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A method for performing numerical calculations on problems subject to infrared divergences is
presented. The method is illustrated by examples from nonrelativistic quantum mechanics.

INTRODUCTION

In this paper we shall describe a procedure for solving,
in the context of perturbation theory, problems subject to
infrared divergences. We have in mind infrared diver-
gences of the type which result from the presence of
long-range attractive forces such as exist in the harmonic
oscillator and are thought to exist in QCD, rather than
the somewhat artificial infrared divergences such as exist
in QED. In the present paper we shall formulate the
method for, and apply it to, problems in potential theory;
specifically the potentials x and

~

x
~

. In later papers we
shall describe the application of the method to problems
in quantum field theory. The objective of the work is
similar to that of Ref. 1.

The basic idea of the method is simply described: We
place the problem in a box which allows us to formulate
perturbation theory. Although the terms of the perturba-
tion series will diverge as the box size increases, any quan-
tity we wish to calculate will appear as a power series in
the box size. We use Fade techniques to evaluate this
function at an infinite box size or, more precisely, at a
sufficiently large box size such that the answer we obtain
is close to the value at an infinite box size. The idea is as
follows: we put the problem in a box to formulate pertur-
bation theory then remove the box and observe the in-
teraction make its own box.

FORMULATION OF THE METHOD

We wish to solve the problem

d +x' %=E% .
X

Imposing upon ourselves the restriction that we solve the
problem in perturbation theory using —d ldx as the un-

perturbed operator and x as the perturbing operator (we
shall also consider the potential

~

x
~

).
To formulate perturbation theory we place the problem

in a box: L&x &L. The s—eries for the energy takes the
form

E= +L Ei+L Ez+L, 'oE +

Defining y:Lw—e have

~PE =Eo+yE i +y Ez+y E3+ ' ' ' (4)

We wish to sum this series and take the limit as y —+ ca.
If we form ordinary Pade approximants to (4) we cannot
obtain an approximant which is asymptotic to Vy and
thus cannot take the limit of the infinite box size. We can
circumvent this difficulty in several ways: We can square
both sides of (4) then form Pade approximants. which are
asymptotic to y thus obtaining a finite energy in the limit
of the infinite box size; alternately we can form quadratic
approximants to (4), that is, approximants of the form

B+(—B 4AC)'i—

where A, B, and C are polynomials in y. If the orders of
A, B, and C are suitably chosen [0 (A)
=O(B)=O(C)—1, for example], we obtain an approxi-
mation to v y E which is asymptotic to Vy and can thus
obtain a finite energy in the limit of the infinte box size.
It is this last process we shall study most in this paper,

Having manipulated the expressions into a form such
that we can take the limit of the infinite box size we must
confess that we do not intend to do so. The procedure of
taking the limit y —+ co for a finite order of the Pade ap-
proximant is known to give poor resuts. As we shall see
below, the manipulations which lead to an approximation
for the energy (or wave function) which has the correct
asymptotic form are valuable even though we do not take
the limit of infinite box size. The discussion of the inad-
visability of taking the limit of infinite box size for finite
orders of approximant can be summarized as follows: If
we fix the box size L and refer to an approximant of or-
der N as P(N, L) [N is an index which increases as we
proceed, in some predetermined fashion, through the Pade
table incorporating more inforination from the perturba-
tion series for larger N; in the case of Eq. (5), for example,
N might be the order of C, A and B being of order
N —1] we may hope that

lim P (N, L )~E(L),
N~ ce

where E(L) is the exact energy for the box size L. We
would like to find

or

L'E =E +L, 'E +L'E +L "E +

lim lim P(N, L)= lim E(L)=E .

(3) If we took the limit L~ ao for each approximant
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TABLE I. The results for the ground-state energy using quadratic Pade approximants. For I.o see
the text.

2.5 3.5 Lo

1.080087
1.074 926
1.074 922
1.074 922
1.074922
1.074 922

1.034 322
1.010095
1.009 908
1.009 908
1.009 908
1.009 908

1.062 486
1.003 156
1.000 802
1.000 782
1.000 782
1.000 782

1.106487
1.011957
1.000405
1.000023
1.000 036
1.000036

1.138 33
1.033 70
1.002 70
1.002 70
1.00002
0.99999

1.213 04
1.108 89
1.127
1.030 96
1.00149
0.99948

1.356
1.199
1.127
0.585
1.04
0.950

1.7
3.3
4.4
3.9
3.5
4.5

P(N, L), then studied the sequence as N increased to as
large a value as we could manage we would be attempting
to study

lim lim P(N, L) .
N~ooL~ oo

The interchange of limits is observed in practice to give
poor results. Carroll, Baker, and Gammel suggest the al-
ternate procedure:

lim P(N, L~),N~ oo

where the sequence of values L~ goes to oo as N does.
To apply this procedure we need some method of choos-
ing the sequence L~, Carroll, Baker, and Gammel sug-
gest looking at the singularities of the approximants as we
shall discuss below.

