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We investigate multiparton processes in the framework of quantum chromodynamics. The spin
and color, as well as the factorizability of the process, have been analyzed in detail. The analysis
shows that the existence of connecting gluons does not spoil factorizability in the leading-logarithm
approximation. We also find that the spin and color degrees of freedom play an important role in
the description of multiparton processes. As a consequence, hadrons are described by a set of newly
defined structure functions. We apply the general formalism to the double Drell-Yan mechanism.
We find that the above-mentioned structure functions are convoluted with two completely uncorre-
lated single Drell-Yan cross sections.

I. INTRODUCTION

There is by now an ever increasing experimental evi-
dence which confirms the QCD —parton-model picture of
high-energy and high-pT reactions based on single hard
collisions between elementary pointlike constituents.
Composite hadron structure, however, allows for new
kinds of subprocesses to occur already at the naive parton
level in the case of hadron-hadron collisions, namely, mul-
tiparton processes (Fig. 1). These subprocesses are power-
like corrections to the leading QCD terms of the form
(1/s P when all the kinematical invariants r;

(i =1,2, . . . , n) are large, with t;/s fixed, v s being the
center-of-mass energy. However in the kinematical region
where some of the t s, although much larger than any ha-
dronic mass scale, are much smaller than s, the terms of
order (1/t;)" might not be so negligible. In addition
these subprocesses are linked to multiparticle distribu-
tions G(x~,x2, . . . , x„) which carry a wider amount of
information on the hadronic bound states.

A subclass of multiparton processes, namely, the
disconnected processes, as has been stressed in Ref. 2 are
less suppressed than predicted by the naive counting rules
with respect to any connected process involving the same
number of constituents. That is why they are much more
important than the connected ones. They are, however,
poorly investigated as far as spin and color structure and
factorizability are concerned. An example of a multipar-
ton process, i.e., the inclusive double scattering, has been
analyzed by Paver and Treleani in the spinless and color-
less case.

The aim of this paper is to study disconnected mul-
tiparton processes in the QCD framework. In dealing
with radiative corrections to disconnected multiparton
processes, one has to consider two distinct classes of
gluons. We call nonconnecting (NC) gluons those which
correct each hard process separately as in single parton
processes [Fig. 2(a)] and connecting (C) gluons those
which connect the various hard processes [Fig. 2(b)]. This
distinction is necessary, for NC gluons and C gluons have
different kinematical properties as we will see in Sec. III.

The existence of C. gluons apparently causes trouble for
the factorizability of the process, but we show that in the
leading-logarithm approximation (LLA) they do not. We
also show that the spin and color degrees of freedom in-
troduce six newly defined structure functions for each
hadron. These structure functions provide information

FIG. 1. The diagram corresponding to the amplitude A, the
discontinuity of which gives the cross section of a multiparton
process. Arrows indicate the momentum flow. The hard blob
S is disconnected (up to radiative corrections).
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internal momentum variables; we choose them as
o., X,A, B,o', X' with

Q( —a2

b) —b2r=
2

a ( —a2
CT =

2

b) —b2X'=
2

A =PA —a) —a2,
B=Pg —b) —b2 .

(2.1)

The amplitude A according to Fig. 1 can be written as
(the a s are Dirac indices, color indices are understood for
the moment)

do. d X d A dB do' dX'A=
(2~) (2~) (2m. ) (2m ) (2m. ) (2m )

Xl"~p p pip. (X,B,X') .
1 2 2 1

(2.2)

The disconnected hard amplitude S possesses an extra 6
function which we factorize so that S takes on the form

FIG. 2. (a) An example of NC gluons. {b) An example of C
gluons; kT ——g,.k~; -R

S ' '. . . (cr, X,A,B,o', X')

=S ' '. . . (o,X,A, B,o', X')(2') 5' '(o+X—o' —X') .

not only on the longitudinal-momentum-fraction distribu-
tions of the partons, but also on the way the incoming-
parton color and spin are correlated inside the parent had-
ron. These structure functions depend also on the relative
transverse distance bT separating, inside the hadron, the
two incoming partons. We will recover this feature using
a more direct method than that of Ref. 2. The general
description will then be applied to the simplest example of
a multiparton process, namely, the double Drell- Yan
(DDY) mechanism. Goebel, Scott, and Halzen have es-
timated the DDY cross section and concluded that it is at
the limit of observability.

