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Chiral perturbation theory is applied to the decay K~2m. It is shown that, to quadratic order in
meson masses, the amplitude for K~2m can be written in terms of the unphysical amplitudes
K~m and K—+0, where 0 is the vacuum. One may then hope to calculate these two simpler ampli-

tudes with lattice Monte Carlo techniques, and thereby gain understanding of the AI =
2 rule in K

decay. The reason for the presence of the K~O amplitude is explained: it serves to cancel off
unwanted renormalization contributions to K~+. We make a rough test of the practicability of
these ideas in Monte Carlo studies. We also describe a method for evaluating meson decay constants
which does not require a determination of the quark masses.

I. INTRODUCTION

Lattice Monte Carlo techniques offer the possibility of
calculating, from the fundamental theory, hadronic ma-
trix elements of the operators which govern weak decays.
In particular, it seems likely that one may solve the long-
standing puzzle of the b,I= —,

' enhancement in hadronic
weak decays with these techniques. Partial efforts in this
direction have already been made an attempt to evaluate
all the relevant diagrams is now in progress. '

In such lattice calculations —and indeed also in studies
using other methods ' —a direct evaluation of the physi-
cal matrix elements of interest is rather difficult. For ex-
ample, in the mesonic sector on which we focus here, one
would like to calculate the matrix element (~~

~
6

~

K)
where e is a generic weak operator. However, the lattice
evaluation of this four-point function presents severe tech-
nical difficulties (even three-point functions are awkward
to deal with using present methods), and it would be a lot
simpler if one could look at reduced matrix elements such
as (m.

~

6
~

K ) or even (0
~

6
~

K ).
A systematic method of performing such reductions

(i.e., of finding relations between various matrix elements
of a given operator) is called chiral perturbation theory; it
involves the use of an effective Lagrangian for the
pseudo-Goldstone-boson sector of the theory. In Sec. II,
we apply the machinery of chiral perturbation theory to
the decay K~2m. We find that to lowest nontrivial or-
der in meson masses, the value of the matrix element
(m.

~

6
~

K) does not by itself determine the value of the
physical matrix element (stan

~

6 ~K); rather the ampli-
tude (0

~

6
~

K ) is required in addition to ( m.
~

6
~

K ) .
Following this calculation we explain, in Sec. III, the

underlying reasons for the relations we have found be-
tween the amplitudes. In fact, the amplitude (0

~

6
~
K)

is needed in order to subtract from (,n
~

B
~
K ) an unphys-

ical contribution (off-diagonal wave-function renormaliza-
tion) which does not effect the physical amplitude

( arm
~

6
~

K ). Finally, in Sec. IV, we report the results of
a lattice calculation designed as a rough test of the practi-
cality of these ideas.

II. CHIRAL-PERTURBATION- THEORY RESULTS

Define the unitary chiral matrix field X by

X:—exp
2i P'1;

where P' (a = 1, . . . , 8) are the (real) pseudoscalar-meson
fields; A,

' are proportional to the Gell-Mann matrices,
with tr(A, ,A,b) =5,b, and f is the meson decay constant,
which is the same for all mesons in this approximation
and is equal to 135 MeV with our conventions. Then the
chiral Lagrangian, correct to quadratic order in meson
masses and momenta, is

tr(B„XB"Xt) +v tr[M X+(MX ) ],
8

where M is the quark mass matrix

m„0 0
M= 0 md 0

0 0 m,

(2)

(3)

and U is a constant related to the meson masses by

f2m +' f'mx+' fzm 0

4(m„+md ) 4(m„+m, ) 4(md +m, )

Under SU(3)L, XSU(3)z, X transforms by

X~UK V

(4)

where UESU(3)L and VESU(3)z. This symmetry is
softly broken by the mass term in (2); however it is often
convenient, in order to keep track of the form of symme-
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try breaking, to imagine that M also transforms:

M~ VMU

With this fiction, W is "invariant" under SU(3)L,
X SU(3)g

One can now make a correspondence between an opera-
tor of interest in the underlying quark-gluon theory and
the meson operators in the effective theory which have the
same chiral transformation properties. This correspon-
dence wil1 involve a set of initially undetermined coeffi-
cients, one for each possible meson operator. The relevant
matrix elements can then be calculated in the effective
theory. If there are more matrix elements than there are
unknown coefficients, there will in general be relations
among them; it is these relations which we seek.

