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Supersymmetric composite models with preons in either of two hypercolor representations R; and
R, such that Ry XR;XR;D1 are studied. Chirality preservation is investigated by using the ’t
Hooft anomaly-matching equations and the decoupling theorem. No solutions to these equations
are found if R symmetry is assumed to survive supersymmetry breaking. Solutions exist if R sym-
metry is assumed to break, and the embedding of SU(3)XxSU(2)XU(1) in the chiral-symmetry

group is considered.

I. INTRODUCTION

One of the fundamental problems encountered in com-
posite models of quarks and leptons is the near massless-
ness of these particles when viewed from the hypercolor
binding scale. This has led to consideration of how mass-
less composite spin- particles can arise in a confining
gauge theory (the relatively small quark and lepton masses
then arising from perturbations). Three ways of achieving
the above have been proposed. The first proposal is that
the masslessness of composite spin-+ states arises because
a chiral symmetry due to massless preons survives the
binding process.! In Ref. 1 °t Hooft provided a set of
necessary conditions for chirality to be preserved: flavor
anomaly matching and the decoupling of massive preons.
If these conditions are not met then chiral symmetry is
dynamically broken. If they are met then chirality may
survive, though this is not assured. The other two propo-
sals require a supersymmetric preon theory. One scheme
postulates that the quarks and leptons are the Goldstone
particles of broken supersymmetries.? The other suggests
that quarks and leptons may be the supersymmetric
partners of the (quasi-) Goldstone bosons arising from a
dynamically broken flavor symmetry.> Even though the ’t
Hooft chirality protection mechanism does not necessarily
rely on supersymmetry, there are arguments which sug-
gest that supersymmetry may be efficient at preserving
chirality.* Also since supersymmetry introduces spin-0
preons, more freedom can exist in solving the 't Hooft
consistency conditions, both with the possibility of spin-%
two-body composites and with an increase in the number
of preon configurations associated with a given set of fla-
vor quantum numbers at the composite level.’

In this paper we will study the chirality protection
mechanism via the ’t Hooft consistency conditions, for su-
persymmetric composite models where the preons are in
either of two hypercolor representations R; and R, such
that Ry XR;XR;D1. This hypercolor hypothesis is of
interest because of some results due to Bars® for nonsuper-
symmetric versions of these models. Bars showed that it
is possible to obtain a generation structure for quarks and
leptons within these schemes, while also ridding the low-
energy spectrum of exotic SU(3) X SU(2) X U(1) represen-
tations. These models also allow some flexibility; for ex-
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ample, various horizontal and technicolor symmetries
may be introduced. Given these useful properties it is of
interest to examine the supersymmetric versions of these
theories, bearing in mind the discussion of the preceding
paragraph.

Consider a supersymmetric gauge theory with two types
of massless chiral superfields, one type in representation
R, of the confining gauge group, the other in representa-
tion R,. If R, and R, are complex then at the classical
level we have the following chiral or flavor symmetry:

G =SU(N,) XSU(M)g XSU(N,); XSU(M,)x
XUy, xU(1) 4, X U(1)y, xU(1) 4,
X Ug(1) . (1)

Here N, (N,) and M, (M,) are the number of left- and
right-handed chiral superfields in R; (Rj), respectively.
V, (V,) and A, (4,) refer to the vector and axial-vector
number operators, respectively, for preons in R; (R,).
Ux(1) is the R symmetry of supersymmetry. In the quan-
tum theory hypercolor instantons break U(1)4,, U(l),,,
and Ug(1) down to U(1) - X Ug«(1) where 4’ and Qg are
hypercolor anomaly-free linear combinations of A4, A4,,
and Q. The chiral symmetry Gp is then

Gr=SU(N) XSU(M,)g XSU(N, ) XSU(M,;)g
XU(1)y, XU(1)y, XU(1) 4 X Ui 1) . @)

If R, is real then the type-1 right-handed preons corre-
spond to charge conjugates of type-2 left-handed preons
and the chiral symmetry Gy is

Gr=SU(N{)r XSU(N3) XSU(M3)g XU(1)y,
XU(1) 4XUgA1) . (3)

The structure of the chiral-symmetry group should now
be clear for the cases where R, is real and where both are
real.

Phenomenological considerations require that theories

with broken supersymmetry be studied. In the context of
the chirality protection mechanism we then need to know

how broken supersymmetry alters (if at all) the chiral-
symmetry group. A detailed investigation of this issue is
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beyond the scope of this paper. We shall assume that one
of two things occur: either (i) chirality is unaffected or (ii)
R symmetry does not survive the breakdown of supersym-
metry.> We shall discover, as the authors of Ref. 5 found
for other models, that the ’t Hooft conditions are difficult
to satisfy if R symmetry survives.

II. EXACT R SYMMETRY
Hypercolor instantons induce processes which break the
Abelian charges in Gy in the following way:
Any =N1g(R|)vuc, Anig=—M19(R;)vuc,

Anyp =N,q(Ry)vue, Anp=—M3q(R;3)vyc, 4)

AQr=[q(adj)—(N;+M;)q(R,)

—(Nz +M2)q(R2)]VHC .
Here the n;; are number operators for preon superfields
of type i (i=1,2) and chirality H(=L,R). vygc is the
winding number of the hypercolor instanton. ¢(R) is the
quadratic anomaly of the representation R; that is,

Tr[T,(R)Tp(R)]=g(R)8, ,
where T,(R) is the matrix representing the group genera-
tor labeled by a. It is normalized so that q (fundamental

representation)=1. Equations (4) imply that the follow-
ing charges are conserved:

niL nir naR
V =" _—~) V =" —_’
! Nl +M1 NZ M2

A'=(N1+M;)q(RXnyL —njr)
—(Ny+M3)q(Ry)(nyp —nyg) ,
Qr=—(N{+M)q(R{)Qr
+[g(adj)—(N+M;)g(R,)
—(N24+M3)q(Ry)](nyp —nyg) .