The paper is organized as follows. In Sec. II we carry
out the study of disconnected processes without making
reference to any specific reaction. Section III will be de-
voted to connecting gluons and show that they do not af-
fect the factorizability at I.I.A. Finally in Sec. IV we
analyze the DDY process. We work out the cross section
do/dg~dgz using our above-mentioned structure func-
tions and show that these are convoluted with two com-
pletely uncorrelated single Drell- Yan cross sections.

II. FORMALISM OF THE DOUBLE SCATTERING

%"e study in this section the amplitude A associated
with the diagram in Fig. 1. There are six independent

(2.3)

To define the longitudinal fractions of momenta carried
by the partons of hadron A, we introduce the lightlike
four-vector gz in terms of which we write the Sudakov
decomposition

CT +0T
Np =XPAp+ 'g Ap+O Tp (2.4)

AP ——XAPAp+
A +AT

gAp+ ATp, (2.5)

2+B 2

Bp ——Y~Pgp+ ggp+BTp,
2Y~

and the same for primed variables o', X'. Here
na-—PA ~PA 'Pa

with

PA —g =gA oT ——PA.oT——0, PA gA —1 .2 2

One can take for qz, for instance, qz —P~/P„Pz. Simi-
larly,

22+ XT2
Xp ——Yap+ 2Y gyp+ XTp,
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We write the 5 function (2.3) as and similarly for the other variables. Therefore the am-
plitude A in Eq. (2.2) takes on the form

(g T+XT o'T—X'T—)5(XP& X—'Pq )

&&5(YPE —Y'PE )X2

=—5121(aT+xT aT xT)5(x —x')5(Y —Y'),
s

1
A = dx1dx2dy1dy2d bz. I ~, , (x1,x2, bT, TI~,P„)2$ cx)cx2Q2cxI

~ pjP2P2P&S ' ' (x1 x»y1~y2~P& P& )

(2.10)

(2.6)
where

where Vs is the center-of-mass energy and Pq PE —s.
The transverse component 5' '(crT+XT o'—T X—'T) mixes
the upper and lower parts and it is singular for collinear
interacting partons. In order to achieve factorization of
the upper, rniddle, and lower parts, we use the integral
representation of the 5 function,

I„,, (x1,x2, . . . )a]apa2a)

d'o- d4a d4o-'
=4m f q 4 45(X—cr.z)g)5(x„——A zjg)

(2~) (2') (2n )

5' '(CrT+XT Cr'T—X'T—)

I—ib& (oT+X&—o&—XT) ~ ~T
e

(2m )
(2.7)

The parameter bT, being the coordinate conjugate to the
relative transverse momentum crT, is interpreted as the
relative transverse distance, within the hadron, which
separates the two incoming partons. This bT dependence
is a characteristic of disconnected processes. Since the

~ p(p~ ~ ~ ~

hard amplitude S, . . . is no longer singular in the col-

linear direction, one can Taylor-expand it around XPz,
YPz, X—„Pz, X'P» FPz, F~Pz, thus

S~', ', . . . (o,X,A,B,o', X')

—ibT. (crT —aT)Qe (2.11)

and similarly for I E &&. The integrations over X' and
1 2 2 1

Y' have been performed using the last 5 function in Eq.
(2.6) and we have converted in formula (2.10) to the vari-
ables x1,x2 and y1,y2 which are the momentum fractions
corresponding, respectively, to a&, a2 and b&, b2 in Fig. 1.
The total cross section is obtained from the amplitude A

by the formula

1
CTD = 01SCA

2$ (s)
(2.12)

Taking the discontinuity of A in the variable s, the cross
section reads

~ p)p2
a&a2

( o~ XPqp ) + —. (2.8)

1
aD dxldx2dy1dy2d bTI g ~ ~ (x1 x2 bz' ~ ~ ~ )

4$
&~2' ' '

r p)P2XDiscS . . . I'E~~ . . . (y1,y2, bT, . . . ),
(s)

We shall retain only the first term of the expansion which
depends solely on the X components of the parton's mo-
menta. The remaining terms correspond to higher-power
corrections in I/s.

