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Mass splittings within composite Goldstone supermultiplets from broken supersymmetry
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The supersymmetric (SUSY) Dashen formulas are modified to include effects of softly broken su-

persymmetry and are used to compute the mass splittings and differences in decay constants among
the various components of a Goldstone supermultiplet. The general results are applied to chiral-
symmetry breaking in two-flavor SUSY QCD.

I. INTRODUCTION

Effective actions describing the low-energy behavior of
strongly interacting supersymmetric (SUSY) theories have
been shown to exhibit some interesting properties. ' In
particular, a SUSY extension of the Dashen formula was
found which allowed the masses and decay constants of
composite Goldstone bosons and their bosonic and fer-
mionic (SUSY) partners to be expressed in terms of the
constituent masses and condensates. In SUSY QCD-
like theories these Dashen formulas implied a singular
behavior in the chiral limit ' and led to speculations con-
cerning the nonperturbative structure of the vacuum
state. Similarly, these formulas were employed to prove
the absence of radiative mass shifts between composite
Goldstone supermultiplets to arbitrary order in the pertur-
bative gauge interactions. In all of these considerations,
the SUSY was treated as an unbroken symmetry. (See
Ref. 8 for a short review of the superspace effective-action
approach. )

However, if supersymmetry is to have any phenomeno-
logical applicability, it must be as a broken symmetry.
The purpose of this paper is to calculate the effects of
SUSY breaking on the mass spectrum of the (quasi-)
Goldstone particles by simultaneously investigating both

the broken-SUSY and internal-global-symmetry-group
%Pard identities. An alternate approach, which uses an ex-
plicit form for the effective Lagrangian, can be found in
Ref. 9. More specifically, we consider the consequences
on the SUSY Dashen formulas of soft SUSY breaking
arising at the constituent level which would result, for in-
stance, from a hidden supergravity sector. ' Towards this
end, the results of this breaking on superfield time-
ordered functions is determined in Sec. II by solving the
broken-SUSY Ward-identity differential equations to
lowest order in the mass parameters characterizing the
SUSY breaking. Since the Noether currents associated
with the spontaneous breakdown of a global internal-
symmetry group 6 to an invariant subgroup H act as in-
terpolating fields for the Goldstone supermultiplets, their
two-point functions will carry information about the
(quasi-)Goldstone-boson masses (poles) and decay constant
(residues). When SUSY is broken these masses and decay
constants will no longer be degenerate. Furthermore, the
relationship between the auxiliary field on the mass shell
and the first component of the composite supermultiplet
will acquire an additional relative wave-function normali-
zation factor. These results are summarized in the
broken-SUSY current-field identity [partially conserved
axial-vector current (PCAC) relation] which is given by

—4DDJt=e [(Zs ms fsSi+iZpmp fpP;)+2rnf ff 8
P, a+88(ms, fsSt , imp, fp.Pt)]— .

and relates the superfield of Noether currents J;(x,8,8) to
the Goldstone-boson fields P; and their bosonic and fer-
mionic SUSY partners S; and P;, respectively. Here
mp ms, mf are the masses, fp,fs,ff the decay con-,
stants, and Z~. ,Zq. the above-mentioned normalization

I

factors for the fields denoted by the subscripts. In Sec.
III, the current two-point functions are analyzed by using
the superspace Noether theorem along with the broken-
SUSY Ward identities of Sec. II. This allows these func-
tions to be related to the parameters characterizing the
internal-symmetry group and SUSY breaking as well as
various condensates and (inserted) two-point functions of
the underlying theory. Then, using the current-field iden-
tities, these relations are converted into the desired

II. BROKEN SUPERSYMMETRY

Consider an underlying SUSY gauge theory with
(anti)chiral matter fields (P) P in some representation of a
strongly interacting gauge group with Yang-Mills vector
superfields V. The dynamics is given by the action

I=I;„,+Ib,
where

(2.1)

Dashen formulas. Finally, in Sec. IV, these general re-
sults are applied to the specific example of two-flavor
SUSY QCD with an SU(2)L &&SU(2)tt internal symmetry
spontaneously broken to an SU(2) i diagonal subgroup.
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~inv = ~ ~inv + ~ ~inv (2.2) ~v=evVe' 0 (2.6)

is SUSY invariant and (L;„„)I.;„„ is the corresponding
. (antichiral) chiral Lagrangian (see Refs. 3 and 11 for su-
perspace conventions). In addition to being SUSY invari-
ant, I;„„is also globally G invariant except for matter-
field mass terms which are soft-G breaking but H invari-
ant. Moreover, we envision that SUSY has been broken
via some unspecified means such as a supergravity Higgs
mechanism. ' . This breaking manifests itself as soft ex-
plicit SUSY-breaking masses in the underlying action Ib.
We include in this paper only breaking terms arising from
matter fields and exclude possible gaugino mass SUSY-
breaking effects. The breaking action can then be written
as

and is typically G invariant.
The SUSY Ward identity will now be broken by the

presence of Iq. According to the action principle, the
breaking has the form

l(0
I
TBX Io)=(0 I T(5')X Io) (2.7)

where (0
I
TX

I
0) is the time-ordered function for an ar-

bitrary product, X, of superfields, fundamental or com-
posite and 5X is their supersymmetry variation. Thus the
right-hand side of Eq. (2.7) is just the SUSY variation of
the action inserted into the X Green's function. In our
case this is simply given by