__nyp

(5)
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We first consider the cases where R; and R, are com-
plex. The chiral properties of the preons are displayed in
Table I. The composite state chiral properties are shown
in Table II. Note that hypercolor-singlet spin--;- states
occur in the products R;XR; and R, XR, as well as in
R{XR,XR,. These two-body spin-5 states are a feature
of the supersymmetric theory that does not appear in the
nonsupersymmetric models of _Bars.6 Note also the pres-
ence of the superhyperglueball A4,,.

The decoupling of composite states that contain a preon
that may, conceptually, be made massive must now be en-
sured, as required by the theorem of Appelquist and
Carazzone.” This implies relations among the ’t Hooft in-
dices as follows:!

S I(R)=0,

rCR

(6)

where r is a representation of the residual chiral-
symmetry group after a preon superfield acquires a mass.
Of course, the relations obtained may vary with the par-
ticular model under consideration. For example, if N;=1
the SU(N ). is no longer a nontrivial symmetry and so
Eq. (6) may give different relations to when N;>2. If
N =0 then SU(N,), disappears along with the indices of
states which contain a left-handed type-1 preon. So when
the chiral-symmetry group is altered Eq. (6) must be ex-
amined afresh. Note that decoupling must be ensured
both when a type-1 superfield gains a mass and when a
type-2 superfield gains a mass. Of course if a particular
type of preon only occurs with one chirality then a
hypercolor-preserving mass term is impossible to con-
struct owing to the complex nature of the representations
and decoupling with respect to this preon becomes mean-
ingless (e.g., if N;=0 then type-1 preons remain mass-
less). If both types of preons can become massive then the
residual chiral symmetry G is

TABLE I. Flavor properties of preons when R symmetry survives supersymmetry breaking. Subscripts 1 and 2 refer to preons in
hypercolor representations R; and R,, respectively. Subscripts L and R refer to left-handed and right-handed preons, respectively.

1

¥ denotes spin-5 preons and A denotes spin-O preons. A (i, 4) pair sharing the same subscripts are components of a single chiral
superfield. A labels the hypercolor gaugino while A4, labels the hypercolor gauge boson.

4 Or

Preon SU(N,;), SU(M;)x SU(N,), SUM)z Vi V)

Y O 1 i 1 7\’1_1 0  —(Np+Myq(Ry) gladj)— (N, +M,)q (Ry)

AiL O 1 1 1 FIT 0  —(N,+My)q(Ry)  gladi)—(Ny+M)g(R,)—(N;+M,)q(R;)
Yir 1 o 1 1 Hlf 0 (N+My)g(R,) — g(adj)+ (N, +M,)g (R;)

Aix 1 O 1 1 MLI (N2+M3)q(Ry)  — gladj)+(Ny +M)g(Ry)+ (N2 +My)g(Ry)
oo 1 1 O 1 0 3 (Ni+Mg(R) (Ny+Myg(R;)

Ax 1 1 O 1 0 7\!6 (N\+My)g(R;) 0

Do 1 1 1 O 0 le— (N, +M)q(R) (N1 +M)q(R;)

Aar 1 1 1 = 0 X}Z —(N,+M)g(Ry) 0

A 1 1 1 1 0 0 0 —(N{+M,)g(R;)

A, 1 1 1 1 0 o0 0 0
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TABLE II. Flavor properties and ’t Hooft indices of composite states when R symmetry survives supersymmetry breaking. Here
g=q(adj), i =(N+M,)q(R), and g, =(N,+M,)q(R,). '
Composites SU( N1 )L SU( M1 )R SU( Nz )L SU( Mz )R V] Vz QR A’ Index
] I
O 1 1 1 2 1+
ity H N, N, 9+241—q> 2192 ,
Y1 Ao Aop - ) . ) 1 2 2 bt
Ao Aor H N, N, 9—9 q91—4>
I_
iR ar - ) ) o 1 2 by
A1LYar Azr H N, M, 4-291—q —291—q;
I5_
(] I
Y1 A2r A2 a 1 1 1 2 _ P 4t
B N, M, 9—9 2q1—q;
Iy
Ao Arr . . .
: O 1 s o - I - -
YL Por N ~ T, q9—9 9 Is
YL Aap Aag ,
1 1 1
A A O 1 O (] —_— —_—t— —2g1— —
1L A20Y2r » . N N, T, q9—291—q> 92 Is
(| I
1 2 1+
Yirar 2R 1 ) 1 B —AZ Fz —q—29:1+4q; —249:1+9;
I
Yir A2rA2r ) - 1 o 1 2 2 Lo+
A1rYar A2r H M, M, —q9+492 —2¢1+49;
I
Yirar oL ) - ] ) 1 5 X ) Iy
AirYor Aor H M, N, —q+29:1+q> g1+
I
[mm} 7
thrAy Asg 1 ] 1 1 2 B o
H 7 N2 q+a 2q1+42 )
4—
YirvoL¥or . . .

