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Nuclear matter in the crystal soliton bag model
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A model for nuclear matter is introduced as consisting of an infinite number of bags placed on a
spatial cubic lattice. Using the soliton bag model of Friedberg and Lee in the self-consistent mean-
field approximation we study the properties of the system as a function of the lattice constant. At
low densities the hadronic matter is well described by the solutions of isolated nucleons. With de-
creasing lattice constant the energies of the quarks spread out into bands and the quark wave func-
tions of different bags start to overlap. At a certain critical density an abrupt phase transition to a
uniform quark distribution occurs. The model yields a critical density of the order of the normal
nuclear density which shows that the model cannot adequately describe the repulsive part of the
nucleon-nucleon interaction at small relative distances.

I. INTRODUCTION

It is generally assumed that nuclear matter undergoes a
phase transition to an unconfined quark plasma, when the
nuclear density is raised sufficiently. There is no proof,
however, since even the nature of confinement in QCD is
not fully understood. Theories of this phase transition
usually describe each of the two phases within separate
models rather than using a single consistent model for the
whole range of densities.!

In the following we utilize the soliton bag model of
Friedberg and Lee? as a unified framework, allowing us to
treat both phases on an equal basis. This model has been
used for the same purpose by Baym, Blaizot, and Fri-
man,’ but the actual construction of nuclear matter has
not been attempted. Those authors studied the thermo-
dynamics of uniform phases only.

In this paper we explicitly take into account the local-
ized structure within the hadronic phase by treating nu-
clear matter as a collection of bags filled with three
quarks each. In order to study such matter we assume a
crystal symmetry for the quark and soliton fields by ar-
ranging the nucleons in a simple cubic spatial lattice.
This static model for nuclear matter, which has been
described briefly in Ref. 4, is justified for higher nuclear
densities and allows us to describe the phase transition
from granulated nuclear matter into a continuous one.

Recently two other approaches to the problem of phase
transition have been published applying also the crystal
lattice model. Kutschera, Pethick, and Ravenhall® studied
this approach within the Skyrme model and Banerjee,
Glendenning, and Soni® used the chiral bag model. Both
groups of authors have used the Wigner-Seitz approxima-
tion, replacing the corresponding fields in a lattice cell by
spherically symmetric ones. This approximation is not
employed in this paper, where we solve the self-consistent
problem directly by using the wave functions appropriate
for the simple cubic lattice.
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The Lagrangian density of the model is given by
L =P(iy*d,—go)p+3#0d,0—Ul(o), (1

where i is the quark field, and o is a scalar field
representing the collective nonperturbative effects of
QCD. The color and flavor indices are omitted. The
summation over these degrees of freedom, however, has to
be performed in all the following formulas. The quark-o
coupling constant is denoted as g, and U (o) is a nonlinear
self-interaction function, which is taken to be a fourth-
order polynomial

U(o)=B+3a0’+ —:;l'—b0'3+ %ca4 . (2)

With a suitable adjustment of the parameters, the function
has its absolute minimum at o=o0,, and a relative
minimum or an inflection point at o=0. The constant
B =U(0) may be identified with the MIT bag constant
and is chosen so that U(oy,.) vanishes. The remaining
four free parameters a, b, ¢, and g can be fixed by nu-
cleon data.

We restrict the calculations to static solutions in the
mean-field approximation, where the field operator o is
replaced by a time-independent classical field. The quark
field operators are expanded in a complete set of basis
functions

¢= %thﬁk ’ (3)

where c; are fermion annihilation operators. The mean-
field approximation then leads to the following coupled
set of equations:>*

(—iaV+gBo)y=€xy , @
—V20+-2—U-=—g S LBk - )
o k occ

The total energy of the system is given by
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E=3 &+ [ [$(Vo)*+Ul0)]d% . (©)
k occ

Spherically symmetric solutions of these equations can be
used to describe single nucleons as done by various au-
thors.2*7~10 This has not led, however, to a “best” set of
the parameters. Quite a variety of parameter sets gives a
satisfactory description of single nucleons.’