Ib =fd V 888 eb, (x,e,e),
where the superfield b. is given by

v+as+~s

(2.3)

(2.4}

5' ——fd V 888 056(x,e, e)

dV 88 +
B6

b( xe, e),

with the (antichiral) chiral (b,s) bs superfield of the form
1

~s=Ps 0 i ~s=Ps 02 2 2 2 (2.5)

Typically these terms will also explicitly, but softly, break
the global internal-symmetry group G, while respecting
the symmetries of H. The vector superfield soft SUSY-
breaking term b v is of the form

(2.8)

with P,g the Weyl spinor, Grassman parameters for
SUSY transformations. Equation (2.7) is viewed as a dif-
ferential equation for (0

I
TX

I
0) which we will solve to

lowest nontrivial order. In particular, taking M,X as vec-
tor superfields, the Ward identity for their two-point
function becomes

8 8i P + i (&ei) —Bi„i(o"02)—52„8 i 802

+g
BO

. +i(0,~},a,„+i(0,~},a,„B8
&oI TM(1}N(2)

I
o&

.r

= fdV303030303 P +0
Be

The solution to this differential equation through first order in b, is

BO
(0

I
Tb, (3)M(1}N(2)

I
0) . (2.9)

&0
I
TM(1)N(2}

I
0& =exp[i (eio"02—02o"ei)~2y][&0

I
TM(o»(2 —1}

I
o&

+i fd x (0
I
Tb(x3, —ei, —ei)M(0)N(2 —1)

I
0)] .

In obtaining this result, we have employed the unbroken-SUSY result

&o
I
T~(3)M(1}N(2)

I
o&=e p[i(Hi~02 02~01)~2 + (01~03 03~01}53 ]&o

I
T~(3—1}M(o»(2—1}IO& .

(2.10)

(2.11)

This is consistent with our approximation scheme since this superfield expression already contains a factor of b, .
In a similar fashion we can find the form of the Green s functions when M, N are chiral and/or antichiral. Letting S

be a chiral superfield satisfying D .S=0 so that

S(1)=exp(iei&eiBi&)S(x i, 83,0),
and taking M as a vector superfield we have

(0
I
TM( l)S(2)

I
0) =exp[i(Hier"8i+02o "02 282o"ei)8—2&]

&&[&0
I
TM(o)s(x2 —x„e,—e„o)

I
o&

+i fd x(OI Th(x, —ei, —Oi)M(0)S(x2 —xi 02 —ei 0) Io&] .

Finally if R is an antichiral superfield constrained by D R =0 so that

R (2)=exp( —i 02o "0282&)R (x,0,82),

(2.12)

(2.13)-

(2.14)
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we secure, for S chiral, the form

(0
~

TR(1)S(2)
~

0) =exp[i (O,o"8i+O,cr"82 —28,cr"Oi)B2&]

(0
~

TR(0)S(x2 —xi, 0,0)
~
0) +i fd x (0

~

Th(x, —82, 8i)R(0)S(xz —xi, 0,0)
~

0)

In addition, the vacuum value of a, single vector or chiral superfield obeys the simple SUSY differential equation

i g —g . (0 ~M(1) ~0) =fdVOOOO(0~ T P —g . 5(x, 8, 8)M(1) ~0),
BO Qg+ gg a

(2.15)

(2.16)

f d' x(0
i

TiI),(x,0,0)M (0)
i
0) =0 .

Similarly for S, a chiral superfield, we find

(2.18)

(0
i
S(1)

i
0) = (0

i
S(0)

i
0)

+i fd'x&0
~

TS(x, —8, , 8, )S(0) i 0&,

(2.19)

with

fd'x(0
i

Tb, (x,0,0)S(0)
i
0) =0 .

III. THE DASHEN FORMULAS

In order to obtain the component Dashen formulas we
analyze the component structure, implied by the broken-
SUSY Ward identity, of the Noether current two-point
functions. Writing the underlying action as

I=fd V(L v+ 888 85v ) +fdS(Ls+ 88')),s )

+fdS 88(Ls+OOZs), (3.1)

the Noether currents associated with the global symmetry
group G are given by

where space-time translation invariance has been used.
Solving this equation to first order in b. for a vector
superfield M then yields

(0
~

M(1)
~

0) = (0
~

M(0)
~

0)

+i fd x(0
~

Th(x, —Oi, —Oi)M(0)
~

0) .

