by Misner. ' The
spatially homogeneous, spatially flat, anisotropically ex-
panding metric is expressed in terms of a volume expan-
sion parameter Q(t), an anisotropy matrix 13' (t}where

p;J = idga(p ++~3p,p+ ~3p, —2p+), (4.1)

and an arbitrary function X(i) which allows change of
time coordinate as

The classical equations of motion and their solution
may be obtained by either variation of aA or by variation
of HADM +p——found by solving Eq. (4.3) for —pn and
expressing the trajectories in minisuperspace as functions
of Q. In the p-Q configuration space, the trajectories are
the straight lines

P=PO+(p/p)Q, (4.4)

where Po and p are arbitrary constants and the upper
(lower) sign is chosen for Q increasing (decreasing). (The
sign change is equivalent to Q~ —Q. Since —ao

&Q&+ ao, this transformation is just time reversal. )
Equation (4.4) completely describes the classical dynamics
of the system. If the spacetime metric (4.2) is desired, one
specifies either Q(t) or equivalently u and substitutes in
the variation of aA with respect to pii. It is easily shown
that Eq. (4.4) is in fact the Kasner solution.

Canonical quantization in minisuperspace for the Bian-
chi type-I vacuum model has been discussed by Misner. '
It is, in fact, just that for a massless (relativistic) particle
in two spatial dimensions. The wave function %(P,Q) is
the amplitude that the system have the coordinates (P, Q)
in minisuperspace. The question of interpretation of this
wave function is nontrivial since there is no external ob-
server. We shall assume a superobserver residing in su-
perspace with the usual interpretation. The wave function
may be assumed to satisfy either the Wheeler-DeWitt
equation

8 8
BQ BP+

(4.5)

where A has now become an operator with the usual
canonical commutation relations (for Pi= 1) between (P,Q)
and their conjugate momenta (p,pn) imposed, or the
ADM quantization'

—HADM q'(P Q)=0~ a +
(4.6)

where the upper (lower) sign is chosen for Q increasing
(decreasing) and the ADM Hamiltonian operator may be
defined by its momentum-space representation. In gen-
eral, these two quantization procedures are inequivalent.
Boundary conditions must be imposed to completely
specify the solutions to Eqs. (4.5) and (4.6). In the absence
of particular boundary conditions and to compare with
the path integral, we compute the minisuperspace transi-
tion amplitude (Q,Q

I
P', Q') which is defined to be

the solution to Eq. (4.5) or (4.6) subject to (in either case)

(g,Q'I P', Q') =5(P" P') . — (4.7)

=, , f d'S .p[ p (W e'}-

We shall use the subscript D (ADM) to indicate the solu-
tion to the Dirac (ADM) quantization Eq. (4.5) [(4.6)]. It
is easiest to solve Eq. (4.6) in momentum space (with
HADM ——+p) and then to Fourier transform. Clearly,

~=(S '—un')/2,
where p =p.p=p +p

(4.3) +ip (Q/ —Q')]

(4.8}
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solves Eq. (4.6) subject to Eq. (4.7) where the upper
(lower) sign is taken for Q &(&)O'. The integrations
may be performed explicitly to yield

(Pf, Q'
~

P', n')+

i
]
Qf —Q'/

P I P &DM
2 [ (

Pf Pi
(

2 (Qf Qi)2]3/'i

(4.9)

(P,n'
~

O', Q')~DM

with 6-function normalization will satisfy Eqs. (4.5) and
(4.7). We note that the transition amplitude (4.9) is sharp-
ly peaked about the classical solution (4.4).

Since H&DM for this model is independent of Q (but not
in general),

—HADM
+

an
~ a—l +HADM (4.10)

with the order of the two right-hand side factors arbitrary
since they commute. Thus any superposition of

9'k =Q —Q' —kh=O, (5.1)

where b =(Qf—Q')/n. Finally, we obtain for Eq. (3.3)

V. PATH-INTEGRAL EVALUATION
OF THE TRANSITION AMPLITUDE

The vacuum Bianchi type-I variables may be used in
the procedure described in Secs. II and EII. The gauge
condition (2.5) becomes

r

(p,n
~
p', Q') +—= liin (2m. ) "f+d p" d p" 5(p —p')exp i g [pk. (pk —p" ')+pkb, ]

tl~ao k k

(5.2)

after performing the Q, pri, and a integrations. The momentum integrals are all of the form of Eq. (4.8) so that we find