To integrate over the off-shell momentum squared and
the transverse momenta of the incoming partons, keeping
the X components fixed, we introduce the identity

f d o= f d o dX5(X cr.zjz)—(2.9)

(2.13)

where I q . . . (x1,x2 ) is a cut amplitude in the vari-a&a&. . .
able A and similarly for I & where the variable is 8 .
The discontinuity in the hard amplitude S~ ~ . . . is taken

- pjp2

over s =(x1+x2)(y1+y2)s.
In the next section we will concentrate on the spin and

color structure of the cut amplitude I a&a2- ~

A. The spin structure of the cut amplitude I
~i~Pz ~i

In order to investigate the spin structure of Eq. (2.13), one has to expand the tensor I, , in the basis of the 16-y
Q

1cx2Q2 cx )

matrices for each pair of indices (a1a2) and (a1a2). For massless quarks and to leading order in 1/s, we have the general
expansion:

'(x1 x2 1D 9 bT) GDP 'P +GEP P +GDs(PXS) (P3 5) +GEs(PYS) (PXS)

+higher-power corrections . (2.14)
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Terms proportional to bz- as well as g terms are not leading since dimbT ——dime= —1. Furthermore, there is only an
even number of y5 matrices, due to parity conservation. It might appear at first sight that the four tensors are indepen-
dent. This is not so; to see it, one converts to the helicity basis using the identities

P, = +522 u~ (p, A, )u, (p, A, ')
A,A,

'

and

(Py5), = g A522 u~, (p, A, )u, (p, A, ') .
A,i, '

The quantum number A, is twice the helicity and takes on the values A, =+1. Therefore I" takes on the form

" '= & 'G 5. '5. '+G~5. '5" +G ~ ~ 5. g 5g ga1a2a2a1
A, A' 1 1 2 2 1 2 2 1 1 2 2

+G/5~1~25&
&

i 52
&

)u(g (xlp, A))u~ (x2p, A2)u, (xlp, A))u 5 (x2p, A2) .

Now the four tensors in formula (2.16) are not all independent. They are related by the identity

(1+A(A2)5q q, 5 q, ——(1+A,)A2)5q q, 5q
1 1 2 2

(2.15)

(2.16)

(2.17)

The quantities GD, Gz, GD5, Gz5 are, however, not all positive definite. In order to write I" in terms of well-defined struc-
ture functions, we express the above-mentioned tensors in terms of the projectors

~& I++& I

——&&& & I+ —&+
I

—+&)& & I+—
&
—

I

—+&& & (2.18)

which are, respectively, the projectors on the subspace spanned by the states (
I
++ ), I

——)), on the state
(I + —)+ I

—+))/v2, and on (I + —) —
I

—+))/3/2. These are the irreducible states of the tensorial space
I

A, )A2) =
I

A, l )
I
A2). The matrix elements of the above projectors are given by

(1+A, (A2)
(X,A2IP(~++&

~
&) I

A, ,A2)=5„~,5~ ~,

(~)~2
I P(

~

+-&+
~

-+&) I
~1~2 ) =

(~1~2 I P(
~

+-&-
(
-+ &) I

~1~2 ) =

1 2 2 1 1 1 2 2

6~ ~, 6~ ~, —5~ ~, 5~ ~,
1 1 2 2 1 2 2 1

(2.19)

One may invert the above expressions (2.19) and write down the tensors of Eq. (2.16) in terms of the three independent
projectors. Thus one can write down the cut amplitude I, , in terms of the above projectors,

a1a2a2a1I, , (, b,p)= g ( —,G(AA,
I P(i & i &) I

A'A' )+G (AA,
I P(( & i

& I

A'A' )
1

+G3(A X)I2P(~ +&
~

+&) I
A, )A2))u~ u~ u, u, (2.20)a1 a2

1 a2

The G~ s (a = 1,2, 3) are the probabilities to find two quarks within the proton in the helicity state
I
a ) corresponding to

the projector P(~). The normalization factor —, comes from TrP( ~++& ( &)
——2. The structure functions G~ s being

now properly defined, one can use the matrix elements (2.19) and perform the summation over the helicities to recover a
well-defined expansion in P and Py5. Thus we arrive at the final expansion of the tensor I'« . . . on the physical basisa1a2' '

for Dirac indices:

(xl»2»T P) = I
'

Gl [P P, +(P7'5), ,
(P7'5) ]

+ 'G2lP. ..;P., ;
—(P75)...;(P75),.—; ij+ 2 G3(P...;P, , P'.

