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The chiral properties of the fermion-monopole system are investigated in detail. For one species
of massless Dirac fermions, we show that the chiral symmetry is spontaneously broken, even in the
presence of anomalies. The symmetry breaking is accompanied by a Nambu-Goldstone mode in the
physical sector, which essentially coincides with the bosonic fields employed by Rubakov and Cal-
lan. A discrepancy noted previously for a Higgs-boson mass is also resolved. For the case of two
species, we find two classes of degenerate solutions corresponding to whether or not the
nonanomalous chiral symmetry is broken. A comparison of the two solutions in the presence of a
mass term indicates that monopoles are unlikely to catalyze proton decay at strong-interaction rates.

I. INTRODUCTION

Since its discovery in 1949, the chiral anomaly' has
persistently been revealing unexpected features, not the
least being its connection with some important theorems
in mathematics. " Similarly, chiral-symmetry break-
ing' ' has assumed a major role in elementary particle
physics, since its transcription from BCS theory in the
1960's. Their pertinence to the fermion-monopole system
has also been widely recognized, and there already exists
considerable literature on this subject, ' particularly
with respect to proton-decay catalysis.

However, it is well known that both issues can develop
quite delicate aspects, so we have decided to perform a de-
tailed study. Needless to say, much has already been anti-
cipated in the literature in one form or another. However,
our analysis has also led to the distinct possibility that
monopoles do not catalyze proton decay at strong-
interaction rates, so we believe a systematic reexamination
is justified. Essentially, we find that the fermion-
monopole system possesses a Dirac phase, which is degen-
erate with the Rubakov-Callan phase if the fermions are
massless, and is expected to have a lower energy if the fer-
mions are massive.

Our results also bring to the fore an important aspect of
anomaly theory (although the point is well known to the
experts): Chiral symmetry for massless fermions is spon-
taneously broken, even in the presence of anomalies.
Furthermore, a new feature is that, unlike the case of the
Schwinger model, the CP" model, ' or (presumably)
QCD, the symmetry breaking is accompanied by a
Nambu-Goldstone mode in the physical sector, showing
that the U(1) problem ' is indeed a nontrivial dynami-
cal issue.

The organization of the paper is as follows. Section II
deals with the Abelian case, beginning with a brief review
of the chiral anomaly in the absence of monopoles. The
necessary modifications in a background monopole (dyon)
field are derived, paying particular attention to the singu-

larity at the origin. As suggested by Nair, we find that
the scalar field of Rubakov and Callan ' may be identi-
fied as a Nambu-Goldstone mode associated with the
breaking of chiral symmetry. The essential aspects are
shown to be unchanged if the Coulomb self-energy of the
fermion is included in addition to the background field.

Section III deals with the non-Abelian case with iso-
doublet (Dirac) fermions. After a brief review of the
chiral anomaly, such as in Sec. II, we first consider the
semiclassical ground state, where chirality is unbroken
for massless fermions. The state is shown to be unstable
in the presence of a four-Fermi interaction induced by the
dyon degree of freedom. Two proposals as to the na-
ture of the true ground state are then discussed. One is
that of our previous paper (II), where the boundary con-
ditions (BC's) for the fermions are effectively modified
from the semiclassical result, and the other is the ap-
proach of Callan, ' where BC's for the bosons are modi-
fied after a bosonization of the original Hamiltonian.

For one doublet, we find that the two proposals lead to
essentially equivalent results, confirming the result of Pol-
chinski. In particular, this allows us to resolve a
discrepancy noted previously concerning fermion-number
conjugation and the Jackiw-Rebbi zero mode. We then
turn to the case of two doublets, which may be regarded
as the prototype of catalysis. Here, we find that the two
proposals lead to a different conclusion with respect to the
nonanomalous chiral symmetry, as expected from an
analysis of conservation laws. If the fermions are mass-
less, we may explicitly construct the approximate ground
states with both proposals, which we find to be degenerate
in energy. Adding a mass term to resolve the degeneracy,
we find strong indications that the Dirac phase is to be
favored, although an explicit construction of the ground
state eludes us for Callan's proposal. The result is con-
sistent with the observation of Polchinski that the chiral
perturbation series around the Rubakov-Callan ground
state is infrared divergent.

Section IV is devoted to a discussion of the various ar-
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guments put forward in favor of catalysis, as well as some
open questions. We also speculate on the possible signifi-
cance of our results beyond the fermion-monopole system.

Appendix A is devoted to a partial-wave analysis of the
anomaly. Appendix B provides a brief review of the rela-
tion between the renormalized and unrenormalized ver-
sions of the chiral anomaly. Appendix C compares the re-
sults of this paper with the existing literature on some
technical issues.

2

5qj'~P = — F„„BP, r)p„'"P =0 . (2.3)

(All quantities are renormalized unless specified to the
contrary. See Appendix 8 for details. )

Despite its noninvariance, however, it is j&~5 which is
of interest for chiral-symmetry breaking, since it is the
one which determines the operator chiralities no accord-
ing to

II. THE ABELIAN CASE

5p, &„=r)„h, 51,+= reh—@ (2.1)

Let us first recall the relevant aspects of the chiral
anomaly for massless QED in 3+ 1 dimensions. At the
tree level, the chiral current j&5

——+yzy5%' is invariant
under the gauge transformation

f dx[J',&;(x,t), 0(y, t) J =noO(y, t) .

In particular,

f d x[jps (x, t ), +(y, t) ]= ysW(—y, t),

f dx[jpq (x, t), F&„(y,t)]=0.

(2.4)

(2.5)

(2 6)

and satisfies the conservation law Bp&s
——0.

However, the gauge invariance and the conservation
law become incompatible in the presence of quantum
corrections, as represented by the triangle diagram. Since
j&5 is an external operator, some latitude exists in its re-
normalization, and the corrections are dependent on the
precise prescription adopted. If the prescription main-
tains gauge invariance, the current obtained j„'"5' is no
longer conserved,

[jos"(»t)

[jps"(x,t), E(y, t)]= B(y, t)5(x —y) .
2%-2

Also,

(2.7)

We note that Eq. (2.6) would not be true if j„'"s is rePlaced
by j&z", owing to anomalous cornmutators. To lowest or-
der

2

5»~~"=0 di~~"=
8 2 [F~-F~-]. (2.2) [jp(x, t), j os (y, t ) ]= —

2 B(x,t) V„5(x—y), (2 8)

On the other hand, if the prescription maintains the con-
servation law, the resulting current j&~5 is no longer gauge
invariant,

which is expected to be valid to all orders.
For a gauge-invariant operator 0'"", the chirality n~ is

also invariant, since

2

5„fdx[J',", (x, t), 0'""(y,t)]= fdx[B(x, t), 0'""(y,t)] V„h(x, t)
4m

2
= lim f dS. [B(x,t), 0'""(y,t)]h(x, t) =0,

Ix~ =~ (2.9)

where we have used locality for gauge-invariant operators.
In particular, the integrated charge itself (if it exists)

g',"-=fdx J (x) (2.10)

is invariant under proper gauge transformations with
A( co ) =0. Hence, we may meaningfully speak of a spon-
taneous breakdown of the anomalous chiral symmetry, if
a gauge-invariant operator with nonzero chirality acquires
a nonvanishing vacuum expectation value.