(2.17)
Focusing on the 0~, 0, independent component leads to the
constraint

J~ =J„'""+ceoeJ~, (3.2)

L = —
6 DD(L v+888 O~v)+Ls+OM s

L, = —, DD(Lv+888—8bv)+Ls+88bs

so that

I= fdS L + fdS L,

(3.4)

we find that the internal-symmetry variations of L and L
are given via Noether's theorem as

l 5I
5~L = DDJ~ +5~(((—I

4
(3.5)

l —5I
5~L = — DDT+5&P—4 5p

It follows that the current two-point functions can be
written as

where the index A represents the generators of G and the
superfield currents are

l aL V BI V

By
(3.3)

l ad V a~V402

Note that, although J~"' and Jz are superfields, Jz is not
a superfield due to the presence of the explicit 888 8. We
will call such quantities superspace functions as opposed
to superfields.

Defining the chiral and antichiral I.agrangians as

(0(T6„L(()6~L(2)(0)=(0 T —DDJ„(1) DDT(2) 0)—
+ OT5gI-1 5g 2 0+ OT5g 1 —DDJg2 05I 5I i ——

5p 5$ 4

(0(T6„L(()6gL(2)(0)= 0 T DDJ„(1) — DDJ~(2) 0)——
4 4

+ OT5gI 1 5g 2 0+ OT 5g 1 ——DDJg2 0
—5I 5I i'

5

(3.6a)

(3.6b)

The component structure of the above identities can be obtained by tedious but straightforward application of the
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broken-SUSY Ward identities to each superfield Green s function. First consider the current two-point function itself.
It can be written in terms of its superfield parts as

I

&o
I
TJA(1)J2 (»

I
0& = &o

I
TJA""(1)J2)""(2)

I
o&+81818181&0

I
TJA(1)Ja"'(»

I
o&

+82828282(0
~

TJA ( 1 )JP)(2)
~

0& +8181818182828282&0
I TJA( 1)JP(2)

I

o & (3.7)

Now each superfield two-point function can be expanded in terms of its independent components to first order in the
SUSY-breaking parameters pz, pz . Consistent with this approximation, we set

&0
~

TJA~(1)J~(2)
~
0& =0 (3.g)

since it is second order in SUSY breaking and

(0
~

TJA(1)Jg""(2)
~
0& =exp[i(8)o"82 82cr—"81)(32iJ](0

~
TJA(0)Ja (2 1)

I
0& (3.9)

which is the unbroken SUSY relation and follows since JA is already first order in the SUSY breaking. For the JA""

Green's function we find upon using Eq. (2.10) that

x& 0 T —4DDJg l —4DDJg 2 0

fd4 d4 (()
~

T[i( (0,2)(y) 8(2g(1,2)( )+g 2g(2, 2)( )]

XJ»1o'o)(x)[J'»1o'2)(0)+(8 —8 )(2J)»1 ' )(0)+(8 —8 ) J)»1 ' )(0)]
~

0 (3.10)

Here the superscripts ( m, n) denote the respective powers of (8,8) that the component field is multiplied by in its corre-
sponding superfield decomposition. For example, the superfield b, has the component decomposition

b(1)=b)' ' '(x))+8)5" '(x )+8 b, ' '"(x )+8 b' ' '(x )+8 5' ' '(x )+8 cr"8 b,""(x )la 1 1 1 1 1 1 1 p.

+g 2g g(i(2, 1)(X )+g 28(xg(1,2)(X )+g 2g 2g(2, 2)(X

By recombining these various equations we obtain the component structure of

(0
i
TDDJA(1)DDT(2) i

0& .

(3.11)

The component structure of the remaining terms on the right-hand side (RHS) of Eqs. (3.6a) and (3.6b) can also be
analyzed. That is, by applying the action principle

(0 T 66 (1)X 0).=i(0 T66(() X 0) (3.12)

to the term where X is 6~1- we have

0 T6„L(1) 6~$ (2) 0 =i(0 T6g()(2) 6„L(1) 0) .
(

5I
5 2

(3.13)

Then if L1 and b, 1 are invariant under 6 (as is our case), we can factor a chiral 5 function from this to simply write it as
the double variation of the chiral Lagrangian to obtain

52)P(2) 5AL(1) = —,'D D5(1 —2)51)(l—)
B5AL (1)

5$(2) ' BP(1) ,'DD5(1 —2)52)5AL —(1).