Other methods for extracting the limit of a large box
size for problems like this have been presented; some rath-
er sophisticated techniques are discussed in Ref. 4. It is
not the purpose of the present paper to compare the vari-
ous techniques or to make any judgment as to which is
best. We shall content ourselves with the following obser-
vations: (1) there exists a sequence L~ for which the pro-
cedure given above works well; (2) an appropriate se-
quence can be found by sophisticated procedures, rather
mundane practical methods, or even experimental
methods; (3) we can choose a sequence LN rather different
from the optimum one and still obtain a good answer for
the energy or wave function we wish to calculate.

RESULTS

First we consider the ground-state energy for the har-
monic oscillator. We perturb about the function

(10)

to construct a series of the form (4). We then use approxi-
mants of the form (S) to produce the numbers given in
Table I. In the table L is the box size and X is the order
of the polynomial C (A and 8 have order N —1; the
number of terms in the perturbation series needed to form
an approximant of order N is 3N). The numbers in the
table show results anticipated by the above discussion:
For small values of the box size we find rapid convergence
to the correct value for that box size; for larger values of
the box size we find slower convergence to the correct
value for that box size but a converged answer closer to
the correct value for infinite box size. Thus, if we have a
small number of terms we should choose a small box size
to obtain convergence, for a larger number of terms we
should choose a larger box size to get an answer closer to
that for infinite box size. Looking at the table we see that
an approximately optimum sequence of box sizes would
be L) ——2.5, L2 ——3, L3 ——L4 ——3.5, and L5 ——L6 ——4. The
real message of the table, however, is that we almost al-
ways get a good answer, even if we have only a few terms
in the perturbation series and even if we choose a value of
L substantially different from the optimum one. The
meaning of the last column, labeled Lo, will be discussed
below when we describe procedures for selecting the se-
quence L& for problems where we do not know the
correct answer.

In Table II we give results which make definite our ear-
lier statement that it is advantageous to use an approxi-
mant with the correct asymptotic behavior even if we do
not take the limit of infinite box size. For Table II we
have used the same series as that used for Table I [having
the form (4)] but have simply used the diagonal Pade ap-
proximants to evaluate the right-hand side (RHS) so the

approximation for the energy would go to zero at infinite
box size. The results shown in Table II are hardly awful
and we could use them to get a good result if we had a

TABLE II. The results for the ground-state energy using ordinary Pade approximants.

3.5 4.5 5.5

1

2
3
4
5
6
7
8

0.952 427 8
0.929 232 9
0.998 951 3
1.000 957
1.000 758
1.000 782
1.000 781
1.000 782

0.879 770 8
0.856 974 0
0.986 9604
1.002 219
0.999489 4
1.00000
0.999994 5
1.000030

0.78400
0.761 45
0.954 52
1.011 12
0.995 92
0.99946
0.99941
0.999 85

0.682 95
0.661 69
0.897 79
1.033 23
0.984 29
0.996 74
0.996 54
0.99879

0.588 93
0.569 59
0.824 10
1.071 8
0.959 92
0.988 55
0.98802
0.994 77

0.507
0.490
0.744
1.126
0.922
0.972
0.971
0.985

0.438
0.422
0.665
1.194
0.871
0.944
0.943
0.967
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reasonably good guess for the optimum box size. We no-
ticed, however, that when using the results of Table II the
quality of our answer would be much more sensitive to
the value we choose for the box size than would be the
case for Table I. The advantage of using an approximant
with the correct asymptotic form is added stability of the
answer for differing choices of box size.

We now turn to the problem of using our method to
calculate the wave function. The perturbation series for
the wave function takes the form

1
%(x)= %0(x)+ ga;cosL L

(i + —,
'

)mx
gb;cosI.