Ay A 1 ] O (] _— —_ 4 — 15
Yir Ao Arr 73 ARTA q+q; a2 5
A1rA2Y2r

1 1 1 '

A A 1 O O a —_— _— 4 — 2 1
1R_lf)2L 2R M, N, T, q+291+49> q92 6
lp]LA]L adj,l 1 1 1 0 0 q1 0 a,a'

- 1 1

A 0O- o* 1 1 —_——— 0 29 —q1—2 —2 b
YiLdir N 4—91—2q; 9>

- 1 1

A Oo* O 1 1 —_t— 0 -2 2 2
¢1R_1L N, +M1 q+4q91+2q; q2 c
'l’lRﬁlR 1 adj,l 1 1 0 0 —4q 0 d,d'
VoA 1 1 adj, 1 1 0 0 @ 0 ee’

- 1 1

A 1 1 (] o* 0 —_——— 2
Y2 Aog N, 4, q q f

- 1 1

4 1 1 o* ] 0 _—— s -2
¢2R_2L N, + M, 91 q1 g
¢2RA2R . 1 1 1 adj,l 0 0 —q1 0 h,h'
%A, 1 1 1 1 0 0 @ 0 x

G =SU(N; — 1), XSUM; —1)g XSU(N, —1); XSUM, —1)g
XU(1),, XU(1), XU(1) 4 XU DX U(Dp, XU,

where

(7



2434 R. R. VOLKAS AND G. C. JOSHI 32

’ ’
_ni naR , _ hap naL
TN—1 " M—1" " T N,—1 " M,—1"’

Vi

A"E(NI +M1 —2)q(R1)(n12L ——nlzR)_‘(Nz""Mz—z)q(Rz)(n’]L '_n’lR) ’

(8)

Or=—(N;+M;—2)qg(R|)Qg +[g(adj)—(N{+M; —2)q(R;)— (N, +M,—2)q(R,)(ni; —nig) .

The n’' are the number operators for the preon superfields
that remain massless. F; and F, are the vector number
operators for the massive preons. :

As well as ensuring the decoupling of massive preons
we must impose anomaly matching between the preons
and candidate massless composite states:

S AR= 3

preons massless
in R composites
in R’

A(R"), 9

where A (R) is the cubic anomaly of the representation R.
We now examine the various cases that exist within this
framework.
A. N\,M{,N,,M, >2. Decoupling implies that

J

[UR'(I)]zU(I)V22 0=(N1 _Ml )(N2+M2)q1(l+l')+(N1 +M1 )[(Nz—M2+2)l'+(N2‘—M2—-—2)l](q—qz) ,
[U(I)A']ZU(I)VZZ O=(N1 —Ml )(N2+M2)q1(l+l')—(N1 +M| )[(Nz—M2+2)I’+(N2—M2—2)l]q2 .

Lho=lh,=—l,=-1l_=I, (10)
Lhy=hL_=-1l1_=-l3,=I",
Is=—15=—(+1I),
Xx unconstrained .
The anomaly-matching equations in this case lead to the
result that / =/'=0, so that no interesting solutions are

obtained. To see this only the following anomaly-
matching equations are needed:

(11a)
(11b)

Here g, =(N{+M;)q(R,), g=(N,+M,)q(R,), and g=q(adj). The three groups that are listed to the left of each
equation refer to the corresponding axial-vector flavor currents which have a triangle anomaly associated with them.

Now Egs. (11a) and (11b) immediately imply that
(Ny—My+2)I'+(Ny—M, —2)I =0.

(11c)

Using this result in either Eq. (11a) or (11b) implies that either Ny=M or [ +/'=0 or both. But the following,

[SU(N,)L ]ZU(l)VZZ

shows that N,£M, where d (R,) is the dimension of R,.
Hence ! +/'=0. But now Eq. (11c) gives that /'—/=0.
Thus [ =1'=0.

B. N\=M;=1; N,;,M,>2. Decoupling gives the
same relations as in Eq. (10). Thus Eqgs. (11a) and (11b)
immediately imply that there is no solution.

C. N;,M,>2; N,=M,=1. Decoupling implies that
the only nonzero indices are a’, e, d’, h’, and x so that
the solutions are uninteresting.

So, thus far it has been shown that there are no useful
solutions when N;,M,N,,M,>0. We now consider the

cases where one or two of these numbers are zero.
|

[Ur(DPU)y,: O=(N,+M3)g (I +1')+[(N;—My+2)I'+(N, — M, —2)I)(g —q5) ,
[U(I)A']ZU(I)VZZ O=(N2+M2)Q1(l+l‘)—[(N2'—M2+2)I'+(N2—M2—2)l]q2 .

These equations imply that
(Ny—My+-2) '+ (N —M, —2)] =0 . (14)

Thus from Egs. (13) we see that / 41'=0. But Eq. (14)
now gives that /’—/=0. Hence / =/'=0 and there are no

d(Ry)=(N;—M)[(N;—M,+4)'+(N,—M,—4)I]

(11d)

[

D. M,=0; N{,N,,M,>0. In this case the following
indices do not exist: b, ¢, d, d’, and all the !’ indices.
Decoupling requires that

ll+ =l3_El’, ll_=l3+ =/ ’ (12)
ls=—(I+1!'), a,x unconstrained .