Combining this with Eq. (3.13), then yields

0 T5AL(1) 52)P (2) 0 I= — DD5(1 —2)(—0~5~5AL(1) ~0& .(
5I )) i
5y I 4

Finally, using the chirality of L and the broken-SUSY Ward-identity result of Eq. (2.19) we secure

(3.14)

(3.15)

c
0 T5AL(1) 5gp (2) 0[=— DD(0~5~5AL(0)—~0&+ 4DD5(1 —2)fd (y0~ Tb(y, 81,0)52)5AL(0) ~0—& .

5()I) J 4

(3.16)

In a similar way the action principle can be applied to the term where X is DDJ&. We find that this term can be related
to a different condensate and broken-SUSY insertion corrections and takes the form
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(

fd. , (OT 5„P" (1) 'D—DJ, (2) 0)4

+i(8 —8 ) fd xI 0 T[b, ' ' '(x) 8b,"—'(x)+8 6' ' '(x)] 5 P (0) 0) .
aJ~

i 2 2 cx 2 A (3.17)

Reassembling all of the above terms along with the corresponding expressions in the (0
i
T5&L5&L

i
0) function we

find 7 equations relating the components of the 5&L and 5&L propagators to double variations of the Lagrangian plus
SUSY-breaking corrections. (An additional 2 relations are obtained, but these are merely consistency relations among
the breaking terms and contain no new information about the 5&L,5y&L propagators. ) The component zero-momentum
two-point functions are given by

f d xi(0i T5~L' '(x, )5~L& ' '(x2)
i
0)= i fd—xd y(0i Tb& ' '(x)J„'' '(0)Jii' '(y)

i
0),

f d4x, &0
i
T5 I.""(x )5 I.""(x,)

i
0)

=i(0
i
5ii5gL& ' '(0)

i
0) —fd x(0i TJg' ' '(0)Jg' '(x)

~

0)

8Jii
+if d (xTO5' ' '(x) 5«$ (0) 0) —if d xd y(0(T()' ' '(x)y«' '(0)yx' '(y)(0),

L

f d'x, &oi T5„I.""(x )5 L,""(x,) io)
'

&0,0}

=(&0(5«5„5«x' (0)(0&+(0 5«d (0) 0)
—fd x(0(T(«' ' '(x)5«5«L' ' '(0)(0)

ay
(0,0)

+i fd x(0 To' '(x) 5„()'
—fd x(0i TJ„'"(x)Jii' ' '(0) i0) i fd—'x d y(0i Tf&." '(x)J„'"(0)J~""(y)i0),

(3.18a)

(3.18b)

(3.18c)

f d xi(Oi T5&L " '(x )5 L ' '(x2)
i
0)

' (0,0)

=4(&0(5«5„s.(xo)(0) (o&+4(fd'x(0 To|«"(x) 5„() '
(o) 0)

4i fd x—d y(0i Tb, ' ' '(x)J' ' '(0)Jii' '(y) i0)+2i fd x d y(0i Tb, " '(x)J' ' '(0)Jii' '(y) i0), (3.18d)

f d xi(0
i
T5/L' ' '(x, )5 L ' ' '(x ) i0)

(0,0)

= —
I 0 5, ()

'
(0) 0)+fd4«&0

(

Ty„""(O)yx'""""(x) (O&
ay

+i fd x d y(0i Th' ' '(x)Jg' '(0)Jg' '(y)
i
0)

+i fd x d y (0
i

Th& ' '( )J„' ' '(0)Jii ' '(y)
i
0 ) ——fd x d y (0

i
Tb, ' "(x)Jq ' '(0)Jgj' "(y)

i
0),

f d xi(0
i
T5~L' ' '(xi)5gL ' ' '(x2)

i
0)

(3.18e)

(0,0)

= fd x&0(Ty« '(x)yx' '(0)(0) —if d'«(0 To''0'x(x) 5«()
ay

+i fd xd y(0i Tb, &o '(x)J„'' '(0)J~' '(y)
i
0),

(o) o)

(3.18f)
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f d»&0~ T5„L~ '(x )5 L '»(x, ) ~0&

gJh(0, 0)

(0) OI
—i f d x( 0 Ti' '(x) S„() (0) 0 +id x(0(TJ„' '(x)Ja'' '(0) (0')

+fd x(0
~

TJ„' ' '(0)Jg ' '(x)
~

0)+i fd x d y(0
~

Tb," '(x)J~ ' '(0)Jg ' '(y)
~

0) . (3.18g)

, D DJ( ———,m f~ n—i, . (3.19)

with the chiral Goldstone superfield n; given by

m;=e " I(S;+iP;)+28 g
i 8WR

+88[m (S; iP; )+—E; ] I (3.20)