, ;P, ;) I
~— (2.21)

Now going back to the formula for the cross section o.D
(2.13) and inserting the expansion (2.21) we get an expres-
sion which can be written in a matrix form:

oD I dx 1dx2dy 1dy2d'bTG~ (x 1 x2,bT)os(y 1 y2 bT )

(2.22)

11 12 13

21 22 23

O32

(2.23)

where Gz =—(G&,G&, G& ), similarly for Gl) and o is a
three-by-three matrix

The components o, are linear combinations of elementa-
ry cross sections o.2)D, oE~, oDE, os, for instance,
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o )1=2oDD,

(r22 4(rJDD + rJEE ~ED +DE )

(r)2=2(2lrDE —(rDD) .

(2.24)

~ ~ ~ r ~ rr = 6 (lil2 IP(3) I lil2 )

+, G &lil2 IP(6) I
1)i2 &X +N

(2.28)

The cross sections crEL (K,L =D,E) are the elementary
cross sections associated with definite helicity diagrams.
The notation D (direct) and E (exchange) refer to whether
the incoming quarks a&,a2, b1,bz in Fig. 1 keep their ini-
tial helicities or exchange them after the hard interaction
(the same notation will be used for color). We sketch, in
Fig. 3, for a particular color projection, the four helicity
diagrams corresponding to different helicity projections.
In these diagrams the loops with arrows indicate the heli-
city flow.

with i)I the number of color, X=3 for SU(3).
Here G' and G stand, respectively, for the probabili-

ties to find two quarks within the proton in the color
states

I
3) and

I
6) and P(3),P(6) are their corresponding

projectors. Their matrix elements are given by the follow-
ing expressions

(l, l, IP(-, )
Il', l;)=

(2.29)

B. The color structure of the cut amplitude
.I ~t

I '1'2'2 1

—~ V r-radii
1 2

n

=y&p, n Il', l;&(l, l, Ip, n& . (2.25)

Here the indices (i) are color indices and Dirac indices
are understood. The cut amplitude has the following
orm,

& l ll2 I P(6) I

l 1l 2 &

Now putting the spin and the color all together we get six
independent structure functions G' (xi,xz, bT) (i =1,2;
a=1,2, 3) which are the probabilities to find two quarks
within the proton in the helicity states (

I
+ + ) or

I
——&), ( I+ —&+ I

—+&)/~2 or ( I+ —)
—

I

—+ ) )/~ 2 and in the color state
I

3 ) or
I
6).

Finally the cross section (rD takes on the form

)= 2 &a li)i2& la&.
a =3,6

(2.26)

Therefore the cut amplitude takes on the following form
~ ~ or olI ' ' ' '= g G'(iii2 Ia)(a Iiii2) .

a =3,6

(2.27)

l )l2l2l (Since I ' ' ' ' is color singlet, only the projectors on the
states

I
3) and

I
6) appear in the sum. To rewrite I with

normalized G's we divide the projectors by their traces.
Thus we arrive at

(c)

FIG. 3. The four heIicity projections defining the cross sec-
IJ IJ IJ IJ IJtalons o.~L, , a =a~D, b =aEE, e =o.~E, d =oED where the loops

indicate the helicity flow.

In this notation, we keep only the color indices and omit
all the remaining quantum numbers. n refers to the spec-
tator system and n is its charge conjugate. p refers to the
incoming hadron A or 8.

The quarks belong to the three-dimensional representa-
tion of SU(3) and since 33=36, one can expand the
two-quark state

I
i,i2) in the irreducible basis

I
3),

I
6),

1.e.,

(rD = f dx, dx2dp)dp2d'bTG„(x„x2, br)AGE(p„p„bT)

(2.30)

with Gg =—(Gg, ,Gg, , Gg, , Gg, ,Gg, ,G~, ) and (7" (a,a'
=1,2, 3; i,i =1,2) is a six-by-six matrix generalizing that
of Eq. (2.23). The upper indices in both cr~~ and G~
refer to color and the lower ones to spin. These cross sec-
tions are linear combinations of the elementary cross sec-
tion o~~ (I,J,K,L =D,E) generalizing those introduced in
Eq. (2.24). They correspond to definite color and helicity
diagrams. For a given helicity flow, e.g., oDD, these cross
sections are sketched in Fig. 3 where now the loops indi-
cate the color flow.

