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An X/D method of analytic representation for form factors, recently found successful for the
deuteron, is used to analyze all the available data on the He charge form factor and obtain useful
information. The nearest anomalous cut positions in the t plane relevant for this analysis are calcu-
lated using possible exchanges at the photon-helium vertex. In contrast to the deuteron case, all
familiar and simple intermediate states yield anomalous cut positions above the three-pion cut. Al-
though including the contributions of the three-pion cut in the D function and the five-pion cut in
the X function yields a reasonable fit except around the second maximum, the best fit is obtained
using the anomalous cut at t, =0.247 GeV instead of the five-pion cut. An exponential weight
function, necessary for optimized polynomial expansion in Laguerre polynomials in the X function,
seems to be essential in reducing the g value as in the case of the deuteron. The dip in the form-
factor data is parametrized in terms of a zero of the X function and the formula predicts a second
zero and a third maximum which can be verified in future experiments. The existing data favor an
asymptotic behavior of the type exp[ —const(lnt) ](int)" /t2 and the formula extrapolates smoothly
into the timelike region. A plot of charge density against nuclear radius shows a central depression
and the root-meari-square and half-density radii of the distribution are computed.

I. INTRODUCTION

The basic principle of analyticity has been demonstrat-
ed to play a very important role in representing the form
factors of hadrons and thus, yielding useful information
obtainable from data analysis. ' With a view to testing the
applicability of such analytic formulas in the simplest
case of nuclear physics, the elastic form factors of deute-
ron have been successfully parametrized and information
has been obtained on the radii of charge and magnetic
moment distributions of deuteron, the asymptotic
behavior of its form factors, and the magnitudes of the
form factors in the timelike region, on extrapolation.
But He is the lightest isoscalar nucleus for which a large
number of unambiguous measurements have been report-
ed on its charge form factors, although in the case of the
deuteron such unambiguous results exist only on the mag-
netic form factors. Further, there is a possibility that the
diffractionlike dips observed in the electron- He elastic
scattering cross sections, which appear as structures in the
He charge form factors, could be parametrized in terms

of zeros of an analytic function satisfying the correct
analyticity properly in the t plane. Thus, the He charge-
form-factor data provide an interesting testing ground of
the method of analytic representation for light nuclei. In
Sec. II of this paper we briefly summarize the method of
analytic representation of form factors which takes into
account the contributions due to the nearest cuts, includ-
ing those of the anomalous ones. In Sec. III we compute
the positions of the anomalous cuts of the He form factor
using different exchanges at the electromagnetic vertex.
In Sec. IV we examine how far the analytic representation
succeeds in describing the charge-form-factor data of He.
In Sec. V, we report some information relating to the He
nucleus and its form factor which we obtain from the

present analysis. Our conclusions are briefly summarized
in Sec. VI.

II. A MODIFIED N/D METHOD OF ANALYTIC
REPRESENTATION

where

2 k'
h(t) =— ln

9m
+ —1

9m

' 1/2

(3)

with

The fact that the D(t) function contains the threshold
structure corresponding to the nearest three-pion cut can
be verified from the twice-subtracted dispersion relation,

The form factor F(t) of a hadron or a light nucleus is
proposed to satisfy the representation'

F ( t) =N (t) /D(t),
where the D(t) function is taken to represent the contri-
bution of the nearest physical cut and the N(t) function
that of the other cut which can be parametrized by con-
formal mapping and optimized polynomial expansion '

(OPE). For isoscalar target nuclei, the nearest three-
pion-cut contribution can be parametrized as

2

D (t) =ga„t"+ h (t)+ 2 mn.

3 m.
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gt ~ (t/9 m—) ~dt'
h(t)= ———m '+ t'—

3 gl 9m~ t' (t' t)

(4)

The effect of the other cut, starting at t =t„ is approxi-
mated as a series in Laguerre polynomials with exponen-
tial weight function in terms of a parabolic conformal
mapping variable Z (Refs. 1, 2, and 4),

X(t)=e gg~L (2aZ)

with

Z(t) = ln

1/2 1/2 2 FIG. 1. Vertex graph for computation of the anoma1ous cuts
of the He form factor as described in the text.

Note that the a s and a occurring in Eqs. (2) and (5),
respectively, are unknown parameters to be determined
from data fitting.