When SUSY is unbroken, the PCAC current-field iden-
tity relating the Goldstone-boson fields P; and their
SUSY partners, the quasi-Goldstone-boson fields S;, and
quasi-Goldstone-fermion fields 1i) ., to their interpolating

fields, the components of the superfield of currents, J, , is
simple. (The indices from the middle of the alphabet
ij, . . . denuinerate the broken generators of G.) SUSY
dictates a common mass m . and a common decay con-
stant f . Furtherm. ore, the relative wave-function nor-

malization between the bosonic fields and their auxiliary
fields is unity. That is, close to mass shell the current-
field identity takes the form

and the E; are Euler-Lagrange terms which arise from the
elimination of constituent auxiliary fields from the inter-
polating fields. On mass shell these vanish but at zero
momentum where the current, or equivalently the 6qL,
two-point functions are being evaluated they contribute
additional condensate terms necessary to derive the ordi-
nary Dashen formula. The explicit form of these
Euler terms depends on the model considered.

On the other hand, when SUSY is broken each field
will receive separate contributions to its mass,
mp , ms m. f, . and decay constant, fp,fs,ff . In additi. on,
there will now be nontrivial normalization factors,
Zp, ,Zs, , for the different composite fields that interpolate
for P; and S; in the first and last components of the
superfields. That is, the composite auxiliary field now has
a relative wave-function normalization in its equation of
motion. In a somewhat cryptic notation, the field equa-
tion for the composite auxiliary field reads
F„~„„=Z 'mA„p„;„. Hence, the PCAC current-
field identity close to the mass shell becomes

0——'DDJ; =e [(Zs ms fs S;+iZp mp fp Pi)+2mf ff 8 p~ +88(m. s, fs Si &'mp fp P.i+—Ei)]=i.5;L, (3.21)

where the second equality follows from Noether's theorem applied close to mass shell. Consequently 5~L also carries the
(quasi-)Goldstone particle poles and hence the PCAC relation can also be written using 5;L as the interpolating field.
Similarly for the antichiral Lagrangian we have the corresponding current-field identities

—r e~I'ba
2 2—4DDJi =e " ~ [(Zs ms fs Si iZpmp fpPi)+—2mf ff 8jii +88(ms, fs Si+imp, . fp. Pi+Ei)]= i5iL . —

(3.22)

Employing these identities in. our 5&L,5&L two-point function relations and using the propagators

f d x(Oi TS;(0)SJ(x) iO)= —. 5J,
l ms

l

f d x(0i TP;(0)PJ(x) ~0)= —. 5,i,
E mp

l

f d x(0
i
TS;(0)P.(x)

i
0) =0,

(3.23)

f d x(0~ TP; (0)@gx)
~
0) = —— .5J,

l Vlf

we obtain 5 independent component Dashen formulas. [Of the original 7 expressions Eqs. (3.18a)—(3.18g), 2 of them are
redundant and simply reduce to consistency relations among the various (inserted) two-point functions. ] The indepen-
dent Dashen formulas are given by (no sum on i)

mp fp i fd (0x~ TE;—(x——)E;(0) ~0) —8(0~5;5;bs' '(0) ~0) —8i fd x(0
~

Tb.' '(x)5;5;L' '(0) ~0), (3.24a)
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(0,0)

ms, fs, —i=fd x(0( T5(x)5(0) (0)+8(0(555sX '(0) (0) —8)(0 55 (0) 0l
' (0,0)

+8i fd'x&o
I
TS""(x)5,5,L""(0)

I
o&+sfd'x( o T~""( ) 5 y (0) ol

+ 16i fd'x « I
» '"(x»;"'"«)

I » 8—fd'x d'y &0
I

»""(x» '"(0)J""(y)
I
» (3.24b)

(0,0)

~yfy'=8(O(55S. ""(0)(0) +8fd'x(0 T5""(x) 5() (0) 0)

—4fd" d'y«IT~""(x)J ' (o)J ' (»Io&+2fd

z, m,f, '=s&o
I 5,5,I.""(o)

I
o&,

Zsms fs =8(0
I
5;5;L' '(0)

I
0)+si fd x(0

I
TJ ' '(x)J; ' ' '(0)

I
0)

' (0,0)
aJ,+8fd xIO T(s' '(x) 55 ' (0) 0)

—8fd xd y(0(T5' '(x)y ' '(0)y ' '(y)(0) .

(3.24c)

(3.24d)

(3.24e)

In evaluating the breaking terms on the right-hand side (RHS) of Eqs. (3.24), one first pulls out the explicit breaking
mass parameters leaving a soft operator inserted Green s function. This is then evaluated in the unbroken symmetry lim-
it and carries a power, according to its dimension, of the underlying strong dynamics scale. Note that equations
(3.24c)—(3.24e) above can be added to obtain a generalized SUSY supertrace mass formula involving masses, decay con-
stants, normalization factors, and the SUSY-breaking vector superfield (i.e., b. V):

Zp mp fp +Zs ms fs 2mf ff 8i f—d x (0
I

T——J; ' ' '(0)J ' '(x)
I
0) 4fd x—d y (0

I
Tb, ' ' '(x)J~' ' '(0)J ' '(x)

I
0) .