So far, we have discussed the ordinary case of QED
without magnetic monopoles. If magnetic monopoles are
included, the discussion above requires modification. One
obvious place is (2.9) where we have used the Bianchi
identity V.B=0. A less obvious place is (2.8), which may
be seen as follows. In the absence of monopoles, we may
equally take the commutator as

since

B(y, t).V„5(x—y) =V„.[B(y,t)5(x —y)]
=V„[B(x,t)5(x —y)]

=B(x,t).V„5(x—y) . (2.12)

However, (2.8) and (2.11) are no longer equivalent in the
presence of a monopole, which leads to an ambiguity in
extrapolating from the monopole-free case.

To determine the appropriate modifications to Eqs.
(2.2)—(2.11), let us first consider the simplest case of a
Dirac electron moving in the background field of a purely
magnetic monopole. ' " (For simplicity, we take the
monopole to be of unit strength. ) In this case, there is
yet no distinction between

I

j&z"(x)= lim ~ [%(x),y&ys+(x')]exp r'e f dx&A&
X ~X X

[jo(x,t), jps" (y, t)] = — B(y, t).V„5(x—y)
2

(2.1 1)
(2.13)
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and

j„'"5 ( x) =:4'(x)y„yg%(x): (2.14)

since the anomalous divergence vanishes in a purely mag-
netic field.

This statement may sound puzzling, since j'"z and j'y5

are supposed to transform differently under gauge
transformations. The puzzle is resolved however if we re-
call that the gauge field is taken as a fixed background, so
that the ground state also must transform under (time-
independent) gauge transformations. With a new back-
ground field A& ——A&+ B&h, the ground state is given by

e Q(&1~ (2.15)
R (0)=ie' L(0) (2.24)

As noted by Rubakov and Callan, the kinematical relation
between the two currents is reminiscent of the Schwinger
model.

It turns out, however, that the normal ordering in (2.22)
requires more specification. If we take the c-number solu-
tions of

d—iy5 ut, (r) =kuk(r), i—y5 vk(r) = kv—k(r)
dr ' dr

(k )0), (2.23)

the BC (Refs. 22—25 and 56)

with

Q[h]= fdxh(x)jo(x) . (2.16)

must be imposed to ensure that we have a complete ortho-
normal set I uke, vkeI. Therefore, there exists a one-
parameter family of ground states

~

8) defined by

Furthermore, in this sense, it is the definition (2.14) for
j&q which is covariant, since

ig[h] .Sym —iQ[h jJps e

00

X( r, t) =— dk [bkeuke(r)e '"'+dkevke(r)e' '],
bke

~

8) =dke
~
8) =0 . (2.25)

is properly normal ordered with respect to the
transformed ground state (2.15).

On the other hand, (2.8) suggests that the anomalous
commutator is nonvanishing, even in the absence of an
electric field. Again, this may seem surprising, in view of
the close connection between the anomalous commutator
and the anomalous divergence for the triangle diagram.
However, the connection was derived in the presence of a
photon where both electric and magnetic fields must be
present; here, we are dealing with a static situation where
electric and magnetic fields can exist separately.

Let us consider the commutator in more detail. Since
we are working with a background field, the Schwinger
term can only be a c number, and it is sufficient to evalu-
ate

([jo(x,t), j05(y, t)]) .

Using the formulas

l
dx uke(r)uke(r')e

—i ey5

and

(t +i 0)1+(r r') y 5—
(t +i 0) (r —r—')

(t +i 0)y, +(r+r')1
+ yoe

(t +i 0) (r +r')—

(t —i 0)1+(r r')y5-
(t —io) —(r —r')

(t i 0)y 5+ (r—+r ') 1

(t —i 0) —(r +r')
l

dx vke(r)vke(r')e' 'ikt

(2.26)

(2.27)

As suggested by Callan, and explicitly shown in Appendix
A, it is sufficient to consider only the lowest partial wave 5(x) = ——,

' 5'(x), (2.28)

%(x, t)~X(r, t)g( 0)/r,
8

i X(r, t) = iy, X(r—, t),Bt Br

(2.17)

(2.18)

we find

(8
~
[pr(r, t), p„(r', t)]

~
8) = —5'(r —r')+ —5'(r+—r') .

R
X I y p5

1 0 0 1

o —1
y=

1 o
L

The vector and axial-vector currents then reduce to

e exk
jo(x,t)~ pv(r, t), jk(x, t)~ p~(r, t),

4mr 4mr
(2.20)

e eKk
j05(x,t)~ 2 pz(r, t), jk5(x, t)~ 2 pz(r, t), (2.21)

4~r 4~r

(2.29)

There are two points which should be noted with the re-
sult. One is that we cannot drop the second term from
the right-hand side: 5(r +r') can be set equal to zero on a
half-line, but 5'(r +r') cannot. The other is that when we
integrate the formula with test functions f (r) and g(r'),
at least one of them must vanish at infinity, owing to the
slow falloff B=O(r ).

To demonstrate these points, let us introduce a regular-
ized 5 function 5" such that

pr(r, t)=:X (r, t)X(r, t):, '

p~(r, t) =:X (r, t)y5X(r, t): .
(2.22)

f dx 5"g(x)=1,
5"s(x)=5"s(—x), 5"s(+ oo ) =0 .

(2.30)
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Then
R R'
dr f dr'f(r)g(r')[5"s(r —r') —5"s(r +r')]
=f(R)g(R)8(R' —R)

—f dr 8(R —r)8(R' —r)f'(r)g(r)

and therefore

[Q[f] Qs[g]]= —f, «f'(r)g(r), f(~)g(~)=o.