The relevant anomaly-matching equations are

(13a)
(13b)

Enteresting solutions.
E. Ny=0; M|,N,,M,>0. This case is similar to D.
F. Ny,M,N,>0; M,=0. The following indices do
not exist in this case: I34,l4+,l14,05+,05,06,/,8,h,h".
Decoupling shows that
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Ly 415, =0, I,_+135_=0, L, +1l3, =0, I,_+Ij_=0, a=b=c=d=0, a’=d",

e,e’,x unconstrained . (15)

Two of the anomaly-matching equations immediately show that no solution is possible:

[U) 4 PUM)y: O=(Ny+ 1)Uy 41, )+ (Ny— 1) _ +1,_) ,

1

[U(I?VI]ZU(I)A:: _ [_._1__+___ 1

1
2

Thus d (R;)=0 which is unacceptable.
G. N,M,M,>0; N,=0. Sameas F.

N, M,

1
N, M,

(16a)

1- ]Nz[(Nz‘l‘l)(lH. F+ L ) +H N, —D G +12)]q
1

= ]N2[<N2+1><11++lz+>+<N2~1><zl_+lz_>]q2 .

(16b)

H. M,=M,=0; N{,N,>0. The anomaly-matching equations for this case which involve two SU(N ), axial-vector
currents imply that d (R;)=0. Thus any solution must have N;=1. The remaining equations are as follows (note that
the only relevant indices are Iy, ly_, I, I,_, a’, e, ¢’, and x):

[SU(Nz)L]31 d(R2)=(N2+4)(11+ +12+)+(N2_4)(11—+l2~) >
[SU(Nz)L]zU(l)AIZ qld(Rz):[(N2+2)(ll+ +12+)+(N2—2)(11._+12_)](2q1—¢h) ’

[SUWN,) L PUR(1): q1d(Ry)=[(Na+2);4 +1 )+ (Ny—=2)1;_ +1,_)]lg +42]

+2[(N2+2)ll+ +(N2-2)11_ +N2e]q1 N

[UrdDP: (g —q2)%d(R1)+Nq1°d(Ry)=+No(Ny+1)[(q +291—92)°1 14 +(g —q2)°[2 ]

[U) 4P —42°d (R1)+N,q1°d (Ry)=3No(Ny+1)(2¢1 —q2 (1 +154)

(17a)
(17b)
(17¢)
+ 2N, (N, —D)(g +29,—q2)%11— +(g —q2)°],_]
+q:[a’'+(N,2—1)e +e'+x +d(adj)], (17d)
(17¢)

+ 3N (N, —1)(2g, —q2) (L1 _+15)

[Ur(DPUM) 42 —(g —42)°q2d (R))+N2q1°d (Ry)= 3N, (N> +1)(2q, —q5)[(q +291 — 2114 +(q —g5)5, ]

+ 5NN, —1)(29,—¢5)[(q +291—g2),_ +(q —q)%,_1,

(176)

[U(D) +PUrA1): q52(q —42)d(R1)+N2q1°d (Ry)= TNo (N> +1)(291 —2)2[(q +2g, — g1 4 +(q —g2)l5., ]

+%N2(Nz-1)(2q1 —42)[(q +291—g2)ls_+(g —g),_]1. (17g)

The following definitions have been used in Egs.
(17a)—(17g): g=q(adj), q;=q(R;), and ¢g,=N,q(R,).
We have been unable to show that the above equations
inevitably lead to physically or mathematically unaccept-
able consequences [such as d(R;)=0, q(R;)=0, and so
on]. Thus a search was made to see if there were any
complex representations R; and R, which obeyed Eqgs.
(17a)—(17g) as well as providing a nonzero integer value
for N, while satisfying R; XR,XR,D1. The procedure
used depended on the fact that all the quantities appearing
in Egs. (17a)—(17g) are integers (the normalization con-
vention for the quadratic anomalies may be chosen to
make them integers). A small computer program then ex-

[
amined all possible combinations of the quantities in the
following ranges:

N,=2,...,20; ¢g;=1,...,35; ¢g,=1,..:,35;
ll+)12+rll—»12—=_’5"-"5; q=1,...,35,

and selected those which satisfied the equations for posi-
tive integers d (R;) and d(R,), and integers a’, e, e’, and
x. Then d(R;),q(R),d(R;),q(R;),q(adj) were checked
against a data file containing properties of group represen-
tations to see if they correspond to any actual group rep-
resentations. If so then the requirement Ry XRy;XR,;D1
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was checked. The data file contained properties of repre-
sentations of the groups SU(3) to SU(9) which had parti-
tion labels {AA,... Ay _;} for SU(N) constrained so that
A1 <9 and A, <5. This data file was obtained by using the
program scHUR developed at the University of Canterbury
in Christchurch, New Zealand.? The result of this investi-
gation was that no solution was found. '

[SUM, )R T’ d(Ry))=—(M,+4) 13, +14 ) —(My—4)I5_+1,_),
[SU(MZ)R]ZU(I)A': qld(R2)=——[(M2+2)(13+ +l4+)+(M2_2)(13——+I4— )](241+¢I2) ’
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I. Ny=N,=0; M,M,>0. Same conclusions as for
H.

