
PHYSICAL REVIEW D VOLUME 32, NUMBER 8 15 OCTOBER 1985

Comments on rotational perturbations of Friedmann models
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In addition to the solutions we have discussed before, we show that the field equations corresponding to
the slowly rotating Friedmann models admit solutions for a special class of nonseparable rotation functions
of the matter distribution. We also present two analytic solutions and discuss their possible use.

It is well known that almost everything in the Universe
has some form of rotation'z (differential or uniform), and
over the past years the possibility of the entire Universe be-
ing endowed with some rotation has intrigued many physi-
cists. The current observations indicate that the Universe
may be rotating at the rate of & 10 ' rad/sec. The ex-
istence of such a small rotation when extrapolated to the
early stages of the Universe would play a major role in the
dynamics of the Universe as well as in the processes that in-
volve galaxy formation.

In a previous article examining some of the effects of
slow rotation we studied rotational perturbations of Fried-
mann models, where the metric is given as

d~2 d)2 ~g(t)
2dr + 2d02

1 —rz/R z

+2rzsinzgetQ(r, t) dpdt

Q (r, t) is the metric rotation function which is related to the
local dragging of inertial frames. ' Using the perfect-fluid
energy-momentum tensor

T'"= (P +p) u'u" —Pg'"

with u'= u =0, u = co, we obtained the following field
equations:

and

8mP = — e ~—g ——g2+A
R

8mp = e ~+ —g —A=3 — 32
R

Rp3= —8m(Tp3 +gp3T)+Agp3

(3)

(4)

R(3= —8m T(3 (6)

Q(r, t) =A (r)e "'"'"+K(t) (7)

where IC (t) can be set to zero without altering the physical
structure. Finally, using (7) in (5) one obtains the field
equation that determines A (r) as

We kept only the first-order terms in Q(r, t).3

As seen from above, the first two equations are not per-
turbed to the order we are considering, and can be used to
determine e for a given equation of state. The remaining
equations determine Q(r, t) for a given rotation function
tp(r, t) Equation .(6) can be readily integrated to yield
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R

(8)

Since the left-hand side of this equation is only a function
of r, it imposes limitations on the allowed functional form
of tp(r, t)

In our paper, we considered solutions of this equation for
separable tp(r, t). However, even though Eq. (8) is incom-
patible for an arbitrary nonseparable tp(r, t), there is a spe-
cial class of nonseparable tp(r, t) which is compatible with

(8), and is given as

a(r) =
t 'I

b k-ir
ao

where b and k are constants. For this choice of a(r) the
general solution of (8) could be given in terms of Bessel
functions. A solution is

I

solutions, the first of which corresponds to critically open
Friedmann models (1/Rz= 0), where a (r) is given as

tp(r, t) = [1—a (r)b(t) ]A (r)e (9)

where a(r) is an arbitrary function to be supplied to the
field equations and b (t) is given by

t
I

b(t) =ap —2ge'
R

(10)

where ao is an arbitrary constant. For a given equation of
state, Eqs. (3) and (4) determine e~, which, through the use
of Eq. (10), determines b(t). On the other hand, for a

given a(r) Eq. (8) determines A (r), which completes the
solution of the problem. As an example we present two

A (r) = r Zr(z)

(1+k)/2

(1+k)
(13)

Our second solution corresponds to closed models
(1/R' ) 0) and is given as8

—-C)
A (y) = lnC2(l —y) (14)

where p = —3/(1+k) is the order of the Bessel function
and

32 2241 1985 The American Physical Society



2242 BRIEF REPORTS 32

and

—C)
rp(y, t) = lnC2(1 —y)

4 ~C) —2C)y5

$ ( r) e
—(3/2)s

apR', (I —y)
(15)

Ct and C2 are constants. Also, y =r2/R2 and y E [0, 1].
This solution is physically meaningful near the origin. How-
ever, for y 1 both A (r, t) and rp(r, t) diverge. Hence, the
small rotation approximation we have made is no longer
true and the solution is not valid in this limit. To determine
the arbitrary constant C2 we require A (r) to be zero at the
center (which could be taken as the center of the local
group of galaxies). This determines C2 as +1. One of the
remaining arbitrary constants could be determined by using
the observations of Smoot, Gorenstein, and Muller, which
indicate that our galaxy is moving with a velocity of 520
km/sec with respect to the background radiation. This ve-
locity is rather large from the standpoint that the peculiar
velocities of all the nearby galaxies are at the level of or
below 200 km/sec. Interpreting the residual velocity
( —320 km/sec) as the value of m(r, t) at our present loca-
tion, one could in principle determine ap or Ct from (15).
The arbitrary constants that will appear in g (t) and its expli-
cit time dependence wi11 come from the specific Friedmann
model that one starts out with. The second solution could

du' du'
dt dt

(16)

hence u' and u remain zero for t ) 0. Ho~ever, u was
found to be

u'= 0 + (rPp —IIp)es" (17)

coo and Qo are the values of ~ and 0 at t =0. As seen
from (17), even though 0 is related to the dragging of test
particles, it is not precisely equal to it, unless ~0 ——Ao. In
the second solution the remaining arbitrary constant cou1d
be used to set coo= Qo.

I

also be used for open models (1/R' & 0) by replacing y
with —y.

In our paper in order to clarify the physical nature of
Q(r, t) we have considered the behavior of test particles
that have precisely the same initial conditions as the matter
of the cosmological model, viz. , u'= u =0 and u =co at
t =0. From the geodesic equations we have found out that
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