(2.31)

Taking f= 1, we find that

[Q, Qs[g]]=0 g(

(2.32)

(2.33)

i.e., electric charge is a chiral singlet. This is to be expect-
ed, since in the presence of massless fermions we should
have

On the other hand, taking g = 1, we find

[Q[f] Qs]= ——„f(o» f(~)=0 (2.35)

0=(8+2a
~ Q ~

8+2a) =lim(8
~

e ' Qe '
~

8)
g~1

(2.34)

i.e., the axial charge is no longer gauge invariant.
Nevertheless, since it changes only by a c number, the
chirality of a gauge-invariant operator remains well de-
fined. From (2.26) and (2.27), it is, in fact, easy to show
that

[Q5, ql(1+ ys) 4]= +2%(1+ys)'P, (2.36)

(8
~

—,
' [%(x,t), (1+ys)V(x, t)]

~

8) = — e+-'
8m r

(2.37)

(As before, only the lowest partial wave is involved here,
since the higher partial waves conserve chirality. )

Equations (2.36) and (2.37) indicate that, in a sense, the
explicit chirality breaking (2.24) at the first-quantized lev-
el can be regarded as a spontaneous breaking of chiral
symmetry at the second-quantized level. Other aspects
which also lend support to this view were already dis-
cussed in (I): the degeneracy of the ground states

~
8),

their physical equivalence, and unitary inequivalence.
Here, we wish to investigate a point which was not dis-

cussed adequately: namely, the existence of Nambu-
Goldstone modes. To this end, we introduce the bosonic
representation

X(r, t) =
2m.

0i:exp i v n ds e &'~ P(s, t)+P(r, t)+
I /2 T 2 lT

:exp iv m f dse "'~ P(s, t) P(r,t)— (2.38)

where p is an infinitesimal mass and c =lnI (1). If P(r, t) is a massless free field on the half-line

P(r, t) P"( r, t) =0 —(r & 0),
obeying the BC

P(0, t) =0,

(2.39)

(2.40)

it is easily seen that X(r, t) formally satisfies Eqs. (2.18) and (2.24).
However, since the notion of a field operator at a point is actually ill defined, the proper procedure would be to calcu-

late the propagators. Using the standard formulas

e" + =e"e e "' ), [A,B]=c number,

:exp':=exp(A ' ')exp(A '+'),
and the two-point function

4m(P(r, t)P(r'', 0) ) =4ir[P + (r, t), P '(r', 0)]
= lni ( t i 0+ r +r ') + lni ( t i—0 r —r') —lni ( t—i 0+—r —r ') —lni ( t—i 0 r+ r'),— —

(2.41)

(2.42)

(2.43)

we may check that (2.38) in fact does reproduce (2.26) and
(2.27). Similarly, we find

pi (r, t) = $(r, t)IV n, —-
pz (r, t) =P'(r, t) /V m, .

(2.44)

in accordance with the Schwinger term (2.29).
Comparison of (2.50) with (2.21) shows that P(r, t) has

gradient coupling to the axial current; i.e., it may be iden-
tified as the Nambu-Goldstone mode associated with the
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p(r, t) =—f sinqr(aqe 'q +aqe'q ),
7T 0 q

(2.45)

where a~ and a& are the usual creation and annihilation
operators normalized to

breaking of chiral symmetry (2.37). We should note that
the BC (2.40) is of some importance in this respect. First
of all, it guarantees that the two-point function (2.43) is
infrared finite, so that the standard theorems ' against
Nambu-Goldstone modes in 1 + 1 dimensions do not ap-
ply. Furthermore, it implies that the transformation
P( r, t )~ P( r, t) +8 corresponding to a global chiral rota-
tion cannot be implemented in the same Hilbert space.
Finally, the BC also guarantees that N(x, t) =P(r, t)/r is a
free field in the (3+. 1)-dimensional sense; in particular,
B„@is conserved even at the origin.

It may seem bizarre that fermions should form a
Nambu-Goldstone boson when there is obviously no in-
teraction between them. The physics, however, is quite
simple. Owing to the Lorentz force, the charged fermion
is trapped around the radial lines of force emanating from
the monopole, but is free to move along it. Hence the sit-
uation is effectively 1+ 1 dimensional, in which case a
massless fermion-antifermion pair is indistinguishable
from a massless boson. '

To investigate this point more closely, we may Fourier
analyze the scalar field

[aq, aq j =F5(q —q') .

We then find from (2.44) that

(2.46)

A 0 ———f dk k(bJbt, +dt, dI, )

oo

dq qaqaq . (2.48)

It is evident from (2.47) that the bosonic states form a
subspace of the fermion Fock space. On the other hand,
for a one-fermion state

~

k ),

k' —f dqa a k =n5(k —k') f1 y, I'dq
0 g g 0

(2.49)

so the total number of bosons is infinite. 63

There is one further point worth mentioning when we
identify P as a Nambu-Goldstone mode. Instead of (2.38),
we could also have bosonized as

a, = ' f'dkdpbq z+ f dk(4bz+q 4d—z+q)
qrq

(2.47)

which may be directly checked to be consistent with the
canonical (anti)commutation relations and with

J(r, t)=
2m

r 8
i:exp i'm/(r, t.) ds P(s, t)+—' 1/2 2

r . 0
:exp i~sr P(r, t)+ ds P(s, t)—

2

(2.50)

P'(0, t) =0 .

For the currents, we would then find

(2.51)

provided we choose a different BC for the scalar field d
i@5 +—eAO(r) ul, (r) =kut, (r)

dr

is easily solved:

(2.53)

pz(r, t) = P(r, t)/v vr, —

p„(r, t) =(t '(r, t)/V n-,
(2.52)

indicating that the vector current is associated with a
Nambu-Goldstone mode. The situation, however, is not
as bad as it seems to be. One reason is that with the Bc
(2.51), the propagator for the scalar field is now infrared
divergent, and the field operator is ill defined as in the
case of a full line. ' If we use p as an infrared regulator,
(XX) is, in fact, nonvanishing, being of order p. Another
reason is that again because of the BC (2.51), P(r, t)/r is
no longer a massless field in the (3 + 1)-dimensional sense.
In other words, (2.40) as well as (2.44) are necessary to es-
tablish the interpretation of P as a Nambu-Goldstone
mode.

Let us now proceed to the case where an electrostatic
potential is present in addition to the background mono-
pole field. If the potential is spherically symmetric, the
equation for the lowest partial wave

r
uI, q(r) =exp icy s ds A—o(s) uj, q(r)

0
(2.54)

(and similarly for v). From (2.26) and (2.27) it follows
that j „'"5" and j „'"p as defined by (2.13) and (2.14) now be-
come unequal:

ex
Jos =Jos Jas =Jus — ~o .

4m r
(2.55)

B~(j pq" —jp"5 ) = — Ao(r) —Ao(0)5(x), —(2.56)

The first term is just the familiar I'z I&„, whereas the

On the other hand, the anomalous commutator (2.26) and
the order parameter' (2.37) will remain unchanged.