(Pf Qf
1
Pi Qi)+ lim (2 ) n(+i—g)n[

~

Pn Pn —i
~

2 g2] 3/2g(Pf Pi) —f ~ d2Pk[
~

Pk Pk —i
~

2 g2] —3/2

8~0O k

(5.3)

The extra factor arises from the extra f d p". Each f d p" involves two factors of the integrand product. The p in-

tegrations are most easily performed by changing variables to X =p"—p '. The Jacobian of the transformation is uni-

ty. Eq. (5.3) can then be put in the form

(P,nf ~P' Q')+—= lim f d A, e / ' f +d~X" e "[(X")—b, ]
n~m (2ir)" +

k

(5.4)

Replacing the factor [(X") —5 ] / by its transform,
performing the angular integration, and using the ortho-
gonality over argument of zero-order Bessel functions
yields

(2~) ' f d'pdpnda'lpa
I

X exP I i [P fiP+Pri& . (a'/2)(P' —Pn' i&)]—1, —

(6.1)

(P', Q~~ P*,n')'-= f d'Xexp[iZ (Pf P')—
4m.

+iA(nf Q,')]—(5.5)

where 5P—:P —P" '. We require e & 0,a' & 0. The
method of stationary phase used to perform the momen-
tum integrations yields

which is precisely (4.8) so that (4.9) follows immediately. (2~)—3/2
~
g

~

e tw/4 d r I —s/2
0

VI. EVALUATION OF THE PATH INTEGRAL
BY GAUSSIAN INTEGRATION

I

Xexp, (5p —b, )—
20.'

En more complicated models to be discussed else-
where, the explicit reduction described in Secs. II and III
may be prevented by the nonpolynomial character of
HADM. In these cases, it is instructive to start from the
form (2.3) for the path integral using the measure (2.6) ob-
tained in Sec. II and to compute aH the integrals over mo-
menta before integrating over a. We shall regularize the
integrals by inserting the Feynman boundary conditions
as in Sec. III. The still undefined Gaussian momentum
integrals wiB be evaluated by the method of stationary
phase.

The terms of interest are n factors of the form

(6.2)

)
g

~

(gp2 gz) —3/2
2m'

(6.3)

Finally, inclusion of all n factors (with appropriate super-
scripts) of (6.3) in the original expression yields the previ-
ous result (5.3) for the form of the final integrations over

where 5p=
~
5p

~

. This integral may be evaluated to yield
(for e~O)
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VII. CONCLUSIONS

The Feynman path-integral formalism has been applied
to the quantization of the dynamical degrees of freedom
of the vacuum Bianchi type-I (Kasner) cosmological
model. For this model, explicit evaluation in the Hamil-
tonian formalism using the broken-path approximation
has been performed for all required integrals to obtain the
transition amplitude between two minisuperspace configu-
rations.

The action used for the gravitational degrees of free-
dom included the modification proposed by Gibbons and
Hawking to allow arbitrary variations at the end points by
eliminating total time derivative terms. In contradistinc-
tion to the arguments of Teitelboim and others, it is
shown that a canonical gauge is permitted. It was shown
that this gauge uses a canonical variable to parametrize
the minisuperspace paths but requires no relationship be-
tween this variable and the completely hidden coordinate
time. We have shown that, in this gauge, the ADM
reduction of the original (P,Q) degrees of freedom to the
dynamical P degrees of freedom may be performed at the
level of the path integral.

Standard methods for treatment of constraints in the
path integral or appeals to consistency yield extra func-
tions of the canonical variables in the measure. In the
general quantum-mechanical case of N degrees of free-
dom with M constraints and M auxiliary (gauge) condi-

tions, one extra factor is the determinant of the M XM
matrix of Poisson brackets between the constraints and
the gauge conditions. Although it has not been done here,
this determinant could be represented by ghost degrees of
freedom in the usual way.

Thus we have shown that with the correct measure the
canonical quantization transition amplitude can be repro-
duced using the path-integral formalism. The advantage
to this approach, however, lies in its relatively straightfor-
ward generalization to cosmological models containing
perfect-fluid sources, cosmological constants, spatially
homogeneous scalar fields, and spatial curvature. Details
of these models will be presented elsewhere. For these
models, it will be useful to follow the ordering of Sec.
VI—to perform the Gaussian integrals over momenta be-
fore the integration over the Lagrange multiplier. For
these models, we shall show that the simple model dis-
cussed here forms the zeroth-order solution for a pertur-
bation scheme.
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