In the case of the deuteron, the value of t, was taken to
be the anomalous cut position. For the He form factor,
the next nearest normal cut position starts at t =25m
But there are several anomalous cuts that are nearer to the
origin of the t plane than the five-pion cut as can be
found from computations carried out in the next section.
We find that a better description of the data results if we
take t, to correspond to a suitable anomalous-cut position
instead of the five-pion cut. For the first M significant
terms, the series (5) can be rewritten as

like region. On the other hand, if the zeros of D(t) are
complex and their imaginary parts are large, the reso-
nances would not be observed.

III. COMPUTATION OF THE ANOMALOUS-CUT
POSITIONS

The method of computation of anomalous-cut posi-
tions using different vertex graphs has been discussed ex-
tensively in the literature, using Landu-Bjorken rules for
the vertex shown in Fig. 1. The condition of an
anomalous threshold can be written as

M
N(t)=e g e~Z~. (7)

Yb, Y,
With the approximations given by Eqs. (2) and (7), the
form factor represented by Eq. (1) satisfies a general type
of asymptotic behavior:

~F(t)
~

~ exp[ —a(lnt) ]
( lnt. )

21fi

~n

Yb, 1 Y~b ——0,
Yca ~ah

where

(9)

with m, n =0, 1,2, . . . . A simple dimensional quark-
counting rule (DQCR) predicts a =m =0 and n = 1 1 for
the He charge form factor, but scaling violations in the
inelastic structure functions would modify this type of
asymptotic behavior by powers of lnt. Modification of
power falloff of form factors at t~ao by exponential
functions might arise in the type of models discussed in
Ref. 2.

It may be possible that the zeros of the X function may
exist in the physical region of the I; plane, thus accounting
for the observed dip in the form-factor data. Also the
zeros of the D(t) function might yield resonances on ex-
trapolation, if they are nearer to the real axis in the time-

I

m, +mb —i2 2

2ma~b

)nb +m, —M2 2 2

Ybc ——

2' b Plc

mc +rn~ —M
Yc~ =

2Plc Plg
(12)

In Eqs. (10—(12), m„mb, and m, stand for masses of the
objects a, b, and c, respectively, in Fig. I and M stands
for the mass of the He nucleus. Solving the determinant
Eq. (9) with definitions (10), (11), and (12) yields the fol-
lowing expression for the cut position in the t plane:

I
z I(ms +m, M)(m, +m, M—)—

~c

+[16m m m "+(m +m M )(m +m M ) 4m m (m +m M )

(13)
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Using formula (13) and various possible exchanges of par-
ticles, nuclei, or their combinations for each of the objects
a, b, and c, we have calculated the anomalous-cut posi-
tions. As in the case of the deuteron it is natural to sup-
pose that simple and familiar exchanges corresponding to
He~d +d, He~ He+ n, and "He~ H+p transitions

might lead to anomalous-cut positions below the three-
pion cut. But our computations using formula (13) shows
that this is not really true. For all cases with a =b, the
minus root gives t =0, whereas the plus root yields

with

—t=5(mg, m, ,M )/M, (14)

TABLE I. Computation of anomalous-cut positions with
various exchanges, a, b, and c in the vertex graph of Fig. 1.

Anomalous-cut position
t, (GeV } t;„(GeV )

n

d
dm'

p7T
n

p
p7T

nm'
dm'

p&

n

d
p
X (1470)
X*(1470)
p&
n&
dm'
dm'
X*(1470)
nm'

p 'F/

X*(1470)
nm'
dm'

He
d
H

'Hem'
3He
'He
dm'

3He
'Hem'

'Hem'

'Hem'
dm'
He

0.205
0.717
0.190
2.708
2.720
0.759
0.747
5.864
4.909
2.502
1.970
1.956
3.552
2.701
7.827
1.670

0
0
0
0.247
0.245
0.182
0.173
0.163
0
0.102
0.064
0.063
0.066
0
0
0

5( m, ,m, ,M ) =m, "+m, +M 2m—, m,

—2m, 'M' —2m, 'M' .

Applying this to the He~d. +d case we obtain
2

r= — (M 4Md )=—32M~(28d —BH, ),M

d

where M~ is the nucleon mass and Bd and BH, denote
binding energies of the deuteron and He, respectively.
Using the standard values I&——938.5 MeV, Bd ——2.225
MeV, and SHE ——28.3 MeV gives t, =0.717 GeV, which
lies farther away than the five-pion cut. Similar calcula-
tions for He~ He+ n and He~ H+p yields the
anomalous-cut positions at t, =0.205 and 0.190 GeV,
respectively. Results of our calculations using vertex
graphs with these and more complicated intermediate
states are summarized in Table I, where r, (r;„) stands
for the t value obtained from Eq. (13) using the plus
(minus) root. Since the right-hand side of Eq. (13) is sym-
metric in m, ~mb, we note that the (b,a, c) combination
at the vertex of Fig. 1 yields the same value of the
anomalous cut as (a,b, c) Table I is. by no means exhaus-
tive as it may be possible to imagine more complicated in-
termediate states than those considered here; bui we have

verified that they yield cut positions farther away than the
five-pion cut.