We may regard (2.55) as the analog of the London equa-
tions. According to (2.54), Ao does not affect the ener-

gy levels, but will change the (chiral) phase of the wave
functions; i.e., its effect is magnetic rather than electric.
Further taking the divergence, we also find
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second term is the extra contribution found by Nair
(apart from a discrepancy in the coeHicient). Again, the
apparent noninvariance of (2.56) may be explained by the
fact that the ground state is only covariant under gauge
transformations of the background field. (See, however,
Sec. IV.)

So far, our examples have been rather trivial dynami-
cally, although (hopefully) instructive. In particular, the
anomaly was at most a c number. Let us now consider a
case where it becomes a q number. It is sufficient to take
the Hami1tonian

A = fdx:4' @so ( "iV—eA—)%:

+ —,
' fdx fdyjo(x) J'p(y) (2.57)4r«x —y

where:: indicates normal ordering with respect to the
decomposition (2.25) at some fixed time. (We have
suppressed the 8 dependence. ) As before,

[jo(x, t), :(lit( y, t )ys'Ii(y, t):]

(2.58)

and

e ~~oi[~—~o:+ )'s(p:] =—
4+2r 2 Br

Ap(x) = f j,(y)4~/x —y f

(2.59)

since Ap vanishes at spatial infinity. As expected for a
positive-definite Hilbert space, we find that j&s becomes
nonlocal

Jos =:+Xs+:Syrn

(2.60)
2

~,ka, V Wo .
Zm

The dynamics being nontrivial, it is no longer possible
to solve the system exactly. However, the similarity of
(2.57) with the electron plasma suggests the use of the
random-phase approximation. We first expand the field
operator as before

'p(x) = f dkg [bkj uf
j~m (x)+de mvkg—m (x)]

ajm

(2.61)

(See Appendix A for details of the notation. ) For fermion
bilinears, the equations of motion read as

[~i 4jm bk'jm ]=(k —k )bkj~ bk'j~ + —,fdx j eAP(x)i 'P (x)ug~g~ (x)bgy~ —bkj~ uk'j~(x)%'(x) I

[A, dkj
'"dk j' ]=(k k')dkj'"d—k j' + —,

' fdxjeAp(x), ()kj' (x)%(x)dk j' —dkj' (I( (x)«j' (x)I,
[~, bkj~dk ~]=(k+k')bk~ de ~+,' fdx—jeAo(x), +'(x)uk,'~(x)dk j~ —bkj~"Uk j'm(x)'P(x)I

Replacing (Ii (x)d, etc. , by their expectation values, and summing over the indices m and a,

(2.62)

(2.63)

(2.64)

am
(2.65)

(2.66)

A, gbkj~dk, ~ =(k+k')gbq~g~dk ~+e f dr r f dr'f dn jp(x) QUk~j~ (r )ukj (r ),
am am

(2.67)

where r& ——max jr, r'I and

~U(tt)t ( )
(a)

( )
2J + gap (a)'t(„) (a)(„)~Uk'jm X ~kjm X

2 Uk'j kj (2.68)

Equations (2.65)—(2.67) form a closed eigenvalue problem, since

«'f d&jp(x)= f "dk f "dk'g jbk,
'

bk „uk, ' (r)»,'(r) dkj~dk, '~«,' (r—)Uk, '(«)
ajm

+ [bkj~ dk~j~ ukj (r)«,'(r) +H. c.] J (2.69)

The kernel is non-Hermitian; however, since we do not expect spurious zero modes, there should still exist a basis j O~ I
such that6s

[A,Oq] = —qOq,

gbk ' d' ' =pc (q, k, k')0
am q

(a)f (a) (a)f (a)gbkjm bkj'm ~gdkjm dk'jm Ok' k—
am

(2.70)

(2.71)

(2.72)
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If all the eigenvalues q are real, a modified ground state may be introduced by

o,
~

)=o',
~

)=o (q&o), (2.73)

which is stable within the approximation; otherwise, the original ground state is unstable.
To obtain some insight into the equations, we further throw away all the terms from the higher partial waves, which

leaves us with

[~, bkdk j=(k+k')bkdk + f dr f dr'pz(r) cos(k+k')r',
4~ I')

pz(r)=, f dk f dk'[(bkbk dkd—k )cos(k k')r—+(bkdk +dkbk)cos(k+k')r] .] Oo Oo

In particular, for a~ defined by (2.47)
1/2

q 00 O0

[A, a&]=qa~+ — dr dr'pz(r) cosqr'.
4~ r~

/

However, this is just what we would get from the replacement (2.21) and (2.40) and (2.44)
1 00,00 1

A ~ i f—dr X (r)y5 X(r)+ f dr f dr'pr(r) pr(r')
0 dp' 8m

(2.74)

(2.75)

(2.76)

= —,
' f, «[(p)'+(p')']+, f, (2.77)

(2.78)

The reduced Hamiltonian (2.77) has already been discussed extensively in the literature beginning with Rubakov and
Callan, and we may immediately write down the solution for the boson fields

1/2 1/2
T 00 1 e

P(r, t) = f dq J (qr)(o e '~'+0 e'~'), v= —+

[A,o ]= —qo, [O,o j =vr5(q +q') . (2.79)

Evidently, the Nambu-Goldstone modes persist in the
presence of a dynamical (q-number) anomaly, at least in
the s-wave approximation.

It is trivial to. extend the analysis to two or more
species, provided the BC at the origin conserves each
species separately. The result is, however, of importance,
since it indicates that there is a Nambu-Goldstone mode
associated with the nonanomalous axial current

j&5
' ——j&'5' —j&z', as well as another one associated with the

anomalous current j&5' ——j&'~'+j&&'. In fact, in Sec. III,
we suggest that this is also what happens to two doublets
of fermions interacting with a non-Abelian monopole.

III. THE NON-ABELIAN CASE

5t, A&
——B„h ie[A&, h], —5h%'=ieh'0,

2

(3.1)

As for the chiral anomaly in the absence of a monopole,
there is not much difference with the Abelian case for the
first few equations. If we take the case of SU(2) with one.
massless (Dirac) isodoublet, Eqs. (2.1)—(2.3) are replaced
by

h=h— a
P P2 2

are SU(2) matrices.
In terms of the charges

Q'™=Q'""+2W[A],

(3.4)

(3.5)

where W[A] is the Chem-Simons secondary invariant' '

2e a a a h cdxe, k I'; Ak ——e,b, A; AJ Ak
32m2 3

(3.6)

(3.7)
I

which are topologically nontrivial ("large" ) as well as
those which are topologically trivial ("small" ). An exam-
ple of the former is given by

6 e 2mix. sg (r) (3.8)

Again, it is Q5" which defines the operator chiralities as
in (2.4).