J. M;=N,=0; N{,M,>0. As with case H the
anomaly-matching equations which involve two SU(N,).
axial-vector currents imply that d(R;)=0. Thus any
solution must have N;=1. The remaining anomaly-
matching equations are

[SU(Mz)R ]2UR'(1)Z qld(R2)=[(M2+2)(l3+ +l4+ )+(M2—2)(l3_ +l4__ )](q _qz)

—2[(M,+2)l5, +(M,—2)l;_+M,h]q, ,

[UrA(DP: (g —q2)°q(R))+Myq,°d(Ry)=5M,(M, +1)[(q —2¢q, —g20l3, +(q —Qz)al4+]

[U()4P: —g°d (Ry)+M,yq,°d (Ry) = — My (My+1)(2g,+9,) (31 +14)

(18a)
(18b)
(18¢)
+ 3 My (M, —1[(g —29,—4;) 3 +(q —q3)l4_]
+[— (M2 —1)g:*h —q1°h’ +q,°x +¢,%d(ad))] , (18d)
(18e)

— M, (M, —1)(29, 44,05 +1,_) ,

[Ur(DPU) 42 —(g —q2)°q2d (R))+Mq,°d (Ry)= — + M, (M, +1)(2q, +¢,)[(q —2q, —q2) 34 +(q —q2)14, ]
— My (M, —1)(2q, +4,)[(q —2g1—42)ls_ +(g —g,)"4_1,

(18f)

[U(1) ¢ 1Ur(1): (g —g2)g2%d(R))+M,q,°d (Ry)= 7 M (M, +1)(2q, +9)*[(q —291 — )34 +(g —g2)4 ]
+ My (M, —1)(2g,+¢2)[(q —2q1—q2)l5_+(q —g2)l4,_] . (18g)

A similar computational method to that used in the previ-
ous case was employed to search for explicit solutions.
The following ranges for the integer variables were inves-
tigated:

M,=2,...,20; ¢;=1,...,30; g,=1,...,30;
q=1,...,30; l3+,l3_,l4+,l4,_=‘-=——5,...,5.

No solution was found for the group representations con-
sidered above.

This concludes the investigation of the cases where
complex representations R and R, are involved.

We consider now the possibility that R, and/or R, are
real representations. In these cases the right-handed
preons which are in a real representation of the hypercolor
gauge group can be charge conjugated into left-handed
preons without altering the hypercolor representation they
are in. For example, if R, is real then there are really
N,+M, left-handed preon chiral superfields and they
have SU(N;+M;); as their chiral-invariance group.
Thus these models bear a similarity to the complex repre-
sentation models which have preons of only one chirality
in a hypercolor group representation. The difference is
that now these preons may be given a Majorana mass and
so their decoupling must be ensured. This will force the ’t
Hooft indices to satisfy relations which they were not re-

I
quired to do in the complex case.

If both R, and R, are real then the only indices which
are not required to be identically zero by decoupling are
those that refer to composites which are singlets under the
non-Abelian sector of the chiral-symmetry group. These
theories are uninteresting from the point of view of com-
posite models of quarks and leptons and so will not be
considered further.

If R, is real and R, complex then all the ’t Hooft in-
dices associated with three-body composites are forced to
be identically zero by decoupling. As in the case in the
previous paragraph the uninteresting ’t Hooft indices sur-
vive. For the cases where either of N; and M, is zero
and the other is greater than or equal to two, index a or d
survives decoupling, as the preons of which they are com-
posed cannot be given a mass. However, the anomaly-
matching equation for [SU(N;).]® or [SU(M)x]? then
implies that d(R,)=0 since the real adjoint representa-
tion is anomaly free. (This is not true for [SU(2)]® since
all flavor group representations will then be real and so
the equation becomes 0=0. However SU(2) cannot con-
tain SU(3) color and so this case is uninteresting.)

Consider now the situation where R; is real and R, is
complex. For similar reasons to those given above most
of these models are uninteresting. There are two models,
namely, when N;+M ;=1 and where one of N, or M, is
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zero and the other is greater than or equal to 2, which fail
for other reasons. If M,=0 then the only indices that ex-
ist are I+, I+, @', e, e, and x. Decoupling requires that
L+l =l_+I,_=0. However the anomaly-
matching equations for [SU(N,);]® are then Eq. (17a)
and so d(R,)=0. Thus we must set N, equal to 1, which
renders the model uninteresting. Similar considerations
apply for the N, =0 case.

The conclusion is that no interesting models are ob-
tained when R, and/or R, is a real representation.

III. BROKEN R SYMMETRY

In this section we assume that R symmetry does not
survive the breaking of supersymmetry. The following
anomaly-free charges will be used in this section:

nir niR

_ __nhy
=N1 +M1’

naR

V ’
1 Mz

V)

(19
0= (N,—M3)q (R, Xnyp+nyg)

—(N1—M)q (R )nyp+nyg) .

This choice of charges is the same as used by Bars® in his
analysis of the nonsupersymmetric case. We treat the case
where R, and R, are complex first.