Although formula (13) gives two roots in general, only
one of them yields the correct anomalous-cut position.
For cases with a =b, the minus root corresponding to
tmj~ yields incorrect cut position while t, gives the correct
one. In all simple and complicated cases considered in
Table I r, &9m . Only in cases of complicated (a, b, c)
combinations like (p~,X*, He), ( n, nor, Hem ), and
(pm. ,N*, Herr ) for which a&b, the minus root yields
t~m & 9m . But from the analogy of the simple cases
with a =b it is likely that only the t, values yield the
right cut positions also in the cases with a&b.

IV. ANALYSIS OF THE FORM-FACTOR DATA
/

Using the modified X/D method as described in Sec.
II, we report in this section the results of our data analysis
on the He charge form factor.

Vfe have collected 112 data points reported by various
experimental groups with appropriate errors. The nor-
malization errors for the data of Refs. 6 and 7 have been
quoted as 2% and 6%, respectively. We have also taken
the normalization error of the older data of Ref. 8 to be
6%. For the sake of convenience in data fitting we use
the N function in the form (7) along with the formula (6)
for Z. Using the normalization condition eo ——ao and
taking t, =25m we first searched for the values of the
parameters in formulas (1), (2), and (7) to obtain the best
fit. Setting a =0, which corresponds to the absence of the
exponential weight function, yielded a very large value of
total 7, but the g value reduced drastically when the ex-
ponential weight function was included (a&0). It may be
noted that this exponential weight function has been also
found to be essential for the deuteron form factors, al-
though for hadrons, good fits have been obtained in its ab-
sence. A fit to the available data with t, =25m„has
been obtained by retaining three terms in each series, (2)
and (7) as shown by the dot-dashed curve in Fig. 2, and
yields a total X value as 179 and P /DF=1.68. The six
unknown parameters of this fit are given in Table II. As
can be seen from Fig. 2, this fit yields a reasonably good
description of the available data except around the
secondary-maximum region where it deviates significantly
from data points. Increasing the number of parameters in
the X and the D functions did not improve the fit.

As noted in Sec. III there are a number of anomalous
cuts which are nearer to r =0 than the five-pion cut.
Therefore, as in the case of the deuteron, it is reasonable
to suppose that the contributions of some of them might
be ver'y significant in representing the form factor. In the
next step of our analysis we tried to obtain good fits to the
data choosing t, as the anomalous-cut positions of Table I
while assuming the D function as arising out of the
three-pion cut in every case. This analysis was repeated
for all values of the anomalous cuts of Table I existing
below the five-pion cut, at first, with a total number of
five-parameters and without including the Z and
highest-order terms in the X(t) function, corresponding
to the absence of a second dip and a third maximum. The
best three of all such fits are shown by curves I, II, and III
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FIG. 2. Fits to the He form-factor data as a function of
various cut positions. Curves I, II, and III represent fits with
t, =0.2478, 0.205, and 0.190 GeV and the first two terms in
the N function but curve IV represents the fit with the five-pion
cut at t, =25m and the first three terms in the N function.

of Fig. 2 which correspond to anomalous-cut positions
t, =0.247, 0.205, and 0.190 GeV, respectively. When the
Z term was added to the X(t) function, the fits im-
proved significantly. These fits are shown in Fig. 3 by
curves I, II, and III with g /DF=1.43, 2.26, and 2.64,
respectively. Thus, the best of all the fits were obtained

TABLE. II. Unknown parameters of the analytic representa-
tion obtained from data analysis for the four fits where fits I, II,
and III correspond to curves I, II, and III of Fig. 3 with the
anomalous-cut positions at t, =0.2478, 0.205, and 0.190 GeV,
respectively, but fit IV corresponds to curve IV of Fig. 2 with
the five-pion cut in the t plane. Here g s are the coefficients of
the optimized polynomial expansion of the N function.

0.6 1.4 1.8
l t I (GeV )

FIG. 3. Fits to the He form-factor data with different
anomalous-cut positions. Curves I, II, and III represent fits
with three terms in the N function for t, =0.2478, 0.205, and
0.190 GeV, respectively.