(3.25)

Note also that the only nonvanishing two-point function involving the Euler terms is (0
I
TE;E;

I
0). This follows since

E~ contains derivatives with respect to the constituent auxiliary fields Fwhich are contained only in E;.
The above Dashen formulas relate parameters characterizing the composite objects to condensates and (inserted) two-

point functions containing the constituent fields. When SUSY is unbroken, the common mass and decay constant could
be separately related to the underlying internal-symmetry-group-breaking masses and constituent scalar and fermion field
condensates. However, once SUSY is broken, this degeneracy is lifted and only the products Zmf and m f for the
bosons and mf for the fermions are determined from the Dashen formulas

If the internal symmetry group's spontaneous breaking occurs at a scale comparable to the SUSY breaking scale we
can simplify the above formulas by only retaining terms to first order in all broken quantities. In such a case, not only
are terms such as (0

I

Th' ' '5;5;L' ' '
I
0) directly negligible but also, by the use of Noether's theorem and the action

principle, we have indirectly that terms such as

f d x d y(0
I

Tb, ( ' '(x)J' ' '(Q)J' ' '(y)
I
0)

are higher order in breaking and hence can be neglected. Simplifying the Dashen formulas Eqs. (3.25), we thus find to
lowest order in SUSY and group breaking the Dashen formulas (no sum on i):

mp'f'= ——fd x(0
I

T,E;(x, )E;(0)
I
0)—4(0

I
5;5;hs' '(0)

I
0), (3.26a)

ms, 'fs, '= ——fd'x(-QI .TE;(x)E;(0) I0)+4(0 I5i5 hs' (0)
I
0)

(0,0) (2,2)
BJ;

+Bi 0 5; 0 0 —8 dxoT
ay

mf ff =4(0
I
5;5;L' ' '(0)

I
0),

Zpmp fp =4(O
I 5, 5,I.""(O)

I
O&

(x)J ' (0) 0), (3.26b)

(3.26c)

(3.26d)
' {0,2)

Zsmsfs, '=4&0
I
585 L""(o)

I
o) 8fd'x&—o

I
T 5 0' (x)J ' (o)

I
o) (3.26e)
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In order to illustrate the utility of the Dashen formulas,
we consider an underlying two-flavor SUSY QCD-like
model possessing an SU(2)L, XSU(2)~ global chiral sym-
metry which is presumed to be spontaneously broken to a
diagonal SU(2)v vector subgroup by vacuum condensate
formation. (The question of which chiral-symmetry-
breaking condensates form in SUSY theories is still not
completely settled. ' ' ) We define constituent chiral
superfields vP and X' which transform under [SU(2)L,
SU(2)z ] as (2,0) and (0,2), respectively, so that

r b

5L g'=i
I

b
b I ~ oL.9a —l'9b

I

In fact, to the order of approximation under present con-
sideration, these relations can be even further simplified.
This follows from the observation that the normalization
factors Zs. and Zz are equal to 1 plus terms proportional
to the SUSY breaking parameters and that the right-hand
sides of Eqs. (3.26d} and (3.26e) are already first order in
the breaking (SUSY or group). Thus, in the first-order
breaking approximation, we can simply take the normali-
zation factors equal to unity.

IV. MODEL: SUSY QCD

a=av+as+Zs . (4.7)

Here
~v=pv Lv (4.8)

respects the left-right symmetry while

2ps~s=ps &'9= — Ls
PG

explicitly, but softly, breaks it. The complete (anti-)chiral
Lagrangian is then given by Eq. (3.4) and takes the form

r

(4.9)

2

L = 8DD[(1+Pv 8 8 )Lv]+ 1 — ez Ls
PG

(4.10)
2

L = —SDD[(l+—Pv 8 8 )Lv]+ 1 — ez Ls .
PG

The axial variation of the (anti-)chiral Lagrangian is
then simply given as

which explicitly breaks SU(2)L, XSU(2)~ to SU(2) v.
Furthermore, the soft SUSY,.-breaking action is given by

r, = fdveeeea, (4.6)

with

61..X,=0, 6L, .X '=0,

5g,q'=0, 5g Ti, =0,
(4.1) 5, L=2i(i g —ei s )X—q,2 2

2
(4.11)

b 'a

5+.Xg 1Xb ~ y
' 5+,X —I bX

2

where the r', i =1,2, 3 are the usual Pauli matrices. The
vector and axial-vector variations are simply defined as
the sum and difference of the right and left transforma-
tions and are given by

~V ~R. +~L
(4.2)

~5; ~R; ~L;