(i + —,
'

)m.x

The procedure we shall use to evaluate the wave function
at a particular value of x is nearly equivalent to multiply-
ing through by V L and using Pade approximants to
evaluate the resulting RHS; the slight difference from this
procedure is that we shall not expand the cosine functions
as a power series in I.. The procedure is easier to under-
stand than to state: We define a new variable L and re-
place (11)with

1 L4
W x) = %0(x)+ ga;cos

L L
(i+ —,

' )~x

(i + —,
' )n.x

+ gbicos +'''
I (12)

We then multiply through by v L and choose particular
values for x and L to get

V L Wxo)=%0+y%i+y %2+ (y=L) . (13—)

We then form the diagonal Pade approximants to the

RHS of (13) and evaluate them at L =L (the asymptotic
form of this approximant is not quite correct but it is
wrong by only I. ' whereas those used to create Table
II were wrong by L ). The results of this procedure are
shown in Table III for values of the box size ranging from
2.5 to 4 as indicated. The column labeled [1,1] results
from a Pade approximant whose numerator and denomi-
nator are both linear functions (thus, the perturbation
series through second order is used). The column labeled
[8,8] results from the use of 17 terms in the perturbation
series. The column labeled 4 is the value of the exact
wave function for infinite box size. The column labeled
Lo is the magnitude of the location of the pole in the [1,1]
approximant; usually the pole is on the negative I. axis,
for those cases shown in parentheses it is on the positive
L axis. The use of Lo will be discussed in the section
below.

The results in Table III show that the wave function is
computed quite well. Lest the reader strain his eyes look-
ing we point out that the one rather poor number is for
L =4, the [1,1] column, and x=1.5. As seen in the Lo
column the reason is that a "spurious pole" at I.=3.3 has
crept into the approximant and our value of L (=4) is
sufficiently close to the pole that we obtain a poor result.

We now turn to the question of whether or not we can
calculate excited states. The first excited state is the
lowest state of odd pariy; thus it is not connected to any
state of lower energy by the interaction Hamiltonian. For
this reason the first excited state may have stability prop-
erties which make it particularly easy to calculate. We
shall therefore turn our attention to the second excited
state.

In Table IV we show the results of applying the quadra-
tic Pade method to the series for the energy of the second
excited state. As can be seen, the convergence is not as
good as was obtained for the case of the ground state.

TABLE III. The wave function for the ground state. For Lo see the text.

0
0.5
1

1.5
2
2.5

0.751
0.664
0.449
0.234
0.083
0

L =2.5

[8,8]

0.751
0.662
0.452
0.237
0.088
0

0.751
0.663
0.456
0.244
0.102
0.033

Lp

3.4
3.2

(5.8)
3.2
2.9
3.1

0
0.5
1

1.5
2
2.5
3

0.751
0.667
0.476
0.239
0.088
0.016
0

L=3

0.751
0.663
0.455
0.243
0.101
0.030
0

0.751
0.663
0.456
0.244
0.102
0.033
0.008

3.4
3.3
2.0
3.5
3.1

2.9
2.9

0
O.S
1

1.S
2
2.5
3
3.S

0.751
0.665
0.481
0.227
0.088
0.005

—0.017
0

L =3.5
[8,8]

0.751
0.663
0.456
0.244
0.102
0.033
0.008
0

0.751
0.663
0.456
0.244
0.102
0.033
0.008
0.002

Lp

3.4
3.3
2.8
44
3.3
3.0
2.9
3.1

0
0.5
1

1.5
2
2.5
3
3.5
4

0.751
0.655
0.488
0.469
0.094
0.004

—0.034
—0.029

0

L=4
[8,8]

0.751
0.663
0.456
0.244
0.102
0.033
0.008
0.002
0

0.751
0.663
0.456
0.244
0.102
0.033
0.008
0.002
0.0002

Lo

3.4
3.4
3.0

(3.3)
3.5
3.2
3.0
2.9
3.1
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TABLE IV. The results for the energy of the second excited stae. For Lp see the text.

2.5 3.5 4.5 5.5 Lp

5.557
5.473
5.473
5.473
5.473
5.473

5.462
5.076
5.083
5.084
5.082
5.082

6.194
4.942
5.025
5.014
5.008
5.008

8.14
4.66
5.13
5.044
5.001
5.001

3.55
5.45
5.15
5.00
5.01

6.00
5.33
5.02
5.03

6.75
5.57
5.04
5.06

7.76
5.82
5.07
5.08

3.6
9.2
3.3
3.4
3.3

Furthermore, for the cases X =1 and 2 there is a branch
point on the positive real axis, and for values of L greater
than that we get a complex energy. This may be an in-
stance where the more sophisticated methods of extracting
the limit of large L might prove valuable. ' Still, with a
reasonable choice for L~ we can get a good answer; if we
wish to know that the answer is about 5 we can make do
with very few terms in the series; with a handful of terms
we can get a three- or four-figure accuracy.