So far the spin and color analysis leading to formula
(2.30) is quite general and o may describe any hard
disconnected process (e.g., double Drell- Yan, double
scattering and so on), so there is a set of structure func-
tions and a set of hard cross sections to compute in order
to write down a hadronic cross section. Until now all the
attempts to evaluate the double scattering cross section
limited themselves to the direct term and this an1ounts to
consider only the component oDD represented in Fig. 3(a),
whereas all the exchange terms represented by the remain-
ing components are neglected. This is valid of course only
for an order-of-magnitude estimate. We will see in the
last section that the basis in spin and color on which we
have expanded I diagonalizes the matrix o. for the double
Drell-Yan process. We will also show that all the com-
ponents o.zI can be expressed in terms of the direct one,
i.e., oDD, and furthermore that crDD factorizes as
o.DD ——o.&o.2 where o.

1 and o.z are the cross sections for two
uncorrelated single Drell- Yan mechanisms.
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III. PROPERTIES OF CONNECTING GLUONS (C)

At any order in a„say, (a, )" a diagram with only NC
gluons gives the same correction as in single parton pro-
cesses. Therefore the collinear NC gluons yield a loga-
rithmic term of the form (a, lng)" in the LLA. In fact
this is manifest, for instance, in the planar gauge of Ref. 5
where only ladder-type diagrams contribute at the LLA,
and where the integration over the transverse momenta of
the gluons gives a factor

come from connecting gluons. The question of whether
or not nonconnecting gluons will spoil factorization will
be the object of a forthcoming study.

For the moment we conjecture that factorization does
hold and that the structure functions of formula (2.30)
should be replaced by evolving structure functions
G~(x, ,x„bT,Q„Q2), where Ql and Q, are typical
masses associated to the two disconnected subprocesses.
For the double Drell-Yan mechanism Ql and Q2 stand
for the masses of the lepton pairs.

g2 d k1T
a, "IN,(g') ~ a,"

k1T

d k„T
o-(a, lng )"

k„„'
(3.1)

IV. APPLICATION TO THE DOUBLE
DRELL-YAN PROCESS

(Q being a mass scale of the hard process).
The purpose of this section is to show that collinear C

gluons instead yield no lng factor and therefore are not
leading with respect to NC gluons.

First we note an important "kinematical" constraint,
namely, that in a given diagram the sum of the transverse
momenta of C gluons

(3.2)

We first generalize to the double Drell-Yan process the
single Drell-Yan formula which relates the cross section
do/dg to o, cr standing for the annihilation cross section
of the partons into a photon of mass Q.

For the case of two distinct lepton pairs, e.g. ,
(e+e,p+p ) (Fig. 4) we get the simple generalization

'2
der a 1

g 2dg 2 3~ g 2g 2

has a cutoff of the order of 1/R irrespective of the num-
ber of these gluons (R is the hadronic size; R =1 fm). As
can be seen for instance by inspection of Fig. 2(b),
momentum conservation requires

GA (X 1 tX 2~ T~ Q 1 » Q2 )O(Born)

XGB(y„y2,bT, gl, g2)dxldx2dyldy2 .

kT a1T+~1T a1T ~1T . (3.3) (4.1)

Therefore, since a1T,a1T,b1T,b1T are bounded by the ha-
dronic wave functions (I ~ and I"B in Fig. 1), kT must be
of the order of 1/R. This constraint reduces the available
phase space of the C gluons and this is crucial for the fol-
lowing. The possible leading contribution of C gluons to
the amplitude comes from the collinear ones. At order
(a, )" it is of the form

Q2
a."Ic(g')~ I, d knT n

2 exp bg kz;—
knT i=1

n«s (3.4)