II. CRYSTAL SOLITON BAG MODEL

In the following we consider nuclear matter as consist-
ing of an infinite number of bags arranged on a regular
periodic lattice. For simplicity we choose a simple cubic
(sc) lattice with a lattice constant d. The scalar field is
taken to be periodic

o(r)=0o(r+R), (7)

where R is an arbitrary lattice vector. We also require
that o contains the reflectional and discrete rotational
symmetries of the cubic lattice. For the translational
symmetry (7) .we can write the solutions of the Dirac
equation (4) in the form of Bloch waves,

Y(r)=e* TPy (1) , (8)

where ¢, has the translational symmetry as in (7), but not
necessarily the other symmetries of o. The “crystal
momentum” k is a continuous vector, which can be re-
stricted to the first Brillouin zone. The ¢, satisfy the
Dirac equation,*

[a(—iV+k)+gBo(r)]du(r) =€dy(r) , 9

where the €, display the familiar band spectrum of a crys-
tal. In practice it is not feasible to perform the calcula-
tions for all required values and orientations of the crystal
momentum k. Therefore, as an approximation we assume
spherically symmetric energy surfaces and perform the
calculations for a special direction of k only. In order to
keep the calculations of the energies simple, we choose a
[100] direction, which still has a high symmetry. In the
sums over crystal momenta [Eqgs. (5) and (6)] we make the
replacements

€=~ €y ¢kﬂ¢k~¢k Bs » (10)

where the overbar denotes averaging over the six possible
_orientations of the [100] direction.

In the case of symmetric nuclear matter with only up
and down quarks the spin-flavor-color degeneracy of each
state is 12-fold, namely, 2 for spin, 2 for flavor, and 3 for
color. Since each band provides one state for every unit
cell, and we need to occupy the cells with three quarks
each, only one-quarter of the first band will be filled in
the ground state at zero temperature. A ﬁlling factor

=+ of the band implies a Fermi momentum given by

1/3

T T
=0.78— .

d 0.7 4 (11)

The smallest distance between the center of the first Bril-
louin zone and its boundary is 7/d. Thus the Fermi sur-
face does not get too close to the zone boundaries, where

the energy surfaces will be deformed most. The filling
factor f =+ is the minimum demanded by the Pauli prin-
ciple. If one requires each localized state to be of the
form of a nucleon (n or p, spin up or down), the factor
could be greater. If the lattice were filled, for example,
with A** in m = states (m =quantum number of spin
projection), this would require dilute filling of the entire
band, i.e., f=1.0, in order to satisfy the Pauli principle.
Uniform nuclear matter (n,p,m =+~) clearly requires
less of the band to satisfy Pauli exclus1on In this case the
appropriate filling factor lies between + and 1.

It is difficult to address this questlon of the filling in
the context of Bloch states, because they extend over all
space. One should perform a transformation to localized
basis functions, the so-called Wannier functions. This
problem is presently studied by Birse et al.!! in the frame-
work of the Wigner-Seitz approximation by transforming
from partially filled Bloch states to incomplete Wannier
states clustered to form a color-singlet three-quark nu-
cleon state at each cell.

In the actual calculations we expand o and ¢y in
Fourier series

0‘(1’)= zo.KeiK-r’ ¢k(r)= 2 ¢kKeiK~r , (12)
K K

where the sums run over all reciprocal lattice vectors. In-
serting these expansions into Eq. (9) we obtain a matrix
eigenvalue problem

a (K+k)pyx +8B Y, 0k —x' k' = €xdik - (13)
<

The expansion coefficients are not completely independent
because of symmetry. The field o possesses the full cubic
symmetry, while the solutions ¢, can be classified accord-
ing to particular irreducible representations of the group
of the crystal momentum.!? This group contains all the
operations belonging to the point group of the sc lattice
which transform k into itself. As trial wave functions we
used symmetrized combinations of plane waves (SCPW),
which are similar to those introduced in Ref. 13. For the
lowest-lying band we choose a SCPW, where the upper
components transform according to the irreducible repre-
sentation A; (Refs. 12 and 13).

By solving (13) for several values of k=kZ we obtain
the scalar density

> ¢Iﬁ¢k~

2
) =y f dk k9B (14)

where the wave functions are normalized to one quark per
unit volume and the overbar denotes averaging over the
six possible orientations of the [100] direction as in Eq.
(10).

Now we proceed with Eq. (5). Since o and the scalar
density (14) can be written in a Fourier series [see Eq.
(12)], the field equation (5) will be reduced to a system of
coupled algebraic equations

(K2+G)O'K+ ZUK’UK K+ 3 2 OK'OK"OK _K'—K"
K'.K"

S B | =0. (15

k occ

K
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This nonlinear system is solved using the Newton-
Raphson iteration method. Equations (13) and (15) are
solved alternately until self-consistency is reached.