In Table V we show the results for the second-excited-
state wave function. The format is the same as for Table
III. The accuracy with which the method calculates this
more complicated wave function is really quite remark-
able.

As a final example we show, in Table VI, the results for
the ground-state energy for the potential

~

x
~

. For those
who do not carry the zeros of Airy functions to lots of
figures around in their head we have given the correct
answer in the table caption. Since the potential

~

x
~

in
the limit of large a is the box itself one should expect that
our method would provide better convergence for larger
a. Looking at Table VI we see that this effect is not
dramatic between a =2 and o.= 1; the results in Table VI
are nearly as good as those in Table I.

CHOOSING A VALUE FOR L

Having convinced ourselves, we hope, that if we can
choose an appropriate value for L we can use the method
to calculate a good answer, we now turn to the question of
how to choose L. A procedure suggested in Ref. 3 is to
study the singularities of the Pade. approximants and
choose L to be some value of the order of the magnitude
of the distance the farthest the singularity is from the ori-
gin. In genera1 we are advised to ignore singularities in
the physical region (here the positive real axis) and to
choose a value somewhat sma11er than the relevant dis-
tance. In Table I in the column labeled I.o we give a
number equal to 0.75 times the magnitude of the singular
point having a negative real part which is farthest from
the origin. If we use these numbers for the sequence L~
we obtain an estimate for the energy: 1.03; 1.008; 1.06;
1.002; 1.00004; 0.9998. %Phile not lying precisely on our
optimum sequence for L~ the sequence we obtain in this
fashion gives satisfactory results.

The column labeled I o in Table III provides somewhat
similar information (we recall that the number given there
is the location of the pole in the [1,1,] approximant, the
location usually being on the negative real axis but oc-

TABLE V. The wave function for the second excited state. For Lp see the text.

0
0.5
1

1.5
2
2.5

0
0.5
1

1.5
2
2.5
3
3.5

0.266
0.105

—Q. 180
—0.296
—0.181

0

0.266
0.104

—0.103
—0.263
—0.261
—0.196

0.025
0

L =2.5

[8,8]

0.266
0.104

—0.183
—0.295
—0.186

0

L =3.5
[8,8]

0.266
0.117

—0.161
—0.301
—0.250
—0.132
—0.045

0

0.266
0.117

—0.161
—0.302
—0.252
—0.134

0.266
0.117

—0.161
—0.301
—0.252
—0.134
—0.050
—0.017

Lp

2.5
32
3.7
3.1

(3.5)
4.9

Lo

2.5
3.0
3.7
3.5
2.5

(4.1)
34
4.9

0
0.5
1

1.5
2
2.5
3

0
0.5
1

1.5
2
2.5
3
3.5
4

0.266
0.113

—0.145
—0.295
—0.260
—0.086

0

0.266
0.084

—0.055
—0.200
—0.230
—0.173
—0.151

0.126
0

L=3
[8 8]

0.266
0.115

—0.165
—0.301
—0.241
—0.110

0
L=4
[8,8]

0.266
0.116

—0.163
—0.299
—0.248
—0.132
—0.049
—0.013

0

0.266
0.117

—0.161
—0.302
—0.252
—0.134
—0.050

0.266
0.117

—0.161
—0.301
—0.252
—0.134
—0.050
—0.017
—0.003

Lp

2.5
2.9
3.5
3.7
3.2

(1.7)
(4.5)

Lp

2.5
2.8
3.4
3.7
3.5

(2.9)
(2.7)
(4.9)
4.9
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TABLE VI. The results for the energy of the ground state for a linear potential. The correct answer

is 1.018793.

1.040 927
1.031 392
1.031 309
1.031 309
1.031 309
1.031 309
1.031 309

1.043 807
1.021 217
1.109 357
1.019 339
1.019339
1.019339
1.019339

1.049 88
1.029 09

' 1.01925
1.018 76
1.018 81
1.018 81
1.018 81

1.043 07
1.045 68
1.022 19
1.01769
1.018 83
1.018 80
1.018 81

1.026 07
1.066 36
1.032 07
1.00447
1.01930
1.01890
1.01903

1.004
1.086
1.054
1.162
1.022
-1.020
1.021

0.979
1.103
1.093
1.099
1.036
1.030
1.029

casionally, for those values shown in parentheses, being on
the positive real axis). While there is a considerable range
of values, using the Carroll-Baker-Gammel rule one
would probably choose a value of L somewhere between
2.5 and 3; that would be an appropriate choice for the
[1,1] and would give a good esimate of the wave function
out to distances where it is quite small.