In the case at hand, the weak operators are all (8, 1) or
(27, 1) under SU(3)r X SU(3)z. This is true for both of the
operators 0+, which appear after an operator-product ex-
pansion for large M~, and for the operators
01,02, . . . , 06, which appear after a further expansion
for large m, . In the leading nontrivial order of chiral
perturbation theory there is only one (27, 1) operator:

(7)

where Tk~ is symmetric in i,j and in k, l and traceless on
any upper and lower index. The As = 1, Ad = —1, AI = —,

'

member of this multiplet (corresponding to Oq) has the
following nonzero elements of Tg( ..

1

13 31 13 31
T12 T12 T21 T21

23 32
T22 T22

33= 33= 3 ~

32 23 2

(8)

whereas the As = 1, Ad = —1, AI = —, member of the mul-

tiplet (corresponding to 04) has nonzero elements:

13 31 13 31T 12 T 12 T21 T21

cesses in which the weak operator injects energy and/or
momentum. Of course, in the physical process which is
of ultimate interest (E~2n. ), energy-momentum is con-
served, and total derivatives do not contribute.

The number of operators in (10) may be reduced by not-
ing that all the relevant (8,1) quark operators are invariant
under an additional discrete symmetry, CPS, which is the
product of ordinary CP with a "switching" symmetry, S,
which simply switches the s and d quarks. [S is actually
an element of U(3)„,«„.] As in (6), one can make S an
"invariance" of the entire chiral Lagrangian by switching
m, and m~ at the same time. Demanding CPS symmetry
then reduces the number of M =1, hd = —1, (8,1) chiral
operators to two:

6 ') "=tr[A(BpX)(B&Xt)],
(12)

where constant factors have been inserted into ez '" for
later convenience.

One now has the correspondence

e(8 1) (8 1)e.(8 1) ) ~(8 1)e (8 1)1&2 2
'

(13)

where the operators with (without) tildes are in the effec-
tive (underlying) theory, and where the unknown a coeffi-
cients are independent of meson (or quark) masses to this
order. It is then straightforward to calculate matrix ele-
ments of 6' "and 6' '" in terms of the a's by expand-
ing (1), (2), (7), and (12) in terms of P' and computing tree
diagrams. Note first that all matrix elements will vanish
quadratically with meson mass in the chiral limit; this is
because the operators (7) and (12) are either manifestly
proportional to meson mass squared or contain two
powers of derivatives. For states at rest we find

23 32 1

T22 T22

There are, to this order, four independent (8, 1) opera-
tors:

=—[(m'+) —(m'+) ]az'",

tr[A(BqX)(8"X )],
tr(AXM),

tr[A(XM) ],
trB„[A(B"X)X],

(10)

where M is taken to transform according to (6), and A is a
traceless 3&3 matrix. The As=1, Ad = —1 members of
these multiplets (corresponding to 0, 0~, 02, 0&, or
06) have

& +Ie""I&+&=4mM

4 2

( +
I

O'""
I
K+)=—

2

(m ~ Ie""IK )=, (m — ') ""
(m+~ Ie" "IK )=— (m ' —m )~'4i

(14)

A,q
——6;36q2 .

Note that total derivatives are not automatically excluded
in (10) since we have not integrated the operators over all
space-time; we want to retain the freedom to examine pro-

where the mass independence of the o,"s allows us to cal-
culate the unphysical processes for arbitrary masses: m,

'

and m~ are the quark masses used in K—+0 ( m' + and

m
'

+ are the corresponding meson masses); m~ is a com-
mon m-1C mass for E~~ (for convenience, we chose to
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&& ([K+ +++—] b[K—~0]), (15)

and for the ration of isospin amplitudes,

[K ~1T+7r ]$/p [K+~7r+ jy/2 b[K ~—0]]/2
[K ~m+m ]3/2 [K+~m ]3/2

where

(16)

b =im~ lf (mx+ —m
'

+ ),
square brackets denote the amplitude, and the subscripts

and —, indicate M= —, and EI = —,, respectively. We
have used the fact that (8,1) operators are pure b,I=—,.
The K~O terms in (15) and (16) were omitted (incorrect-
ly) in Ref. 2.

Note that (16) indicates that a EI= —, rule for K~7r
does not in principle imply a bI = —, rule for K—+2~. In
practice however, it appears that [K—+0]»z does not
change the qualitative picture: AI = —, is strongly
enhanced both in K~~ and K—+2m.

have K~m take place with no energy-momentum inser-
tion by the operator); m+0 and m + are the physical
masses. Since both elements of the (27, 1) [i.e., Eqs. (8)
and (9)] turn out to contribute the same to K+~m+ and
to K ~m+m, we make no distinction between them in
(13). The fact that (0~ 8' '" ~K ) and (0~ eP'" ~K )/
vanish is a trivial consequence of group theory and/or the
form of the operators. However, the fact that
(m.+m

~

62'" ~K ) vanishes while (rr+
~

62'" ~K+)
does not is more subtle and rather illuminating; the ex-
planation is the subject of the next section.