Solving the ’t Hooft constraints in the case of broken R
symmetry is facilitated by the fact that a powerful super-
group technique may be used.%° The details of this pro-
cedure may be obtained from Ref. 6. Here only an outline
will be presented: Introduce a grading between N left-
handed and M right-handed preons so that they are con-
tained in the fundamental representation of SU(N/M).
Classify composite states as higher representations of
SU(N /M). Assign a ’t Hooft index to each composite
representation. To satisfy the decoupling constraints
break the composite representations of SU(N /M) down
|
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TABLE III. The classification of preons (R-symmetry bro-
ken case) under G,

Preons SU(N,/M,) SU(N,/M,) Q
t/}l N 1 (Nz—Mz)q(Rz)
Al N 1 (Nz—Mz)q(Rz)
(23 1 N ~(N1—M)q(R;)
A2 1 N ——(Nl—Ml)q(Rl)

to SU(N) X SU(M) X U(1), while respecting the left-right
grading. To satisfy the anomaly-matching equations cal-
culate them with respect to the supergroup classification
but replace the trace in the cubic and quadratic anomalies
by the supertrace. For this model the actual chiral sym-
metry Gp,

Gr=SU(N,)L X SU(M;)g XSU(N,); X SU(M,)g
X U1y, XU(1)y, xU(1)g (20)
is imbedded in G****" where
GV =SU(N, /M) XSU(N,/M;)XU(1l)g .  (21)

The classification of preons and composites under G P
is indicated in Tables III and IV, respectively. Note that
supersymmetry has caused the appearance of the two-
body states 9,4 and 1,4, as well as increasing the num-
ber of preon configurations which correspond to given
chiral properties in the three-body sector (y¥,4,A4, and
A4, as well as ¥,¥,). The calculations of the ’t
Hooft conditions now closely resemble those of Ref. 6.
The decoupling constraints are implemented by decom-
posing the composite supergroup representations down to
the actual chiral-symmetry group (20); while respecting
the left-right grading:

ay (@, 8N)=a, (0,100, D /n 2/n,—a+ (O, 50,01 /8 15, +1/M,

+a,(0,1;1,H h/Ny2rmy,—a 4 (LD B0, Diyag, 28,

+a (L0, 1 /m,,1/8, +1/m,—a + (1,051, H DM 2,

(22a)

a_(8,R)=a_(O,5L,0) N1/, —a (O, 50,01 /x,,1/8,+1/0,

+a_ (0,51, TN, 2/m,— 3 (L0 B, Dija,om,

+a_(I,D;D,D)I,MI,I/N2+1/M2-a_( 1,01, 11 )1/M1,2/M2 ,

w1(BN1)= w(adj, 1;1,1)o,0—a1(O0*,051,1) _1 /n, —1/8,,0

(22b)

+a),( l,adj; 1, 1 )0,0—(01(D,D"; 1,1 )—1/N1+1/M1,0

+Ct)1(l,1;1,1)0,0 N
uy (1, D=u,(1,1;1,1)5 .

(22¢)
(224d)

The notation used above is as follows: On the left-hand side (LHS) the first supertableaux refers to SU(N; /M) and the
second to SU(N,/M,). On the RHS the Young tableaux refer to SU(N;)., SU(M )z, SU(N,);, SU(M,)i from left to
right. The subscripts are the ¥; charge and the ¥, charge in that order. Similar decompositions apply for the states as-

sociated with w, and u,.
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TABLE IV. The classification and ’t Hooft indices of composites ( R-symmetry broken case) under G P,

Composites SU(N,/M,) SU(N,/M,) Q Index
¢1¢2¢2 N NN (NZ—Mz)Q(Rz)—Z(N1—M1)q(R1) a,
Y1424, E

Al-l.ﬁzAz &N (Nz—Mz)q(Rz)—'z(Nl-—Ml)q(Rl) a_
14, &N, 1 1 (0] Wy,
1,/222 1 &Y, 1 0 Wy, U,

The anomaly-matching equations are as follows:

[SUWN,/M)P: d(R))=+AAr+1)a, +53Ax(A—1)a_ , (23a)
R
[SUN;/M)PU()g: Axd (Ry)=[78x(As+a +5Ax(Ay—1)a_] lAz—zAlZER‘; , (23b)
2
[SU(Nz/Mz)]s' d(R2)=A1(A2+4)a+ +A1(A2—4)a_ , (23¢)
2 Q(Rl) q(Rl)
[SUN,/M;)PU(1)g: —A,md(R2)=A1[(A2+2)a++(A2—2)a_] A2—2A1m , 23d)
(R | (R |’
[U(ol: AiARd (R =AM (Ry) [ L1 | [ 1A AA+ Day + LA A — D _] |Ap—28, 21

(23¢)

Here A;=N,—M, and A,=N, —M,. We now analyze these equations.

Using (23a) in (23b) we see that A;=0 given that quadratic anomalies are never zero. Equation (23e) is then satisfied.
However (23c) implies that d(R,) is zero, which is unacceptable. Thus either (N;,M,) equals (1,0) or (0,1) so that Egs.
(23¢) and (23d) do not apply. This implies that A,=+1. So the conclusion is that if SU(N;/M;) exists then A,=+1,
d(R;)=a+ using (23a). Furthermore to ensure the renormalizability of the theory the following must hold:

AA(R;)+DyA(Ry)=0, (24)

so that in this case we must have that 4 (R,)=0. Thus R, is a complex anomaly-free representation. The smallest such
representation is the 16 of SO(10). Indeed in SO(10) we have that 16X 16=10+120--126 where 126 is a complex repre-
sentation so that R; =126 and R, =16 is a solution of the ’t Hooft equations. However since d (R;)=a this requires
very large and probably unphysical ’t Hooft indices. So we consider this class of solutions no further.