0 0.2 2.2 2.6 3.0

by taking the contributions of the three-pion cut in the D
function and the anomalous cut at t, =0.247 GeV in the
X function. Although, visually, the fits appear to be
reasonably good for the anomalous-cut positions,
t, =0.205 or 0.190 GeV, the total g value in these cases
is significantly larger than the case with t, =0.247 GeV .
To discriminate more clearly between the fits with
t, =0.247 GeV and t, =0.205 GeV more data points in
the region, 1&

~

t
~

&3 GeV, are needed. The parameters
for fits I, II, and III of Fig. 3 and fit IV of Fig. 2 are re-
ported in Table II.

t, (GeV')

g /DF
n
ap (GeV )

a~

a& (GeV )

ep (GeV )

e, (GeV')
e& (GeV )

gp (GeV )

gI (GeV )

g,
'

(G.V)

I
0.2478

1.43
1.7591
1.8342
0.2477
2.4536
1.8342

—2.2559
0.54
1.2802
0.4667
0.0872

II
0.205

2.26
1.4768
2.3582
0.2346
2.4305
2.3582

—2.5147
0.54
1.6305
0.6038
0.1237

III
0.190

2.64
1.3966
0.1396
0.2325
2.4389
2.3488

—2.3803
0.4888
1.6219
0.6015
0.1253

IV
0.49

1.68
3.779
0.97
0.1636
0.2506
0.97

—1.848
0.548
0.744
0.206
0.019

V. SOME RELEVANT INFORMATION

In this section we report useful information relating to
the He nucleus and its charge form factor that can be ob-
tained from the results of data analysis described in Sec.
IV.

A. Information relating to analyticity, convergence,
and zeros of the form factor

It is clear from curve IV of Fig. 2 that the five-pion cut
in the N function along with the three-pion cut in the D
function can describe the data in the available spacelike
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region reasonably well, although there are significant devi-
ations around the second maximum. The best fit is ob-
tained as in the case of curve I of Fig. 3 if the five-pion
cut is replaced by the anomalous cut at t, =0.2478 GeV .
However the anomalous cuts arising out of (p,p, H) and
(n, n, He) exchanges appear visually to yield nearly the
same fits, but with larger 7 /DF values. Other
anomalous cuts yield fits worse than these and are there-
fore, much less important. As noted earlier, the presence
of the exponential weight function which occurs naturally
in Laguerre polynomial expansion is essential in both
cases for improving the fits. Also the convergence of the
OPE (S) proposed for the X function appears to be good
in both cases. To verify this we calculated the coeffi-
cients, g;, using the computed values of e;, as shown in
Table II for four different fits. It is clear that the succes-
sive coefficients in OPE decreases at a good rate. Besides,
in the series occurring in the D function, no higher-order
coefficients beyond a2 seem to be important. As en-

visaged in Secs. I and II, all the fits yield the correct dip
structure in the existing experimental data corresponding
to a zero of the X function at

~

t
~

=0.39 GeV, but each
fit requires a second zero and correspondingly a third
maximum existing in the physical region accessible to the
available range of experiments. The positions of the
second zero (third maximum) is predicted at

~

t
~

=1.94
(2.44), 1.87 (2.S), and 1.89 (2.S4) GeV for curves I, II, and
III, respectively, of Fig. 3, and at

~

t
~

=3.0 (3.4) GeV
for curve IV of Fig 2. In. the future, the presence of the
second zero and the third maximum could be verified by
more accurate experimental data on e He scattering in
the range 1.8(

~

t
~

&4.0 GeV and might discriminate
the importance of the five-pion cut as against the three
anomalous cuts. The positions of zeros and different
maxima are summarized in Table III along with other
physical quantities for all the four fits.

