
PHYSICAL REVIE%' 0 VOLUME 32, NUMBER 9 1 NOVEMBER 1985

Spin analysis of 0+1 =0+1 and its application to n.+d =m+d data
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The polarization structure of the reaction 0+1~0+1 is discussed in the optimal transversity
frame. First, the relationship between the observables and the bilinear products of amplitudes
{"bicoms") is given when only Lorentz invariance is imposed. Then parity conservation and time-
reversal invariance are also imposed, resulting in modified relationships. The measurements of spin
correlations between initial- and final-state spins needed to determine the amplitudes completely are
enumerated. The results are applied to the existing m.-d data, and the consequences of any possible
dibaryon resonances are examined.

I. INTRODUCTION

The polarization structure of the reaction 0+1—+0+1
is about as simple as any incorporating a spin-1 particle,
and yet, reactions of this type are' largely unexplored. In
the most familiar case, m+d~m. +d, only a few types of
polarization experiments have been performed. The exist-
ing data, although covering a large energy range (60—600
MeV), are basically limited, besides the cross section, to
T» and T2O. In addition, the presently existing data by
different experimental groups are not necessarily in mutu-
al agreement regarding dynamical implications such as
the dibaryon resonance structure. ' Extracting complete
information about the dynamical structure of a reaction is
possible if all the amplitudes of the reaction are deter-
mined. The aim of this paper, therefore, is to discuss an
experimental program designed to completely determine
all the amplitudes and to provide, even from a yet un-
completed set of experiments, useful partial information
about the amplitudes.

("real" ) or I ("imaginary") if Q =1 or Q = —1, respec-
tively. We also have Z =1+PQ P+ Q a—nd

real if W'=PQ = +I,
Hg ——

imaginary if W=PQ= —1 .

The amplitudes are denoted by the D (i,j)'s, where i refers
to the final-state spin-1 particle and j refers to the initial-
state spin-1 particle. This notation is the same as that of
Ref. 3.

Since we are dealing with spin-1 particles, the spin pro-
jection indices will be denoted by +,0, —.In the argu-
ment of the observables W, the arguments for the spin-1
particles will be denoted as ++, 00, ——,and various
8's and Ps. We also use the following notations:

A (average) =(++)+(00)+(——),

b. (difference) =(++)—( ——),
II. THE GENERAL POLARIZATION STRUCTURE

In the optimal formalism reactions of the type

0+S~~0+Sc
(where Sz, Sc, and 0 refer to particles with spins S„,Sc,
and 0, respectively) can be treated as a special case of a
general four-particle reaction and therefore, the observ-
ables can be written as bilinear combinations of ampli-
tudes as

( UVHp, =Wg )

=ZHn [D(:-,U)D'(A, V)+PD(:-, V)D*(Q, U)], (2)

where U, V= 1,2, . . . , (2S& + 1) denote the spin pro-
jections of the initial-state spin-1 particle, =,Q
=1,2, . . . , (2Sc+1) denote the spin projections of the
final-state spin-1 particle. Ht ——8 ("real" ) or I ("imagi-
nary") if P =1 or P = —1, respectively, and Ht2 ——R

~ =(+ + ) —2(00)+ ( ——) .

The notation for the R's and Es is

Re(+ —)=R, Re(+0)=R+, Re( —0)=R

and three analogous equations for the imaginary parts.
Equation (2) reveals that the size of the matrix connect-

ing the observables with the products of the amplitudes
for 0+1—+0+1 will be 81&81. This matrix in the op-
timal formalism is as diagonal as possible, namely, in the
most general case, it consists of only 1&&1 and 2&(2 sub-
matrices along the main diagonal, numbering 45 and 18,
respectively. Under Lorentz invariance only there are
rune independent amplitudes. Table I relates the observ-
ables to the bilinear products of the amplitudes for only
Lorentz invariance being assumed, including observables
with arguments A, h, A.
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III. POLARIZATION STRUCTURE
WITH PARITY CONSERVATION

o o

o o

The additional imposition of parity conservation will
create restrictions on the number of independent ampli-
tudes. These restrictions are different depending on what
optimal frame is chosen. We will choose the transversity
frame, since we know that for parity-conserving reactions
it provides the simplest form. In such a frame the com-
plex spin amplitudes must satisfy the relation