The results in (14) can now be combined to obtain the
desired relation among processes. We have, for the com-
plete amplitude, to quadratic order,

i(m o —m+)K 7r[K' ~+~-]=

mix s and d quarks. (The spectator quark is not shown. )

The mass and wave-function renormalization parts of Fig.
1 are unphysical, and a way must be found to subtract
them off.

To consider this problem in more detail, first note that
the relevant part of the QCD Lagrangian is

W =s ( &g —m, )s +d (iI/) md—)d, (17)

where g =y"D& is the color-covariant derivative. Under
the infinitesimal vector transformation

5ys = —d~ 5yd =s

the Lagrangian changes by

5,~=(m, —m, )rd .

(18)

sd = B&(sy&d) .
m, —md

(20)

This field redefinition is what is therefore needed to "re-
normalize away" the two-quark operator sd which is gen-
erated by Fig. 1. (Other two-quark operators can be treat-
ed similarly: the operator siPd is proportional to sd for
on-shell hadronic matrix elements; the operator sy&iI/)d,
which is equal to mdsysd on shell, can be removed by an
axial transformation. ) If the matrix elements were being
calculated perturbatively, renormalization would present
no problem: the fields could be redefined order by order
to cancel the sd terms as they appeared. However, here
we might imagine evaluating the matrix elements with a
numerical, lattice computation, and it is not immediately
obvious how to enforce such a definition. Renormaliza-
tion effects would appear to be inextricably mixed with
legitimate contributions in which the quarks in the loop in
Fig. 1 exchange gluons with a spectator quark. (The
"penguin diagrams" are of this type. )

If we are dealing with the process K ~++~ directly,
this problem would not be present. The reason is that sd
is a total divergence —an obvious consequence of its pro-
portionality to 5W in (19). Explicitly

III. TWO QUARK OPERATORS,
RENORMALIZATION, AND TOTAL DERIVATIVES

To elucidate the "subtleties" we mentioned above, let us
first consider a vexing, but seemingly unrelated, problem.
The matrix elements of the four-quark operators con-
sidered here have contributions like those in Fig. 1 which

(U

FIG. 1. A contribution to the matrix elements of a four-
quark operator which generates two-quark operators such as sd
and therefore produces unwanted off-diagonal renormalizations.
In a complete physical process there must of course also be ad-
ditional spectator quarks; this graph is only a subgraph for such
a process.

Since the weak operator carries zero momentum in the
physical process K~2m, such total derivative terms do
not contribute.

However, we wish instead to treat the process
I| +~a+. Here, in order for the weak operator to carry
zero four-momentum, we must force K and m to be degen-
erate, which in turn implies m, =md. But sd is then no
longer a total divergence, as (20) shows explicitly. [Alter-
natively, note that the Lagrangian (17) is now invariant
under the transformation (18), so there is no correspond-
ing total divergence. ] There is no advantage to keeping
m, &md. in that case sd remains a total divergence, but
its K~rr matrix element must carry nonzero four-
momentum and therefore does not vanish. (In Ref. 2 it
was overlooked that sd cannot be treated as a total diver-
gence for K+~m+. )

The conclusion is that the amplitude forK~vr neces-,
sarily contains unphysical renormalization contributions
which must be subtracted off. In fact, this is precisely
what is accomplished by the K—+0 term in (15) and (16).
Operator e2', which contributes to K—+0 and K~~(8, &)
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but not to K~2m. , is, like sd, a total divergence for
m~&m, . Indeed, under the vector SU(3) transformation
corresponding to (18),

&vX=& [A»1 *

5vXt=i [A„X"],
(21)

with A given by (11), the change in the chiral Lagrangian
(2) is

5vW=iu(m, —m~)tr(AX+AX ) .

Similarly, under the corresponding axial (right minus left)
transformation,

(22)

5gX= i t—A, XJ, 5~X =iIA, X ],
5„W= iv(—m, + mq)tr( AX—AXt) .

(23)

Combining (12), (22), and (23), one can write

f m~ —mg mq+mg

This clearly shows that 62'", like sd, is a total diver-
gence for m, &m~, but not for m, =m~. The correspon-
dence can be made even more precise. Using the infor-
mation that the quark operator 6' "appearing in Fig. 1

is an (8, 1) and is invariant under CI'S, one finds that the
two-quark operator generated must actually be propor-
tional to

is(g —b)(1 —y5)d =(m, +m~)sd

E~O. If the s-d line is straightened out, Fig. 2 becomes
Fig. 1; therefore the two have the same renormalization
parts. Thus it is reasonable that the amplitude E—+0 can
be used to subtract off the unphysical off-diagonal renor-
malizations that we discuss above.