The SUSY-invariant chiral Lagrangian has the form

5g L = —2l (pg —8 ps )77
2

Expanding the chiral and antichiral superfields in terms
of their component decompositions as

X=e "(Az+V 28 gz +88Fz),
(4.12)

X=e "[Az+V 28,$z+8 8Fz],
with similar expressions for g and Ti and using the auxili-
ary field equations of motion

5I
5' =e Fy —pGA

L;„„=——,D DLv+Ls, (4.3) 6I =e F& —pGA~,
F~

L,v=rie'vri+X(e' } X, (4.4)

s= p (4.5)
I

I'

i eW88„55L =e "2i pgAz —A&+~28 pg Ax
2 4z +4x

while the Yang-Mills vector superfield V is matrix valued
in the color space. (The superscript T denotes transposi-
tion in color space. ) The mass term is

2C

5F
——Fg e —pG

x

5I
M„

=F e —pGQ~,

the variation of the chiral Lagrangian takes the form

(4.13)

+88 pgAz —e Az+pgA&(e ) Az pg0x 0q Ps Az— —

—e ' (e ) —A+PG x 2' 5F +PG5F- ~
2

Yl x
(4.14)
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Zp mp f~ P; =2% 2ip g Ax —A„—A„—Ax (4.15a)

Zs ms fsS; = —
2, V 2pg Ax —A~+A~ —Ax, (4.15b)

Here 5I/5F is the Euler-l. agrange equation for Fwith

I=fds I.+fdS I,

being the total action and C is the 8,8 independent com-
ponent of the Yang-Mills field V. (In Wess-Zumino
gauge, C =0 and the above exponentials can be ignored. )

Applying the current-field identity of Eq. (3.21), we can
explicitly relate the component fields of the Goldstone
multiplet to composite combinations of the constituent
fields as

i fd'x
& o

I
TE, (x)E;(o)

I
o &

—4p &oI (@A' +0 0 )(o) Io&

4—ipg fd~x(OI Th' ' '(x)(AxA„)(0)
I
0&

+4ipg fd x(0
I

Th' '(x)(A„Ax)(0)
I
0& . (4.19)

From Eqs. (4.15) we see explicitly the origin of the nor-
malization factors Zp, ,Zs. . By convention the decay con-
stants are defined by the vacuum to one-particle state ma-
trix elements of the component currents in J5, . From

l

Noether's theorem, this translates into the matrix ele-
ments of the components of 55.L. It is the 88 component
of DDJs which contains the axial-vector current j~5

l l

which is conventionally used to interpolate for the
Goldstone-boson field P;. As such, we define the
Goldstone-boson decay constant fz via.

l

mfff g; = —4pg Ax P& +gx A& (4.15c)
(0

I Jg. (0)
I P, (k) & = —if, k~ (4.20)

mi' f& P' =2~~'pg A Wg 4q 4x

+2~2ips Ax —Az —Az —Az (4.15d)

ms, .'fs, S=2v 2Pg Wx .
2 4~+4~ 2

itx

+2v 2ps2 Ax —A„+A„—Ax (4.15e)

—4v2pg Ax —e 2 Ax+A„(e ) —A„2 2

with k = —mp . Using the Noether theorem, it follows
l

that it is the real part of the 88 component of 5q L whose
current-field identity is normalized with the factor as in
Eq. (4.15d). We also adopt the convention that the imagi-
nary part of the 88 component of 5, Lis normalize. d with
the fs factor only as in Eq. (4.15e). However, the super-

symmetry dictates that the 0, 0-independent components
of D DJ5 and likewise 55 L also carry the S; and P; poles
%'hen SUSY is broken the residue of these poles need no
longer be the same as the residue of the poles in the 88
components. More explicitly the (quasi-) Goldstone-boson
pole for the 8-independent term of 5, L is carried by the

l

composite field

while the Euler-Lagrange derivatives are given by

E = —4~2 A —.-" +

r

E=—4v2 A —(e )
X Yl

(4.16)

@GAL—A~ .

If SUSY is unbroken, this term transforms into the 88
component of 55,L given by

Pg Ax2e Ax+A(e ) 2A, WxZP, ——2C —2C T+

and by once again using the auxiliary field equations of
motion, it can be rewritten as

fd x(O 'I TE;(x)E;(0)
I

O&

4pg(0
I
(AxF +F—xA )(0)

I
0

—4Pg(0
I (FvAx+A/Fx)(0)

I
0& . (4.18)

Application of the broken-SUSY Ward identity then re-
lates this scalar field condensate to a fermion field con-
densate plus correction terms due to the SUSY breaking.
So doing, we secure the result

The two-point Euler term can now be evaluated yielding

i fd"x(OI TE;(x)E;(0)
I
0&

= —8pg (OI [Ax Ax+A„(e ) A„] I
0&, (4.17)

and consequently the poles in the two terms have the same
residue.