The difference between the Abelian and non-Abelian

case, however, shows up in the fact that there are proper
gauge transformations

5h Jp5 o ~ ~yJ p5

2

5/rJy5 epvapBv(h B&zA p) Bp&g 0
8m.

where

(3.2)

(3.3)

with

g (O) =O, g ( m) ) =1 (3.9)

Under a gauge transformation, the Chem-Simons term
transforms as
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W[~']= rV [&]+w[G]
" fdxe...trV, (G -'&, VkG),

8
(3.10)

e A(x) =(xXr) —— (xXr),K(r) —1 1

2r 2r

ep(x)=(x r) ——,(x r)Xconst .H(r)
2r

(3.17)

(3.18)

QF QF +2w[G] (3.13)

Nevertheless, since w[6] is again only a c number, the
chirality of a gauge-invariant operator remains well de-
fined, and we may still meaningfully talk of a spontane-
ous breaking of the anomalous chiral symmetry if

where the second term is the winding number of the
transformation

w[G]= fdxetjktr(G 'V;G)(G 'VJG)(G 'VkG) .
24

(3.11)

For (3.8) and (3.9), w[G]=2. On the other hand, the
third term will vanish under mild regularity conditions
such as

Ak(x)=O(r '), G=l+O(r "), VkG=O(r ' ")

(q) 0) . (3.12)

We find that Q5" is no longer invariant under proper
gauge transformations if they are "large":

Explicitly, in the Prasad-Sommerfield limit,

J(r) =sinhy(m

iver

cothm ii r —1),
K (r) =m ii r /sinhmirr,

H ( r ) =coshy( m ir r cothm ir r —1) .

(3.19)

. 8 . 8 K(r) r3 J(r)
i X(r, t) = i y 5—r3 y5r2 +— X(r, t),

Bt Br r 2 r

(3.20)

Evidently, (3.17) satisfies the regularity condition (3.12).
We may also consider the Dirac equation with

(3.16)—(3.18) as a background field. ' Again, we
find a difference with the Abelian case: Chirality is un-
broken for all partial waves, implying that the chiral
charge Q5" is well defined, conserved, and annihilates
the ground state. [As before, the ground state is only co-
variant in the sense of Sec. II, so there is no inconsistency
with (3.13).]

In particular, for the lowest partial wave, we find

&O'"')~0, n, ~o. (3.14)

Furthermore, if we demand that the physical vacuum
~
8)

is invariant under "large" transformations up to a phase

where

~L9& e ' (')'[e) (3.15)
7 V3

(3.21)
it follows from (3.13) that Q5" cannot annihilate the vac-
uum. Therefore, one expects that chiral symmetry is in
fact spontaneously broken in the sense of (3.14), a con-
clusion confirmed by an instanton calculation. ' ' (See,
however, Sec. IV and Appendix B.)

In the presence of a monopole, we find that the same
arguments go through without any essential changes, un-
like the Abelian case. At the classical level, the monopole
(dyon) solution has the asymptotic form

e&o(x)=(x r) ——,(x r)Xconst,J(r)
(3.16)

r

R+(r)
X+ L ( )

p y5

After eliminating the electrostatic potential

X( r) ~exp f, J(r') X(r) (3.22)

explicit solutions can be found ' in the Prasad-
Somrnerfield limit (3.19)

,I?l grR+(r)=
(8k +2m )'

+ikr

sinhm ~r
2ik +ikr+ + +coth7?l ~r 8
Pl p

(3.23)

R+(r)

u, (r)= R, u„(r)=(&) (L)
r

0

0
R+(r)

0
R (r)

R+(r)

(I-)
Rg ( ), Uk (r)=

0
R~(r)

0
R (r)

(3.24)

1 d J(r)
&jk7 &~—

4m r ~r r

Even then, however, comparison with

(3.25)

Here we note one similarity with the Abelian case: Eq.
(3.22) implies that

gE B = [K (r) —1] (3.26)er dr r

shows that the anomalous divergence is no longer saturat-
ed by the lowest partial wave, so that the higher partial
waves must contribute near the core. In other words, the
conservation law (3.3) for j&5 admits a consistent reduc-
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i3
i X(r, t) = i y—5&3 + X(r, t)

dt dr 2
(3.27)

tion to the lowest partial wave, but that for j&z does not.
(See, however, Appendix C.)

Equations (3.16)—(3.26) above essentially constitute the
first two terms in the semiclassical expansion. However,
it is not satisfactory on various accounts. One is that it
fails to incorporate charge conservation. In particular, in
the point limit rp =my ~0 the solutions obey

r

I .2 1 00 2~c=—f' = Qj:,t — «g (r)p(r)
2 2I.

OO 00f dr f dr'p(r) 9'(r, r')p(r'),

where I is a positive constant of order ro/e, and

n 8
Q„,=—— =ij + «g (r)p(r)

2 2&

(3.33)

(3.34)

(3.35)

with the charge-mixing BC's

R+(O, t) =R (O, t), L+(O, t) =L (O, t), (3.28)

and there is a constant stream of charge flowing into the
origin. Another unsatisfactory aspect is that the anoma-
ly features as a c number rather than a q number.

To remedy these shortcomings, it is further necessary to
treat the electrostatic potential J as a dynamical variable.
The proper treatment of the dyon degree of freedom q& in
the s-wave approximation then leads to

g(r)y+— f dr'9'(r, r')p(r'),
r 4~

(3.29)

is the total charge of the system for M&0.
For (3.31)—(3.34) to provide a sensible approximation,

it is necessary that e &(1 and that the relevant energies
do not exceed m~. In that case, we may as well neglect
A c, since it is of order e and nonsingular as ro~0.
This is also justified by the results of the previous section,
since A c is just the self-energy of the fermions. On the
other hand, unlike the Abelian case, the anomaly acquires
a q-number character even without A c, because of the
dyon degree of freedom

i[~c, Q5[h]]= f "dr g'(r)h(r), h(~)=0. (3.36)

(3.30)

p(r) = lim —, X (r'), X(r)
P ~P

where g (r) is a homogeneous solution of Gauss's law

d2
r r+(r) —2g (r)K (r) =0

r

For M =0, we also expect Q«, ——0, and hence the Ham-
iltonian will be

d K(r)dr X (r) iy5~3 ——y5~q X(r)
0 dr

obeying the BC (3.9), and S(r, r') is the associated
Green's function which vanishes as r, r'~ oo. The corre-
sponding Hamiltonian is given by

00 2

+ 2i f dr ~(r)p(r) (3.37)

ck =cFl F +A c+~(
r

(3.31)

(3.32)
I

K(r)
A F ——f dr X (r) iy5~3 +yoM —y5~~ X(r) .