IV, . MONTE CARLO CALCULATION

We have performed a rough test of the practicability, in
a Monte Carlo calculation, of removing the unphysical
term in E—+m by subtracting the amplitude E—+0. In the
ultimate case of interest, two-quark operators are generat-
ed by four-quark operators through diagrams like Fig. 1.
In our test, however, we start directly with a two-quark
operator,

e' ' '=—s(1 —y )d . (26)

6(3,3) (3,3)6 (3,3)
7

where

e""=tr(AX),

(27)

(28)

with A again given by (11). We have used the invariance
of 6' ' ' under CS, with C charge conjugation and S de-
fined above, to arrive at the unique chiral operator in (27).

Because e' ' is a total divergence for m, &m~, it does
not contribute to E~2~. Its contributions to the other
processes are, from chiral perturbation theory,

In chiral perturbation theory, 6' ' ' corresponds to a
unique operator to lowest (here zeroth) order in meson
masses and momenta:

—(m, —m~)sy5d . (25)
(0

I

e(3,3) IKO}
( ~(3,3)

The sd term here is proportional to 5vW (for m, &mq) as
we saw in (19); the synod term can be seen to be propor-
tional to 5~ W and corresponds to the second term in (24).

The conclusion is that the 6 z
'" operator is the chiral

perturbation theory representative of the renormalization
terms coming from diagrams like Fig. 1. Since 62 '" is a
total divergence for m, &m~, it contributes to K~O and
E~m but not E—+2~; whereas the physical operator
6'] '" contributes to E~m and E~2~. The physical
amplitude K~2vr can therefore be obtained from K
by subtracting away a piece proportional to E~O; this is
just the content of (15).

An intuitive understanding of this point can be gained
by examining Fig. 2, which is a typical diagram for

+
I

e(3,3)
I

K+ } (3,3)
2

(29)

In the presence of this operator alone, we thus have

[K~O]
[K~rr] (30)

Our ability to "subtract away" two-quark contributions
from K~+ is therefore tested by our ability to measure f
using (30). We have computed f from (30) with a lattice
Monte Carlo calculation, using the methods for evaluating
matrix elements which are outlined in Ref. 2. With eight
independent 6 X 10 'quenched SU(3) configurations at
P=5.7, Wilson r = 1, and k =0.155 and 0.162, we find

af =0.55+0.08, k =0.155,

af =0.56+0. 17, k =0.162,
(31)

where a is the lattice spacing, and the quoted errors are
purely statistical.

The conventional method for determining f requires a
knowledge of the quark masses since it makes use of the
relation

FIG. 2. A typical graph contributing to the process E~O.
This graph is fundamentally the same as Fig. I, as can be seen
by straightening the sd line.

af =(m. +m~), 1&0 I
dye~

I

~+ } I

2k
(am )

(32)
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where the u and d fields are the dimensionless lattice
fields. The value of af one gets from (32) depends on the
definition of the quark masses used. With the straightfor-
ward definition (as used for example in Ref. 10),

1 I
(33)

and our estimate of k, =0.173+0.002, we find

af =0.47+0.05, k =0.155
(34)

af =0.49+0.08, k =0.162 .
With the definitions used by Hamber and Parisi" the
values of af would be about 30% higher; with the one-
loop corrections as computed by Arroyo, Yndurain, and
Martinelli, ' the values would instead be about 60%
higher.

The point we wish to make here is that our chiral-
perturbation-theory methods produce results roughly
comparable with other techniques, giving us some confi-
dence that we will in practice be able to remove the effects
of the two-quark operators to a reasonable degree of accu-
racy. A cautionary note should be injected, however. If
one puts in the value a '=1.0 CieV which is determined
by potential and/or string-tension measurements' (as-

suming scaling, but not asymptotic scaling), one finds very
high values for f in either (31) or (34). This is not com-
pletely unexpected: Ref. 10 shows a rather strong de-
crease offwith quark mass, and we are here working in a
range of mass in which m~-700 —900 MeV (with the
above value of a). It does suggest, however, that until one
works at considerably smaller quark mass and, most like-
ly, weaker coupling, Monte Carlo results will be only
qualitatively and not quantitatively accurate. Luckily, the
AI = —,

' enhancement is such a large effect that a qualita-
tive evaluation may be very interesting.
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