III. RESULTS

_We present results for two different sets of parameters
(B =*%cB):

(i) @=0, b=—105.14 fm™"
£=9.037, B=27.12 MeV /fm?
(i) a=0, b=-7482.4 fm~!, ¢=200000,
g=19.357, B=86.97 MeV /fm>

, ¢=1000,

Both sets have been taken from a variety of parameter sets
investigated by Horn,” which all lead to the correct mean
nucleon-A mass and proton rms charge radius of single
bags, when recoil corrections are included. The parameter
set (i) is best suited for our calculations, because it pro-
duces soft-bag surfaces and, therefore, does not require
too many terms in the Fourier expansions (12). The pa-
rameter set (ii) belongs to a stiffer bag with smaller sur-
face thickness than that of the bag produced with the pa-
rameter set (i). '

For large lattice constants we should recover the results
of single, separated, spherically symmetric bags. This is
quite well obtained with the parameters (i) of the soft bag,
but can only be approximately achieved for the parameter
set (ii).

Figure 1 shows plots of the quark density ¢T¢ and the
soliton field ga along a [100] axis of the crystal. In Fig. 2
we display 3¢ in a (100) plane of a lattice cell. With de-
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FIG. 1. The quark density ¢*1/1 (solid curves, left scale) and
the soliton field go (dashed curves, right scale) along a [100]
axis for two parameter sets. (a) parameter set (i) and d =3.1,
4.0 fm, (b) parameter set (ii) and d =2.3, 3.6 fm.

creasing lattice constant we observe two effects.

(a) When the quark distributions begin to overlap, the
bag sizes are increased. An increase of the bag size with
growing density has also been found by Jindel and Peters’
who interpreted this effect as an explanation of the EMC
(European Muon Collaboration) effect.

(b) At a critical value d,~3 fm and d, ~2.1 fm for (i)
and (ii), respectively, the coupling between the quark and
o fields starts to destroy the barriers between the bags,
and the localized soliton solutions cease to exist. Then a
uniform quark density is formed. The “phase transition”
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FIG. 2. The quark dens1ty in a (100) plane for the parameter set (ii) and lattice constants d = 3 6 fm (a), 2.3 fm (b), 2.1 fm (c), and

1.5 fm (d). The units are fm 3

and fm for the density and length scales, respectively.
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to uniform matter and fields occurs below nuclear matter
density at p/py~0.7 for the parameter set (ii), where
Po=0.15 nucleons/fm* is the density of normal nuclear
matter.

Slightly below the transition point (d >d,) the quark
eigenvalues for k =0 and k =k differ by 10 MeV for pa-
rameters (i) and 50 MeV for (ii). The energy
€(k =0)~250 MeV is the same for both parameter sets.

The transition occurs suddenly as a function of d, as
can be recognized from Fig. 3 which shows the total ener-
gy and the energies of the quark and o fields per unit cell.
Quark and o field energies are given by the first and
second terms in Eq. (6), respectively. The dashed curves
represent the energy for uniform solutions of Egs. (4) and
(5). Branch 1 describes a free massless (0=0) quark plas-
ma, whereas branch 2 belongs to free massive quarks
(0=~ 0yg)-

One readily observes a slight decrease in energy of the
soliton solutions with decreasing lattice spacing, which
implies a negative pressure. This can be attributed to the
fact that the model Lagrangian (1) does not contain any
repulsive vector fields, which have to be included in the
next step. We expect that repulsive fields shift the phase
transition to higher densities.

In Fig. 4 we compare our results with calculations of
Birse et al.!! carried out in the Wigner-Seitz approxima-
tion for the parameter set (i). The total energy per nu-
cleon is plotted as a function of the lattice constant d and
the Wigner-Seitz radius R, respectively. Both these pa-
rameters are related in such a way that the volume of a
unit cell is equal to the volume of the Wigner-Seitz
sphere:

_Am 3
—3R . (16)

For larger lattice constants d both methods agree. The
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FIG. 3. Energy per unit cell as a function of the lattice con-
stant for the parameter set (i). For the soliton solutions the en-
ergies for the quark and o fields are shown separately. On the
right-hand side the corresponding energies for a single bag are
shown for comparison. The dashed curves are the energies for
uniform fields: branch 1 describes a free massless quark plasma
(o0=0) and branch 2 a free massive quark plasma (o ~0.).
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FIG. 4. Total energy per unit cell as a function of the lattice
constant d and the Wigner-Seitz radius R for the parameter set
(). Open squares connected by a line: present results (shown
also in Fig. 3); asterisks: Wigner-Seitz approximation calculated
by Birse et al. (Ref. 11).

transition to uniform distributions occurs at about the
same value of d in both calculations. The energy values
obtained with the Wigner-Seitz approximation are about
20 MeV/A above our values for d =3 fm, because this
approximation does not describe the nonspherical charac-
ter of the fields in the unit cell at small lattice constants.
Our solution gives a higher quark density in the direction
of the nearest neighbors.