When SUSY is broken, Ax(v'/2)A& Green's functions
do not simply transform into

Ax eAx+A„(e —) A„gx— —

Green's functions. Furthermore, L is no longer even a
superfield. This leads to different residues between the
first and last components of 5&L. These differences are

l

reflected in the relative wave-function normalization fac-
tors Z~. ,Zq. . Since the fermion appears in only one com-

l l

ponent of 65.I., the residue of the pole is, by convention,
defined as the PCAC decay constant.

The axial-vector current superspace function has the
definition
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~inv +828 2g (5,

j l
(4.21) where P stands for both ri and X. Explicitly the current

takes the form

BLq BLy
~'5"."=—55.4 — —55.4'

~j 2 l
Qp

( ()

J5 i——(1+pz 8 8 ) ge —ri+g —(e2~)~g2 2 2 — 2V+ + 2V T
l 2 2

(4.23)

Bb, y Bb, v
~5,. = 2 55,.4' — —55,.4 ~

(4.22) where we recall that V acts in color space only and so
commutes with r'. In order to apply the Dashen formulas
[Eqs. (3.26)] to our model we need the double variation of
the chiral Lagrangian which is given by

55.55,L =2(pG —ps 8 )X ~ ——
t J 2'2

=(VG Vs'8'—~'n

=(V G ps'8"e— "lAxAg+~&8 (Axf~ +4x Ag)+88(AxI'g+I'xAg 0xP~))—. (4.24)

BLv BLy
55. = —5,~J QP 1

we have that

(4.25)

However, upon evaluating the necessary two-point func-
tions we find they vanish in this model. For instance,
since

Substituting these results into the Dashen formulas, Eqs.
(3.26) and recalling that in the approximation of keeping
terms only to first order in all explicit breaking parame-
ters, we can set Zs and Zp to unity, we secure (no sum

I

on i),

mp, fp, ——fd x(0
I

——TE,(x)E;(0) I 0)
BA p'

J5 ———i55 pi i (jp

Bhy= 554
~~

' (0,2)

(4.26) —4&0
I
5,5,a,""(0)

I
0)

=2i, &0
I (yA„+ y„qx)(0) I

0)

+2ps (0
I (AxA„+A„Ax)(0)

I
0), (4.30a)

Jh(0, 2)=l (4.27) ms, . fs, = —' f d x&0
I

T.E;(x)E;(0)
I
o&

Hence, it follows that
' (0,2)

J d x (0 T 5, () (x )J', ' '(0) 0)
«

=&'p x 0 TJ'' 'x J'' '0 0
J l

(4.28)

+4(0
I
5;5;6' ' '(0)

I
0)

=2p (GIO(qxy„+ &pox)(0)
I
»

—2ps (0
I
(AxA„+A„Ax)(0) I

0), (4.30b)

(0,0)

(0) 0)i 0 55

(2,2)

=fd x(0
I
T 55,$ (x)J5, ' '(0) IO) (4.29a)

aa'
ay l

But by using the broken-SUSY Ward identity and the ac-
tion principle, we find zero for the right-hand side. Simi-
larly we obtain

r

mf,ff =4(0
I 55.55,L' ' '(0)

I
0)

=2pG (0
I (AxA„+A„Ax)(0) I

0),
mp fp4(0 I 55,55,L' ' '(0)

I
0,)——

=KG(0 I (AxA„+A„Ax)(0) I 0),
ms fs ——4(0

I 55 55 L' 0'(0)
I
0)

=2pG(0
I (AxAv+A&Ax)(0) I

0) .

(4.30c)

(4.30d)

(4.30e)
(0,2)

f d «(0 T 5g.() (x)JP' '(0) D)=D. (4.29b) From these formulas, separate expressions for m~, mz. ,I l

fs, and fpmay be extracted, wh, ile, for the fermion, only
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(

the combination mf ff is obtained.

Since we are looking at the broken SU(2)L &&SU(2)R
Ward identities to lowest order in the comparable SUSY-
breaking and internal-symmetry breaking scales we find
only effects from the internal-symmetry breaking masses

pG, ps . Of course, this first-order approximation scheme
radically limits the possible Fermi-Bose mass splittings.
A more complete calculation of the spectrum can be ob-
tained by analyzing the Dashen formula (3.24) when the
SUSY and internal-symmetry breaking scales differ. So
doing, effects of the G-invariant but SUSY-breaking mass

terms (with parameter p~ ) will appear. Furthermore,
higher-order SUSY-breaking corrections can also be in-
cluded by finding additional corrections to the broken-
SUSY Ward identities. That is, Eq. (2.9) can be solved to
higher order in h. Finally, in addition to these effects, the
effect of SUSY-breaking gaugino mass terms can be in-
cluded.
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