D'=( —1) (l,L)( —1) " (3)

where l and L are the spin components of the particles Sq
and Sz, respectively. For 0+1~0+1 we then have

+ I

+ I
D(+,0)=D(0, +)=D(0, —)=D( —,0)=0

and the remaining nonzero amplitudes are

D(+, +), D(+, —), D( —,+),
D( —,—), D(0,0) .

(4)

+oo Table II features the relations between the observables and
the amplitudes under Lorentz invariance plus parity con-
servation.

~+ I I o IV. POLARIZATION STRUCTURE
WITH PARITY CONSERVATION

AND TIME-REVERSAL INVARIANCE

~++ I

Further reduction on the number of independent ampli-
tudes comes from the imposition of time-reversal invari-
ance on the reaction. In the transversity frame the time-
reversal constraints read as follows:

~++ I

~+o o

~ + I o Q

D(l,L)=D(L, /),
which in our case reads

D(+, —) =D(-, +)
so we end up with only four independent amplitudes. The
relations between observables and these amplitudes are
given in Table III.

~+ fo+ V. THE DETERMINATION
OF THE AMPLITUDES

IN m'- d ELASTIC SCATTERING

+++o o

O O O O O O
I I I I I I

I I &~++++I

As m.entioned earlier, the existing experimental mea-
surements for m+8 —+m +1 are limited to only measure-
ments of T» and T2p of the final-state deuteron and so
there is not enough data for this reaction to provide the
(at least) seven different polarization measurements re-
quired to determine the four amplitudes completely.
There are plans to use polarized deuteron targets.
Methods of measuring the vector and tensor polarization
have already been developed and used. Therefore, we are
not far from a situation in which one could perform the
complete experimental program for this reaction, one that
is able to determine the reaction amplitudes phenomeno-
logically, thus testing various theoretical models com-
pletely. Such a program consists of two parts:
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TABLE G. Relationship between observables and bilinear products of amplitudes for the reaction
0+ 1—+0+ 1 in the transversity frame with Lorentz invariance and parity conservation.

ln

~ W(UVHp, =OH@)

UVHp

+R
——R
++R
——R
OOR

A

++R
——R

++R
——R

A

A

A

++R
++R
——R
——R
OOR

++R
——R
OOR

++R
——R

OOR
A

A

A

+
+
+

+
+

0
0
0
0

—,
' W(UVH„=-OH~)

4 W(UVHp, "QHg)

UVHp

+ —I
++R
——R
+ —I
+ —I
+ —I

A
+ —I

++R
+ —I

I
——R
+ —I
+ —I
+ —I

A
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TABLE II. {Continued}.

2 W{UVHp, =AHg

UVHp

+OR
—OR

+ —R
+ —I
+OR
0—R

+OR
+OR
+ —R
+ —I
—OR
—OR

R
+
+
0
0

0
0

+
0
0

0
0

( —)

{—)

( —)

2 W{UVHp, "QHg}

UVHp

+OR
—OR

+—R
+ —I
+OR
0—R

:"QHg

+OI
+OI
+ —I
+ —R
—OI
—OI

I
+
+
0
0

0
0

+
0
0

0
0

TABLE III. Relationship between observables and bilinear product of amplitudes for the reaction
0+1—+0+1 in the transversity frame with Lorentz invariance and parity conservation plus time-
reversal invariance. The notations for the amplitudes are D(++)=a, D(+ —)—:P, D( ——)—:y,
D(00)=5.

1„
—.'~(UVH'. =-QH. )

UVHp =QHg

R R

&n

~ W{UVHp, QHg)

R

R
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TABLE III. {Continued).