F(t) ~ exp[ —a(lnt) ](lnt) /tt~ ao
(16)

where +=1.7S91, 1 4768, and 1.3968 for curves I, II, and
III of Fig. 3, but a =3.779 for curve IV of Fig. 2. It may
be pointed out that this result is based upon extrapolation
of the proposed fits onto t +oo—and therefore, may not be
very reliable. ' The extrapolated values of the form factor
onto the timelike region in the case of fits I, II, and III
corresponding to Fig. 3 with t, =0.2478, 0.202, and 0.189
GeV, respectively, have been shown in Fig. 4 for smaller

i
t

~

values. The extrapolation of fits I and II with
t, =0.2478 and 0.202 GeV, respectively, have been
shown in Fig. S for larger

~

t
i

values. It is clear from
Fig. 4 that the extrapolation is smooth and shows a
threshold enhancement at the effective cut position. Also
the extrapolated curve does not show any evidence of res-
onance peaks as in the case of deuteron. The extrapolated
curves for the other fits can be similarly plotted using the
parameters of Table II. While obtaining these results it is
necessary to mention that the form factor at larger

~

t
~

values is likely to be less reliable because of the well-
known fact that the error in the extrapolated quantity be-
comes larger as one moves farther away from the data re-
gion. '

C. Nuclear charge density and charge radius

With the best fit I we have computed the charge density
p(r) of the He nucleus as a function of the nuclear radius
using the well-known formula

B. Extrapolation of the form factor
and its asymptotic behavior

Using the results of Table II and formulas (2) and (7),
we find that the experimental data favor the asymptotic
behavior

l3Pl &

i
l

)
I

I
I

I )

TABLE III. Different physical quantities obtained from the
present data analysis.

Physical
quantities

Root-mean-square
radius (fm)

Half-density
radius (fm)

Position of
first zero

(GeV )

Position of
second zero

(GeV')
Position of

second maximum
(GeV2)
Position of

third maximum
(Gev )

1.66

1.337

0.39

1.94

0.58

2.44

1.70

1.37

0.39

1.87

0.58

2.5

1.71

1.38

0.39

1.89

2.54

IV

1.80

1.4

0.39

3.0

0.58

3.4

.0,4

FIG. 4. Extrapolation of the He form factor into the time-
like region. Curves I, II, and III represent extrapolated values
corresponding to the best fits of Fig. 3 with t, =0.2478, 0.205,
and 0.190 Gev, respectively.
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FIG. 5. Extrapolation of the H, form factor into large-t
values of the timelike region. Curves I and II represent the ex-

trapolated values corresponding to the best fits of Fig. 3 with

t, =0.2478 and 0.205 GeV, respectively.
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FIG. 6. Computation of charge density p(r) as a function of
nuclear radius r.

p(r)= —,I F(
I
t

I
)»n(r&

I
t

I
)d

I
&

I

4m r
(17)

r, = [6F'(0)]'~ (18)

which needs extrapolation of the form factor only up to
r =0, and is computed to be 1.66, 1.7, 1.71, and 1.8 fm for
fits I, II, III, and IV, respectively. Thus the five-pion cut
yields a charge radius nearly 10—12%%uo larger than the
anomalous cuts.

The computed values of p(r) have been plotted against r
in Fig. 6 showing a central depression. The charge densi-

ty has a maximum at r=0.34 fm. The half-density ra-
dius obtained from such a computation is found to be
1.337 fm. It may be pointed out that the value of p(r)
near the center of the nucleus (r =0) is also uncertain to a
certain extent as it is related to the asymptotic behavior of
the form factor. The charge density for the other fits
which can be plotted in a similar fashion also shows a
central depression and a half-density radius nearly 1.4 fm
as summarized in Table III. The most reliable of all re-
sults obtained by the present Inethod is the root-mean-
square charge radius

three-pion cut originates from the familiar simple vertex
graph with p and n exchanges corresponding to the tran-
sition d~p+n. In the case of He all familiar and sim-
ple exchanges corresponding to He~d +d, He+ n, and
H+p are found to yield anomalous-cut positions above

the three-pion threshold. Present analysis sho~s that the
anomalous cuts existing between the three- and the five-
pion thresholds play an important role in representing the
form factor. The method also succeeds in obtaining use-
ful information on charge density, charge radii, asymptot-
ic behavior, and extrapolated values of form factors for
light nuclei subject to the well-known limitations. ' In the
proposed %/D method the presence of the exponential
weight function for the Laguerre polynomial expansion of
the X function was not necessary for hadrons, ' but seems
to be very much necessary for deuteron and He as evi-
dent from this analysis. The best fit obtained by this
analysis seems to favor strongly the presence of a second
dip and a third maximum which can also be verified by
future experimental measurements. To confirm such con-
clusions we plan to carry out such investigations for the
charge and magnetic form factors of He in a separate pa-
per.

VI. CONCLUSION

The present and earlier analyses suggest that the
method of analytic representation of form factors which
has been found successful for hadrons can also be used to
parametrize the data on light nuclei like deuteron and
He, but with appropriate modifications. In the case of

the deuteron, the nearest anomalous cut existing below the
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