For the conclusions of the preceding paragraph not to follow, it must be that (N,M) equals (1,0) or (0,1). Consider
the case where N;=1 and M;=0. Equations (23a)—(23e) reduce to

d(R,)=(Ar+4)a  +(Ay—4)a_ , (25a)
q(Ry) q(R,)
_ q(Rz)d(Rz)—[(A2+2)a++(A2—-2)a,] ‘AZ—Zq(RZ) , (25b)
3 3
q(R;) q(R,)
APd(R)—Ayd (R;) m =[+A5(Ay+Day, ++AxA,—Da_] Arzq(R;) (25¢)

Hypercolor anomaly cancellation implies that
A(R)+AA(R,)=0. (26)

These equations admit an infinite number of solutions. As in Ref. 6 it is convenient to classify possible solutions into
three classes on the basis of Eq. (22): (i) A,=0, 4(R;)=0; (i) 4 (R;)=4(R,)=0; (iii) A,5£0 and 4 (R;)=—2A4(R;).
Cases (i) and (ii) require complex anomaly-free representations. As discussed by Bars,® although solutions do exist,
asymptotic freedom must be sacrificed. For this reason only case (iii) is interesting.

Various interesting solutions to case (iii) were given in Ref. 6. In particular, two infinite classes of solutions exist:

(a) Guc=SU(N); Ay=N—4; a,=1anda_=0; R;=(H)*; R,=00, @7
(b) Guc=SU(N); Ay=N+4; a,=0anda_=1; R,=()* R,=0. (28)

In the nonsupersymmetric case only one preon configuration, ¥;1,1,, corresponds to the representation of the composite
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states under chiral symmetry. Thus one is led to consider 't Hooft indices which are zero or one in magnitude. This re-
quirement may be relaxed in the supersymmetric theory since the scalar preons increase the multiplicity of preon config-
urations corresponding to a given three-body composite representation. A search was made for extra solutions. The
range considered for A, and @+ was as follows: :

Ay=-20,...,20; a;=-5,...,5:

The solutions that were found [excluding those belonging to the infinite classes in (27) and (28)] are displayed in Table V.
Note that the search was restricted to the groups SU(3) to SU(7). The last column in Table V indicates whether or not a
given solution may be asymptotically free in the hypercolor coupling constant. When a theory is asymptotically free, the
upper bound that must be imposed on N, +M, is given. Clearly only the asymptotically free solutions are interesting in
this context. One should note that asymptotic freedom in supersymmetric theories places more stringent bounds on the
number of preons than is the case in the corresponding nonsupersymmetric theories. This is because the fundamental
scalars and the gauginos contribute to the Gell-Mann—Low S function of the renormalization-group equations.!® We see
from Table V that there is only one asymptotically free solution for Egs. (25) and (26) which contains indices greater
than one in the range considered.
The structure of the massless composite spectrum generally in these models may be obtained from Egs. (22a)—(22d):

e (M—(ay +a_)O,D+a, (1, H)+ra_( B, D+a_q, )

+ay(adj, 1) +w,(1,adj) — w,(0,0%) —0o(O*, ) + 051, 1) +u,(1,1) . (29)

Consideration will now be given to embedding SU(3)xSU(2) X U(1) in the chiral-symmetry groups of these theories.
Only those embeddings which yield an anomaly-free SU(3) X SU(2) X U(1) sector are physically relevant. There are two
ways of systematically doing this. Consider SU(N,); XSU(M,)g. [U(1 )y,,U(1)g will be ignored in this section.] The
first way relies on the anomalies of the left-handed preons canceling with the anomalies of the right-handed preons. In
particular the following scenario is interesting. Let N, and M, be >5 so that SU(N,) and SU(M,) contain SU(5).
Break SU(N;); XSU(M, ) as follows:

SU(N,) —SU(5), X G, Op—(5.,1)+(1,x), (30)
and
SU(M,)g —SU(5)g XGr, Og—(5x,1)+(1,y), 31

where x =N, —5 and y =M, —5 are the dimensions of the representations of the residual groups G; and Gx which
appear in the decomposition. If we then do SU(S); X SU(5)g —SU(5), , r, anomaly cancellation in the SU(5) sector is
ensured. To see the ramifications of this embedding for the composite states we decompose the representations in (29)
down to SU(5) X Gy X Gg:

(,1)—(15,1, 1) +(5,x, D +[1,5x (x +1),1] , - (32a)
(H,H—10,1,D4(5,x,1)+[1,+x (x —1),1], (32b)
(1,0)—(15,1,1)+(5,1,p)+[1,1,2p (y + D], (32¢)
(1,H)—10,1,)+(5, 1, +[1, 1,3y (»y — )], (32d)
(E,0)—(10,1,1)+(15,1,1)+(5,x, 1) +(5,1,p) +(1,x,y) , , (32e)

TABLE V. Asymptotically free solutions to Egs. (21a), (21b), (21c), and (22). This table does not include the two infinite series of
solutions given in (23) and (24). {A}; and {A}, are the partition labels of R; and R,, respectively. Note that R; and R, also give a
solution if R, and R, give a solution.