In formula (3.4) we have introduced an infrared cutoff
(A,=R ') to decouple long-wavelength gluons. The
Gaussian form in the integrand comes from the hadronic
vertices in Fig. 1 and accounts for the condition (3.2).
The choice of a Gaussian form for the softness of the
wave function is a rnatter of convenience. It is shown in
the Appendix that

(This formula is valid under our conjecture of factoriza-
tion stated above. ) In Eq. (4.1), the matrix cr [cf. formula
(2.30)] is the disconnected cross section to produce two
photons- of masses Ql and Q2. The factor
(a/3m) /Ql Q2 comes from integration over angular dis-
tributions of the two lepton pairs. o.(Bp ) is a linear com-
bination of o~~lB, l (I,J,K,L =D,F) which have been in-
troduced in Sec. II and represented in Fig. 3.

At first sight, one might think that there is no simple
relations between the various elementary cross sections
o&z. This is, however, not true. In fact, we have the rela-
tionship

IJ IJ DD
KL ( Bo ) ~KL DD(Bo ) (4.2)

Ic(g ) — const .
Q2 —+ oo

(3.5)

That is to say, the contribution of C gluons yield no lng
factor. Therefore owing to the results (3.1) and (3.5), the
diagrams where one or more C gluons are exchanged are
not leading, order by order, with respect to those which
contain no C gluons.

Thus we can make the following conclusion: any mul-
tiparton process which is disconnected at the parton level,
remains disconnected to any leading order in o, There-
fore if there is any violation of factorization, it cannot

™=~~/

FIG. 4. The double Drell-Yan process with two different
pairs (e+e ) and (p+p ).
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where 8'KL are simple numerical constants. The matrix
W has the form

1

N
1

2

1

2X

1

2X
1

2

1

2

1

2%
1

2

1

2&

1

2X
1

2

1

2%
1

2

(4.3)

To work out 8', one computes the components o.KL(B,
IJ

They involve the following traces (we omit the subscript
Born in the following)

Thus we succeed in writing, for the double Drell-Yan pro-
cess, all the color and spin projections oxL in terms of
only one, i.e., o.DD. Moreover, since connecting gluons are
neglected oDD factorizes as

DD
~DD 12 ~ (4 7)

where o.
&

and o.2 are two uncorrelated single Drell-Yan
cross sections which are computed in the usual way.

To compute the hadronic cross section Eq. (4.1) we
come back to o ~~ which are linear combinations of o'xL,
whose coefficients are fixed by the I expansions Eq.
(2.21) and Eq. (2.28); an example has been given in the
case of spin in Eq. (2.24). Using the matrix W, we can
rewrite o "

~ in terms of o icrz only and find that o." is a
diagonal matrix in the physical basis we have chosen for
the expansion of the I 's,

~DD ~ C (Tryppg y pgt )(Trying y pii )

o zE ~ C (Try+„y p~ )(Try&~ y"p s),

~ED=~DE ~& Trypp~y payp~y paIJ IJ p v

where the coefficients C have the values

CEE ( DD ~2

( ED (DE

(4.4)

(4.5)

-w+ aa' C ~ii'~aa'1O2

(i =1,2;a=1,2, 3; no sum over i) (4.8)

with

4X
X —1

The above traces are easy to compute, and give the follow-
ing relations

IJ
IJ IJ IJ DD

ODE ~ED ~EE
2

(4.6)
DD

DE ED KL EE DD
KL ~KL ~ KL JKL ~

4X
%+1

(4.9)

doing back to formula (4.1) the cross section for the dou-
ble Drell-Yan process takes on the final and very simple
form

do
dQ dQ

1 C

Gga(xi

x2~bT~Ql�Q2�)GBa(3 it3 2tbT Ql Q2)
Qi'Q2'

a=1,2, 3

gg1(B, )0-2(B, )dx1dx2dy1dy2d bT2 (4.10)

V. CONCLUSION ACKNOWLEDGMENTS

In this paper we have analyzed disconnected multi. par-
ton processes in the context of the QCD parton model.
Particular attention has been given to the spin and color
structure, as well as to the factorizability of the process.
We have shown that connecting gluons which apparently
lead to violation of factorization have in fact no influence
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APPENDIX