1(
—,
' W(UVH, =-nH~)

UVHp :"OHG

IO
IO

IO
10

2]

~ ~(UVBp, QHg)
UVHp :-QHg

R
R+

IO
R+

R
R

IO

R+

2$
—W(UVHp "QHg)

UVHp
R
R+

R+

:-QHg
I
I
IO

I+

A. Determination of the magnitudes of the amplitudes

In the transversity frame the magnitudes of the four
complex amplitudes are all in ll of Table III and can be
determined from a set of observables consisting of A' s,
b, *s, and/or A's only. The determination of the magni-
tudes of the amplitudes are unambiguous, because the
magnitudes are always positive and hence, the determina-
tion of the squares from the equations which are linear in
them gives also unique values for the magnitudes them-
selves.

B. Determination of the phases of the amplitudes

There are several choices for determining the relative
phases of the amplitudes. Since we measure only the rela-
tive phases, we can let one of the amplitudes be purely
real or purely imaginary. The determination of the
remaining three relative phases (up to some discrete ambi-
guities) require three more observables to determine
phases. In order to remove the discrete ambiguities also,
one may need to perform additional experiments. Criteria
for resolving the discrete ambiguities have been
developed. Using these criteria, we give different choices
of experiments which determine the phases.

As we see from Table IV, one possible set of experi-
ments which determines the magnitudes of the amplitudes
is related to the amplitudes as

48
f
a

f
=2(A, A)+(A, A)+6(A, E),

48
f P f

=2(A, A)+(A, A) —3(b, , b, ),

48
f y f

'=2(A, A)+(A, A)+3(b„h) —6(A, A),

48
f
5

f
=4(A, A ) —4(A, A) .

(8)

(R,R ), (I,R ), (RD, IO) .

As to the experiments which determine the phases also,
there are more choices. Table IV shows these observables
in three different notations: The notation of the optimal
formalism, the Cartesian notation, and spherical tensors.
What the simplest set of experiments for determining the
phases is depends on whether the Cartesian or spherical
quantities interface easier with the particular experimental
arrangements used.

One particular set of observables with none of them in
the 1M submatrix is also a set with a minimum number of
observables which wil1 determine both the magnitudes and
the phases of the amplitudes uniquely, even eliminating
discrete ambiguities. This set is
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TABLE V. Vanishing observables in the case of direct-channel resonances.

Optimal
notation

R,R

Io IO

A=C
Grein-Locher

notation

3 (10
i

10)
i (10

~
21)

[t2, —V 2(20
~
21)]

6
3 (10

i
10)

[t2) —V 2(20
~
21)]ve

6

Optimal
notation

5,R —=b„R+
5,I =2I,R

Grein-Locher
notation

(10( 10)
—

3 (10 [ 11)
—, i{10

)
21)

i(10 ( 22)
3

'

3 (10
i
11)

3 [(22
~
22) —(22

~

2 —2)]

C. Testing resonances

I. Direct-channeI resonances

In a parity-conserving reaction, for a resonance state of
spin J, the following relations hold among the helicity
amplitudes:

DJ(c,a;d, b) =+DJ( —c,a; —d, b),
where the + sign reflects the naturality of the resonance.
For m+4 ~m+d, four helicity amplitudes are

&—=(+,+), &=—(+,0),
(10)C:—(+,—), D —=(0,0),

where in (i,j ), i and j are the spin indices of the final and
initial deuterons, respectively.

Equation (9) implies that for a resonance at certain re-
action angles (see below) we have

This in turn implies certain constraints on the observables.
In particular, some of the observables will vanish. Table
V gives the vanishing observables both in optimal nota-
tions and the notations of Grein and Locher. Further-
more, some additional relations also exist among the vari-
ous observables as listed in Table VI. Tables V and VI are
true, however, only for particular c.m. scattering angles.
The reason for this is that if one decomposes the ampli-
tudes A,B,C,D in a partial-wave series, states with
(L =J+1) contribute to all amplitudes while states with
I.=J contribute to only A and C. A and C however,
have different d~~(8). Therefore L =J states do not

r

7T

TABLE VI. Relation among the observables due to the
direct-channel resonances.