0 dr r

The quadratic term alone gives (3.20) as before, so we may
take it to define the chirally symmetric ground state

i
sym) by the usual Fock construction. The quartic term

can be treated in the random-phase approximation to test
for stability, but a simpler procedure is available in this
case. We only need to compute

(sym
I ~c

i
sym) =

z f dk f dk' g f "dr uk
'

(r)~3Uk '(r)g(r)
8m I 0 0 +L 0

(3.38)

The integral over r may be explicitly evaluated in the point limit (3.28) and (3.29) or the Prasad-Sommerfield limit (3.23)
and (3.24), the latter which gives

—1/2

+2(e+ +e )+(e+ e)—
mp 4

2 2
2 2+a+ +e cothe++ —t. + +e2 2

sinhe+ vr(k+k )+2@+ln +2e+e tanhe, @+——
cosh@ 2m pr

(3.39)

Therefore, as first noticed by Besson, the integration
over k is infrared divergent, and

i sym) is unstable for ar-
bitrary weak coupling e &0.

As for the nature of the true ground state, there have
been two proposals so far. One is that of our previous pa-
per (II), where fermionic BC's are effectively changed
from (3.34), and the other is that of Callan ' where boson-

~'"'=f dr Xt(r) iy5r3 +yoM—X(r),
0 dr

(3.40)

ic BC's are effectively changed after the Hamiltonian is
bosonized.

The reasoning behind our proposal is the following. If
we split@ F as
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~ OO K(r)
A z'"———f dr X (r)ys~zX(r)

0 r
(3.41)

+~P2&)g*, F~—F .

On the other hand, for a Higgs-boson mass

(3.47)

R+(0)=e' L+(0), (3.45)

or

R+(0)= e' L+(0—) . (3.46)

The existence of two solutions (3.45) and (3.46) implies the
breakdown of fermion-number conjugation

we find that A c is formally of order mii, ~""'of order
1, and A F'" of order mir ' but singular. Therefore in
the limit m~ —+ao, we may expect

Q„,—J drp(r) )=0, (3.42)

or equivalently

f "«p(r)
I &=giot I

(3.43)

which requires a charge-conserving BC for ~""'. Com-
patibility with the singularity of X(r)/r further imposes

Xt(0)y5rpX(0) =0, (3.44)

which leads to either

d K(r)dr X (r) i—ys&3 —y5&2 —yo&3M X(r)
0 dr r

we find only one stable solution

R+ (0)= ie'—L+ (0),

(3.48)

(3.49)

and fermion-number conjugation

X~@0~(X*, (3.50)

is unbroken. Also, because of the changed BC's we find
that there is no zero mode ' within the region of stabili-

1
tv IQi.~ I

& 4

Let us now turn to the other proposal. Callan observes
that after bosonization, the currents are linear in the sca-
lar fields (2.44), and therefore proposes that the BC's
should be imposed in terms of them. Furthermore, on the
basis of the Dirac equation (3.20), it is argued that the
charge-mixing BC (3.28) will still hold for the fermion
fields [in spite of the nonlinearity (3.29) and (3.33)], and
the bosonization is taken to be

R+(r, t)= cp
2'

' I/2

:exp iV ngli(r, t.)+ ds Pti(s, t)
0

(3.51)

L+(r, t) = cp
2%-

1/2

( —1):exp i ~m Pt (r, t)+ ds Pt (s, t)
0 (3.52)

with

pii(O, t) =QL (O, t) =0 .
The bilinears are then given by

(3.53)

electric charge is not conserved by itself, in conflict with
(3.43). The resolution offered at this point is that the non-
linearity A c here comes into play, so that the original BC
(3.53) is modified to a new effective BC,

X X= A(r, t)/~2m, —X ysr3X=A'(r, t)/&2',
X ysX= B(r, t)IV2n, X—r3X=B'(r, t)IV'2~,

where

v 2A(r, t)=gz(r, t)+PL(r, t),

W2B(r, t) =P~(r, t) Pl. (r, t) . —

(3.54)

(3.55)

(3.56)

Equations (3.53)—(3.55) imply that fermion number and
chirality are conserved, since the associated fluxes vanish
at the origin (see Table I). On the other hand, the fermion

A'(O, t) =B(0,t) =0, . (3.57)

which conserves fermion number and fermion electric
charge, but no longer chirality. .

CaHan's proposal appears to be ad hoc in its handling
of the nonlinear interaction of the fermions. This we be-
lieve is not because of a false light on our part, but rather
the effect of a clear-cut treatment of the dyon degree of
freedom. Let us, however, postpone further discussion of
this point to Sec. IV, and turn to a problem which is corn-
mon to both.

Fermion-number density
Radial fermion-number current
Axial charge density
Radial axial-vector current

Fermion electric charge density

Radial fermion electric current

TABLE I. Fermion bilinears.

%a x%
%'y, %

+ o"x%'

—e%'—0
2

—e% cz.x—4
2

x'x
X f$+3X
X p5X
X'~A'

A.ex,J —L'
2

~t $5~
2
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The manner in which we have described both proposals
leaves room for ambiguity, since we had invoked the no-
tion of an effective BC for a field operator. To recast the
proposals in a more precise manner, we have found it use-
ful to adopt a variational framework.

For our proposal, we first take the c-number solutions
of the point-monopole equation

a pseudo-Nambu-Goldstone mode in the sense of Seo,
1lxf57'3

corresponding to X~e ' '7 outside the core region.
At this point, one may be worried about the fact that

we have been approximating regular expressions by singu-
lar ones, which do not have well-defined gauge transfor-
mation properties at the origin. To. examine this point, we
write the three-dimensional wave function 1(j (suppressing
spin-isospin factors) as

iy—sr3 +yoM ukU(r)=(k +M )' ukU(r),
g(x) = ukU(r) .

+Q
(3.65)

(3.58)

—iys~3 +yoM UkU(r) = —(k +M )' UkU(r) (3.59)
dT

with the BC parametrized by a 2 & 2 unitary matrix

R+(0) L+(0)
L (0) R (0) (3.60)

The wave functions then form a complete orthonormal set
for given U, and we may expand the field operator as

A(r, t)= —f cosqr(cq e 'q+cq e'q),
q

B(r,t)= —f cosqr(cqe 'q+cq e'q),
q

(3.66)

(3.67)

We then find that there are no singular contributions to
(A ) as a —&0, so long as (3.44) and (3.60) are obeyed.