IV. CONCLUSIONS

In conclusion the crystal soliton bag model can describe
the localized structure of nuclear matter and its transition
to uniform quark matter. The present model, which is
self-consistently treated, predicts a transition occurring at
a too low nuclear density.

In order that the localized soliton solutions can persist
also at higher densities, the following extensions and
developments of the model should be considered as impor-
tant future steps. .

The main deficiency of the present model is the omis-
sion of the one-gluon-exchange processes, which act repul-
sively between the bags and may shift the transition to
higher densities. Therefore, gluon-exchange processes
should properly be incorporated in the model.

Recoil corrections, which are not yet included, but
should be taken into account, have the effect of reducing
the static rms radius of single bags by approximately 15%
(Refs. 4 and 14). The presently applied sc lattice does not
give the best arrangement of nucleons at high densities
and may be replaced by a face-centered-cubic (fcc) lattice
with a packing fraction larger by 42%. The combined ef-
fects of the recoil corrections and the fcc lattice may lead
to an increase of the transition density by a factor 2.3,
thereby shifting the transition point for the parameter set
(il) to 1.6p0.

The parameters of the model may be treated as depen-
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dent on the nucleon density. Density-dependent parame-
ters would phenomenologically describe possible higher-
order coupling terms between the quark and o fields,
bag-bag correlations, and bag motion (phonons). If prop-
erly chosen, they can lead to higher transition densities.
Also parameter sets with a larger bag constant may yield
higher transition densities, as has been observed by Gag-
non'® for the MIT bag model. In addition the filling pa-
rameter f in Eq. (11) may be chosen 0.25<f<1. As
Wigner-Seitz cell calculations have indicated,!! the total
energy can be repulsive with decreasing cell size if f is set
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greater than +. Recently, Wendel and Hilf!6 have shown
that the total energy can also be repulsive if special boun-
dary conditions are used in the Wigner-Seitz approxima-
tion.

ACKNOWLEDGMENTS

This work was supported by Bundesministerium fiir
Forschung und Technologie and Gesellschaft fiir
Schwerionenforschung (Darmstadt).

*Present address: Department of Physics, FM-15, University of
Washington, Seattle, Washington 98195.

IE. V. Shuryak, Phys. Rep. 61, 71 (1980); G. Baym, Prog. Nucl.
Part. Phys. 8, 73 (1981).

2R. Friedberg and T. D. Lee, Phys. Rev. D 15, 1694 (1977); 16,
1096 (1977); 18, 2623 (1978); P. Vinciarelli, Nucl. Phys. B89,
463 (1975); R. Goldflam and L. Wilets, Phys. Rev. D 25, 1951
(1982).

3G. Baym, J.-P. Blaizot, and B. L. Friman, in Proceedings of the
Gross Properties of Nuclei and Nuclear Excitations X, Hir-
schegg, 1982, edited by H. Feldmeier (Technische Hochschule,
Darmstadt, 1982), p. 115.

4L. Wilets, in Advanced Course in Theoretical Physics, Hadrons
and Heavy Ions Capetown, South Africa, 1984 (unpublished).

SM. Kutschera, C. J. Pethick, and D. G. Ravenhall, Phys. Rev.
Lett. 53, 1041 (1984).

6B. Banerjee, N. K. Glendenning, and V. Soni, Phys. Lett. 155B,
213 (1985).

7R. Horn (unpublished).

8R. Saly and M. K. Sundaresan, Phys. Rev. D 29, 525 (1984).

9M. Jindel and G. Peters, Phys. Rev. D 30, 1117 (1984).

10Th. Képpel and M. Harvey, Phys. Rev. D 31, 171 (1985).

1IM. Birse, H. Klein, J. Rehr, and L. Wilets (private communi-
cation).

121, P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev.
50, 58 (1936).

13H. Schlosser, J. Phys. Chem. Solids 23, 963 (1962).

143.-L. Dethier, R. Goldflam, E. M. Henley, and L. Wilets,
Phys. Rev. D 27, 2191 (1983).

I5R. Gagnon, Phys. Rev. D 28, 2862 (1983).

16M. H. Wendel and E. R. Hilf, Report No. IKDAS85/3,TH
Darmstadt, 1985 (unpublished).