We propose to show the asymptotic behavior [cf. for-
mula (3.5)]. This amounts to showing that the following
integral converges at infinity:
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d k1TI=
k +A,

d k
, exp b—g k;z2+ /2

OO nI= f dtl . dt„exp —k g t;
i=1

(A 1) dk. dk1 1n

(We will omit the subscript T in what follows. ) Let us
write Xexp t, k, ' b—gk,

i=1
(A3)

—t(k +A, )dt
k2+i,

Therefore I takes on the form

(A2)
Using the x and y components of k;, i.e.,

k; =k;~ +k,y
we arrive at

(A4)

OO nI= f dtl . . dt„exp —A,

i=1 J dk; . . dk~exp —g (t;+b)k; bg—k;„k~„
2

(A5)

The Gaussian integral in curly brackets is easy to compute:

dkl„. dk exp —g (t;+b)k; bg k; —kj„~det ' A(t„t2, . . . , t„,b),
/, J

1+J

where

t1+b b

(A6)

detA (t, ,t„.. . , t„,b) =
t2+b

tn+b

1 1(tt .—. t) 1+b
tn

(A7)

Inserting the result (A7) into formula (A5) we get

dt, dt„exp —A, g t;

1 1
o ~ o t 1 +b + n ~ ~ +

dt1 . dt„

1 1
t t 1+b

(A8)

According to formula (A2) we are now interested in the
small-t; region where I has the form

I

The integral I takes the final form

dt1 . . dt„

1 1—+ ' +—
1 n

tn

(A9) I— dg 1 dz1- . . dzn
5 1 — z;

nA, T 1, /T Z1' 'Zn

a) dy' g —2 dt1''I- 5
nA2 7 t1''' tn

T
i=1

Introducing the extra variable T=g, ll /t; with.

T ~ n Asince 1/t; &, A, ,
dz1 - . dznf dT-~X

g2 y2 g2/T z o ~ o z

dT f l dZl ' dZn 18(1—Zl —' ' —Zn l)
na' T X'tr z, . z„,(1—z, —. . —z„,)

5 1—ao dT x—2 dtl ' ' ' dt„
n/2 T2 0 t t I Tti

(A 10)
since only the small-z; regions are of interest. Therefore
we get the final result

putting z; = 1 /Tt;, we have f dT1 n-l
ng2 Z"2 g2

(A13)

A,
2

(zi (1 (A 1 1)
which is convergent at infinity due to the denominator.



32 MULTIPARTON PROCESSES: AN APPLICATION TO THE 2379

M. Jacob, Report No. TH 3693 CERN, 1983 (unpublished); N.
Paver and D. Treleani, Phys. Lett. 146B, 252 (1984). B.
Humpert, ibid. 131B,461 (1983);P. V. Landshoff, Phys. Rev.
D 10, 1024 (1974).

H. David Politzer, Nucl. Phys. B127, 349 (1980); N. Paver and
D. Treleani, Nuovo Cimento 7DA, 215 (1982); M. Jacob, Re-
port No. TH 3515 CERN, 1983 (unpublished).

C. Goebel, D. M. Scott, and F. Halzen, Phys. Rev. D 22, 2789
(1980).

~R. K. Ellis, W. Furmanski, and R. Petronzio, Nucl. Phys.
B207, 1 (1982).

5Y. UL. Dokshitzer, D. I. Dyakonov, and S. I. Troyan, Phys.

Rep. 58, 269 (1980).
R. K. Ellis, H. Georgi, M. Machacek, H. D. Politzer, and G.

C. Ross, Nucl. Phys. B152, 285 (1979); D. Amati, R. Petron-
zio, and G. Veneziano, ibid. B146, 29 (1978); A. H. Mueller,
Phys. Rev. D 18, 3705 (1978); Phys. Lett. 108$, 355 (1982);
S. B. Libby and G. Sterman, Phys. Rev. D 18, 3252 (1978);C.
T. Sachrajda, in Proceedings of the Fourteenth International
Symposium on Multiparticle Dynamics, Lake Tahoe, 1983,
edited by J. F. Gunion and P. M. Yager (World Scientific,
Singapore, 1984); G. Bodwin, Phys. Rev. D 31, 2616 (1985);J.
C. Collins et al. , Oregon Report No. OITS 287, 1985 (unpub-
lished).