%'e may now turn to Callan's proposal, which may be
reformulated in a similar manner. Instead of expanding
the field operators as

oof dk(bkUukU(r)+dkUUkU(r) j. (3.61)
and taking essentially the previous

~

sym) as the approxi-
mate (trial) ground state

Defining the ground states
~
U) as before by

bkU I
U&=dkU

I
U) =0,

cq
~

sym) =cq
~

sym) =0,
(3.62) we expand B as

(3.68)

we find that ( U
~

A
~
U) is minimized when

m~/M —+co with

1 ~dqB( r, t) =— sinqr(a e 'q'+a e'q'),
Mq

(3.69)

i8
U=+i

0

0
e —l8 (3.63)

1 B 1 ~dq H B
Vk sr o vq k —q' k+q 'ak ———

Cq + Cq (3.70)

corresponding to (3.45) and (3.46).
So far, we have implicitly assumed that M&0. For

M=0, we find that the discontinuity in Q„, cancels
against the discontinuity in

(
U i drp(r) Ul (3.64)

so the ground states are continuously connected as M —+0.
However, 8 in the BC (3.63) becomes arbitrary for M =0,
and the ground states are invariant under fermion-number
conjugation, after a suitable redefinition.

Also, if we bosonize the theory in the interaction pic-
ture defined by ~""'and (3.63) for M =0, we find two
massless fields P+ corresponding to X+ and X . One
linear combination P++P corresponds to a genuine
Nambu-Goldstone mode associated with the breaking of
the anomalous chiral symmetry, and the other P+ —P is

and take the new ground state as

c" mod) =a
~

mod) =0 . (3.71)

im/4 i~Q5/2~A ~88+ ——e e ~+~+,
e tnl4e' 12s

( 1)FgA gB—

4 —lwQ5/2R

eidP/4e '~Qs
( 1)FgA gBt

where

(3.72)

(3.73)

To distinguish whether we normal order with respect to
~

sym ) or
~

mod ), we shall also introduce the notation
::,„~ and:: ~, e.g. , the normal ordering in (3.51) and
(3.52) would now be::,„

Using (2.42) and (2.43) we find

1/4

2
:exp i A(r, t)+ f ds A(s, t) mod (3.74)

g+(r, t)=
2m

&/4 1/2

:exp i — f ds e "'~ B(s,t)+B(r, t)
r

(3.75)
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are the "half-soliton" operators ' which obey

g+(r, t)g+(r', t) =+i sgn(r r')—g+(r', t)g+(v, t), (3.76)

g+(r, t)g+( r', t)= +ig~(r', t )g ~(r, t),
g+(r, t)g+ (r', t) =+i sgn(r r')g—+ (r', t)g+(r, t), (3.78)

g+(v, t)g+ (v', t)=+if+ (r', t)g+(r, t)

(and similarly for g~).
According to (3.72) and (3.73), a massless fermion con-

sists of two half-solitons. However, the compositeness
turns out to be unobservable in this case. If we take the
combinations

(3.77)

(3.79)

A B
ig+g+

++ e A B

Bfig
gA gBi'

(3.80)

we find that X gives the same propagators as the point-
monopole equation (3.58) and (3.59) with the Abelian BC

R+(0)=ie' L+(0) . (3.81)

Therefore, the difference between our procedure and
Callan's only amounts to a Klein transformation, and the
two are essentially equivalent, as found by Polchinski.

Actually, there is one possible fly in the ointment, since
the chiral charge

1/2
2Q5=— f dr e I'"~ B(v, t)

dre I"/ X~ v, t, y r, t
0

(3.82)

which appears in the Klein factor tends to become ill de-
fined in the limit p~O. Fortunately, however, this does
not cause much harm. For a product of an even number

+i~Q5of X's, the Klein factor becomes e ', which changes
both R+ and L, + by —1, and hence does not affect the
BC's or the Hilbert space.

We may now also see the reason for the confusion con-
cerning fermion-number conjugation and zero modes (see
also Appendix C). Previously, it was assumed that the
original BC (3.28) for the fermions continues to be obeyed,
even after the boson BC's have been changed from (3.53)

V2 ———U2 .

Therefore, by a suitable redefinition of the fields

(3.85)

i9)
le

(3.86)

Bosonization now leads to four fields P' 'P+'+'. Two linear
combinations correspond to genuine Nambu-Goldstone
modes associated with the breaking of both the anomalous
and the nonanomalous chiral symmetries, whereas the
remaining two are pseudo-Nambu-Goldstone modes in the
sense of Seo.3~

The reformulation of Callan's proposal also proceeds
without essential change. One starts again from the bo-
sonic representation

to (3.57). Therefore, Callan ' and Harvey had argued
that the Jackiw-Rebbi zero mode persists for a Higgs-
boson mass, and we had concluded that the two pro-
cedures lead to different results. As we have seen howev-
er, the correct conclusion is that the fermion BC is also
effectively changed, and hence both procedures lead to the
same result as given in (II), i.e., fermion-number conju-
gation is broken for a Dirac mass, and there is no zero-
energy state for a Higgs-boson mass within the region of
stability. In particular, for the latter CI' is unbroken for
Q„,=O, and we may set 8=8, in agreement with Nienu,
Paranjape, and Semenoff. "

I.et us now consider the case of' two Dirac isodoublets
X'" and X' '. The generalization of our proposal to this
case is straightforward. The BC's are now parametrized
by a 4&4 unitary matrix

R '+'(0) L '+'(0)

R' '(0) L' '(0)
(i)( )

=t'U (i)(, U U= 1 (3.83)

L (0) R (0)

For M =0, we find that ( U
~

A e
~

U) is infrared finite
if and only if U is charge conserving

U2 0
U= (3.84)

V2

Compatibility with the singularity of A ~'" further re-
quires

+ (1) CP
2~

1/2

expiV mfa (r, t)+. ds Pz (s, t)(]) .(1)
(3.87)

I.+ ——(1) CP
277

cp
2~

1/2

( —1) '.exp iv m PL"(r, t)+ f dsgl (s, t)

1/2

( —1) '.exp i~a Pz'(r, t)+ f ds Pz (s, t)

' 1/2
r

( —1) ' ':exp iVmPL'(r, t)+ ds.PL (s, t)

sym &

(3.88)

(3.89)

(3.90)
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with the BC's

$21'(O, t) =PL" (O, t) =0 (i =1,2) . (3.91)

The currents are the same as (3.54) and (3.55) apart from
the extra index i, and we find that fermion number and
chirality are conserved for each doublet, but not fermion
electric charge. The suggestion therefore is that the BC's
are effectively modified to

w"'(o, t) =w"'(o, t) =o,

B"'(o, t) —B"'(o, t) =B"'(o,t)+B"'(o,t) =o
(3.92)

so that what is conserved is the fermion number of each
doublet, the sum of the fermion electric charge, and the
nonanomalous chiral charge.