Optimal notation

(R-,I-)=(R+,I-)
(I,R ) =(I+,R )

(R —,R -)=(I+,I-)
(I-,I-)=(R+,R -)
2( A, R )=(AR )

(A,I )=—2(A,I )

A=C
Grein-Locher notation (Ref. 8)

3 i{11
~

21)=
3 i(11

~

2 —1)
——,i(11

~
21)= ——,i(11

~
2 —1)

—(21
I
21)= — (11

I
1 —1)

3 (11
i

11)= 3 (21
i
2 —1)

~~t21

itq~ ——— i(11
~

20)4 . 2

6 3

Optimal notation

(R —,I-)=(I+,R -)
(I,R ) =(R+,I )

—(R,R ) =(R+ R )

(I,I )=—(I+,I )

3=—C
Grein-Locher notation (Ref. 8)

3 i{11
~
21)= —

3 i(11
~

2—1)
—

3 i(ll
~

21)= 3i(11
~

2 —1)
——,(11

i
11)= —,(11

i
1 —1)

3 (11
(
11)= 3 (11

(
1 —1)

FIG. 1. (A) Exchange of a particle of spin Jbetween two ver-
tices, one of which has both the incoming and outgoing deuteron
lines, and the other both the incoming and outgoing pion lines.
(8) Crossed diagram to (A).
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TABLE VII. Results of t-channel resonances.

ged J J=0 J&2

Diag. A
Diag. 8

A =8 =C=O
A =8 =C=O

2. t-channel resonances

Two different diagrams need to be considered here (Fig.
1). The first (diagram A) exchanges a particle of spin J
between two vertices, one of which has both the incoming

lead to an angle-independent relation between A and C.
The phase between A and C will howeuer, be 0 or 180 for
any resonance state. An examination of their angular
dependences will reveal that A =C for those c.m. scatter-
ing angles for which [d~|(8)—d»(8)] vanishes. There-
fore solutions of this will be the angles for which relations
of Tables V and VI hold. For J= 1 the equation

d it(8) —d | |(8)=0
does not have a solution but for J=2 it does at 8=90'.
For J =3 angles will be 63.43' and 116.56', and for higher
values of J, there will be even more such angles. As a
consequence, any oscillation of those observables which
are listed in Tables V and VI involving zero values at the
above discussed scattering angles represents an indication
of a resonance.

and the outgoing deuteron lines, and the other both the in-
coming and outgoing pion lines. The other diagram (dia-
gram B) is the "crossed" one, in which one vertex at the
end of the exchanged particle of spin J has the incoming
deuteron and the outgoing pion line, while the other ver-
tex has the incoming pion line and the outgoing deuteron
line.

The results of Ref. 10 which are formulated in the
"magic" optimal frame, when applied to this reaction,
give the following results.

For diagram A, a J=0 resonance would allow only one
amplitude to be nonzero, namely, D—:(0,0) where the
subscript m stands for magic. If the resonance is J =1,
then three amplitudes are allowed but C~:—(+,—) is for-
bidden. For J=2 or higher the test imposes no con-
straints on the amplitudes.

For diagram 8, a J=0 resonance would again require
, 8, and C~ to vanish with only D =(0,0) contri-

buting. If the resonance is J =1, where all four ampli-
tudes contribute but two of them are related, namely, we
have A = —C . If the resonance has J=2 or higher,
again we have no constraints on the amplitudes.

The results are summarized in Table VII. It should be
noted that these t-channel resonance tests apply at a/l an-
gles and hence the same test also applies to a situation
when the dynamics is dominated by a sum of several reso-
nances, possibly with different J values, but sharing the
same naturality.

This work was supported in part by the U.S. Depart-
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