A, a, a_ {A},d(R,) {A}2,d(R;) Group Asymptotic freedom
2 1 0 {31},15 {2%},6 SU®) No

11 —1 3 {4},15 {2%},6 SU@®) No
6 1 0 {31},45 {2%},10 SU4) No -

-1 5 1 {1},5 {12},10 SuU(s) N,+M,<10
6 1 0 {21%},45 {1%},10 Su(s) No

11 1 0 {31},105 (241,15 SuU(s) No

11 1 0 {21%},105 {1%4},15 SuU(6) No

17 1 0 {31},210 {2%},21 SU(6) No

19 0 1 {324},120 {12},15 SU(6) No

17 1 0 {212},210 {1°},21 SuU®) No
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(adj,1)—(24,1,1)+(5,x,1)+(5,%,1) +(1,x2—1,1)+(1,1,1) ,
(1,adj)—(24,1,1)+(5,1,p) +(5,1,§) + (1,1, — 1) +(1,1,1) ,
(0,0%—(1,1,1)+(24,1,1)+(5,x,1)+(5,1,9) +(1,x,y) ,
(O*,0)—(1,1,1)+(24,1,1)+(5,%,1)+(5,1,y) +(1,%,p) ,
(1,1)—(1,1,1) .

32

(32f)
(32g)
(32h)
(32i)
(32)

Since the two-body composites form real representations of SU(N,); X SU(M,)g they can be given masses at this level
and so would be expected to be significantly more massive than the three-body states. We consider only three-body states

in what follows. So for the solutions with a . =1, a _ =0 the massless spectrum at the SU(5) X G X G level is

(15,1,1), +(5,%, 1) +[ 1, +x (x +1),1], +(10,1, 1) +(5,1,9) +[1,1,54y (y — D],

+(15,1,1)g +(10,1,1)g +(5,%, g +(5,1,y)g +(1,x,)g .  (33)

A generation of quarks and leptons is contained in 5+ 10
of SU(5). Thus only one such generation appears in (33).
There are, however, x +py —1 extra 5, s (of the required
chirality). Mirror particles appear in (33) as well as exot-
ics in the 15 of SU(5). Similar conclusions are obtained
for the a . =0, a _ =1 solutions.

The second way of embedding SU(3) X SU(2) X U(1) in
SU(N,)XSU(M,) is to break, say, SU(N,) to a group
which has anomaly-free representations. As discussed by
Bars,® interesting decompositions may be obtained by this
method. These embeddings appear in the supersymmetric
case as well, but supersymmetry seems to add nothing to
their utility.

To complete the analysis we must examine the cases
where either R; and R, is real, or both are real. In all
these cases, however, the only indices that are ever possi-
bly not zero after decoupling belong to two-body bound
states. Thus these models are not interesting.

IV. CONCLUSION

We have examined in detail the possible massless
bound-state spectra of supersymmetric composite models

r
in which there are preons in two hypercolor representa-
tions. Using the decoupling theorem and the ’t Hooft
anomaly-matching equations it was shown that chiral-
symmetry preservation is difficult to-arrange for theories
respecting supersymmetric R symmetry. Solutions to the
equations were discovered for the cases where R symme-
try is violated by supersymmetry breaking.

ACKNOWLEDGMENTS

R.R.V. would like to thank Lindsay Berge and Chad
Nash for assistance with the computing component of the
above work. R.R.V. also acknowledges the assistance of a
Commonwealth Postgraduate Research Award. G.C.J.
would like to thank Professor S. L. Glashow for warm
hospitality at Lyman Laboratory, Harvard University,
where part of this work was done.

1G. ’t Hooft, in Recent Developments in Gauge Theories,
proceedings of the NATO Advanced Study Institute, Cargese,
1979, edited by G. ’t Hooft et al. (Plenum, New York, 1980).

2W. A. Bardeen and V. Visnji¢, Nucl. Phys. B194, 422 (1982).

3W. Buchmiiller, R. D. Peccei, and T. Yanagida, Phys. Lett.
124B, 67 (1983); Nucl. Phys. B227, 503 (1983); W.
Buchmiiller, and U. Ellwanger, ibid. B245, 237 (1984); O. W.
Greenberg, R. N. Mohapatra, and M. Yasue, Phys. Rev. Lett.
51, 1737 (1983); R. N. Mohapatra, M. Yasue, and O. W.
Greenberg, Nucl. Phys. B237, 189 (1984); R. Barbieri, A.
Masiero, and G. Veneziano, Phys. Lett. 128B, 179 (1983); P.
H. Frampton and G. Mandelbaum, ibid. 133B, 311 (1983).

4W. Buchmiiller and S. T. Love, Nucl. Phys. B204, 213 (1982);
G. Veneziano, Phys. Lett. 124B, 357 (1983).

5J.-M. Gérard et al., Phys. Lett. 116B, 29 (1982); Nucl. Phys.
B234, 138 (1984); S. Takeshita, Prog. Theor. Phys. 68, 912
(1982); R. R. Volkas and G. C. Joshi, Melbourne Report No.
UM-P-84/45, 1984 (unpublished).

61. Bars, Nucl. Phys. B208, 77 (1982).

7T. Applequist and J. Carazzone, Phys. Rev. D 11, 2856 (1975).

8G. Black, University of Canterbury report, 1983 (unpublished).

9A. Schwimmer, Nucl. Phys. B198, 269 (1982).

10D, R. T. Jones, Nucl. Phys. B87, 127 (1975); S. Browne et al.,
ibid. B99, 150 (1975).