Another method for choosing L, less elegant but in
some cases perhaps more practical, is to examine the
behavior of the approxmiate wave function. In Fig. 1 we
plot the ground-state wave function for the harmonic os-
cillator as predicted by the [1,1] approximant for various
values of the box size. For L = 1.5 the wave function ap-
pears entirely boxlike; for L =2.5 there is clear evidence
of something inside the box containing the wave function;
for L =3 the box wall is clearly having little effect on the
system. Looking at this information we would choose a
value of L between 2.5 and 3 and expect that if we could
obtain a converged answer for that value of L the answer
would be close to that at infinite box size. That is certain-
ly the case for the problems presented here.

Things need not always work as neatly as shown in Fig.
1. In Fig. 2(a) we show similar plots for the second-
excited-state wave function. For the [1,1] approximant
we can tell that the L =2.5 wave function is boxlike but

L =1-5

L =2.0

the spurious singularities make interpretation of the wave
function for larger L somewhat difficult. While we might
guess that a value of around 3.5 would be appropriate, it
would be difficult to have great confidence on the basis of
these plots. If we have a few more terms in the perturba-
tion series and can form the [3,3] approximant the situa-
tion is much clearer as we see in Fig. 2(b); although there
are still spurious singularities they are much less incon-
veniently placed. If we have lots of terms and can form
the [8,8] approximant the situation is quite clear as we see
in Fig. 2(c).

A final method for choosing I. we shall mention is sim-

ply to incorporate experimental information with the cal-
culations. We expect that convergence will always be fas-
ter for smaller values of L. Physically we expect, and the

present calculations bear this out, that once the size of the
box becomes larger than the size of the object whose prop-
erties we are trying to calculate, the effects of the box
walls will rapidly diminish. For many objects of interest
we know the relevant size parameter. For instance, we

know the size of hadrons; if we wished to do a calculation
in QCD using the method we would therefore choose to
study some value, or range of values, of L which is slight-

ly larger than the hadron radius.
The best method for choosing L will depend on the

amount of information available and on the objectives of
the calculation. In the situation where only a few terms in
the perturbation expansion are available, the calculator
knows the length scale of the object being calculated, and
the objective of the calculation is a result of modest accu-
racy (such as would be the case for a first calculation of a
mass spectrum from QCD) one should choose a value of
L 20—30% larger than the size of the object; if the

L = 2.5

L. = 3.0

(b)

FIG. 1. The ground-state wave function as calculated by the
[1,1] approximant for various values of the box size.

FIG. 2. The second-excited-state wave function as calculated

by the [1,1] (a), [3,3] (b), and [8,8] (c) approximants for various
values of the box size.
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method is going to work at all this value of L will be ap-
propriate. If one has enough terms in the series to con-
struct at least three or four approximations and one
knows the size of the object, one should construct a table
such as Table I for values of L ranging from the charac-
teristic size to a few times that size. One can choose L by
picking the largest value for which good convergence is
observed down the column. In either case one should plot
the singularities of the approximants; if they conform to
the Carroll-Baker-Gammel rule one can have added confi-
dence in the results. One should also plot the approxi-
mants for the wave function to see that the expected in-
flection point is suitably inside the chosen value of L.
For problems in field theory the wave function may be
pointlike and this last procedure will not be available; we
shall discuss such problems in a later paper. Finally, if
one has a large number of terms but no estimate of the
size of the object one should plot the location of the singu-
larities of the approximants. If the method is working
well there will be a characteristic magnitude for these
points. (They will tend to lie at poles or on cuts of the ap-
proximated function; if such behavior is not observed
when a large number of terms is available the procedure is

probably not working very well. ) One should construct a
table such as Table I for values of L ranging over the
values characteristic of the magnitude of the singularities.
If the method is working one will observe good conver-
gence for the columns under small values of L, less good
convergence for larger values. One chooses the largest
value for which good convergence is observed. In such a
case one can obtain an estimate of the accuracy of the fi-
nal result by observing the apparent degree of convergence
down the column under the chosen value of L and across
the bottom row out to that column.

DISCUSSION

In this paper we have presented a method for doing nu-
merical calculations for problems subject to infrared
divergences due to the presence of interactions which be-
come stronger at larger distances. In the present paper we
have given examples of problems from potential theory.
For these problems the method works very well. In a
later paper we shall show that the method also works well
for a model quantum field theory which is also subject to
infrared divergences of the type we are interested in.
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