To analyze the implications of the modified BC's for
the fermionic fields, it is convenient to introduce

2C"'(r, t)=B"'(r,t)+B' '(r, t) ds B—"'(s,t)
0

+f dsB' '(s, t), (3.93)

2C' '(r, t)=B"'(r t)+B' '(r t)

+f dsB'"(s, t) —f dsB' '(s, t), (3.94)

The ground state corresponding to (3.92) is then given by

cq""
~

mod) =82~ "~mod) =0 (1 =1,2)

and we find up to Klein factors

(3.95)

R(1) gA(1)gC(l)

R (2) . gA (2)gC(2)

R (&) = ~& (&) ~&(2)f

R (2)
g

A (2)gC(1)1

I.+
(1)

I (2)
+

I (&)

gA (1)gC(2)

g.A (2)gC(1)

gA(1)gC(1)t

g
A (2)gC(2)t

(A F'")=0, (3.97)

whereas bosonization shows that (~"")+(~c) are
equal, since the first term does not depend on the BC's,
whereas the second term is evaluated with the same
charge-conserving BC.

To resolve this degeneracy, the natural procedure would
be to add a mass term. In that case, we are no longer able
to construct the ground state according to Callan's propo-
sal, since the mass term cannot be written as a bilinear in
a Dirac field. Nevertheless, there are good reasons to be-
lieve that our construction

~

U) will give a lower value
for (A ), and hence is a better candidate for the ground
state.

Whatever
~

mod) may be, we do not expect it to give a

(3.96)

Unlike the previous case with one doublet, it is now im-
possible to group the various components into a Dirac
field, in agreement with the analysis of Callan and Das.
Therefore, the two proposals lead to different physical re-
sults, and it is necessary to make a choice.

For M=0, however, it is easy to see that the two
classes of ground states are degenerate. The conservation
of fermion electric charge (3.43) implies that

better value for (~'"'), and we may still assume (3.97)
if the dyon degree of freedom is not to be excited. There-
fore, the only hope for

~

mod) lies with (A c ). However,
00 2

U Q,„—j dr g(r)p(r) Ul =O(1), (3 98)

so one must do better, clearly a difficult task in view of
the fact that (U ~~c

~

U) and (mod ~A c ~

mod) are
equal for M =0. The difficulty is compounded by the
fact that

(U~~""'~ U)= —f—dr f dk(k +M )'~'

IV. DISCUSSIONS

The result of the previous section raises the serious pos-
sibility that grand-unified-theory (GUT) monopoles (if
they exist) actually do not catalyze proton decay at
strong-interaction rates, since the case of SU(5) is formal-
ly equivalent to that of SU(2) with the identification

Q~
(4.1)

On the other hand, several arguments have been advanced
that monopoles do catalyze proton decay at strong-
interaction rates, so let us reexamine those arguments in
light of our results.

The first argument is based on conservation laws asso-
ciated with

F"= «X""(r)X"(r) (i =1,2)
0

g(5-) =f dr[X""(r)yP("(r)
0

X(2)t(r)y~(2)(r)]

(4.2)

(4.3)

QF+'= dr X'" (r) X'"(r)+X' 't(r) X' '(r)
0 2 2

(4.4)

The case for catalysis is based on the assumption that all
four charges (4.2)—(4.4) are conserved in the j=0 sector,
the justification being that the first three are associated
with conserved currents in the full theory, and the last one
is dynamically required as in (3.43), if the dyon degree of

(3.99)

is proportional to the volume, and the requirement
that the infinite-volume limit must be taken before the ul-
traviolet cutoff A is lifted. ' Therefore, barring the possi-
bility that

~

mod) gives a lower (or at least equal) energy
density for the quadratic Hamiltonian ~""' than the
Fock construction

~
U), we may conclude that

~
mod) is

not the correct ground state for M&0, and the
nonanomalous chiral symmetry remains broken as M —+0.

As noted in the Introduction, the conclusion is con-
sistent with the infrared divergence of the chiral perturba-
tion series around the Rubakov-Callan ground state, as
found by Polchinski. According to our results,

~

mod)
should be unstable against emission of light particles in
the presence of mass perturbations.
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freedom is not to be excited in the limit m»&M. To-
gether with the kinematics of the I =0 partial wave, it
then follows that processes such as

u ~I +monopole~u ~~+ monopole (4.5)

I [dA ][d@][d+]e (4.7)

and restricting the measure to U(1) transforms of the 't
Hooft —Polyakov solution ' and the corresponding s-wave
fermions. (Note that the Higgs field plays only a margin-
al role in this formulation. ) The restriction, however,
preserves the positivity of the Euclidean measure, which is
the essential ingredient in the investigations of Ref. 82, so
we would expect that the pattern of symmetry breaking
with the s-wave Hamiltonian is the same as for QCD
[with SU(2) color], i e , unb. ro. ken vector symmetries but
broken chiral symmetries.

The second argument for catalysis is based on the
modification of current algebra in the presence of a mono-
pole. However, the extra contribution (2.56) which
formed the basis of the argument was seen to be present
for the Dirac phase as well, so the argument can serve at
most as a necessary condition for catalysis, not a suffi-
cient one.

%e are thus left only with recourse to actual dynamical
calculations. However, the "orthodox" result was ob-
tained only by replacing the charge-mixing term A p'"
with the charge-mixing BC (3.28) for the fermions, a pro-
cedure which, despite appearances, can be far from inno-
cuous. As we have seen, (1) results derived in the semi-
classical expansion treating the dyon as a background
field cannot be carried over into the regime e m~ &&M,
especially when M =0, (2) if the dyon degree of freedom
is properly quantized, the Dirac equation for the fermions
will have a strong nonlinearity, which cannot be neglected
with impunity, and (3) the charge-mixing BC is wiped out
anyhow, even with the orthodox calculation.

Another aspect of the "orthodox" calculation also pro-
vides cause for reappraisal. If we calculate the functional

are forbidden, and the simplest type of an allowed process
1S

u jL, +u21 +monopole —&d3ii +e~++ monopole (4.6)

which conserves fermion color hypercharge as well as
(4.2)—(4.4), but not baryon number.

The weakness of the argument however lies in the well-
known fact that the integrated charge Q5

' need not be
conserved, even if the associated current is. In the mono-
pole sector of the fermion —Yang-Mills —Higgs system,
the dyon degree of freedom induces a four-Fermi interac-
tion (3.33), which may lead to a spontaneous breaking of
the nonanomalous as well as the anomalous chiral symme-
try. Indeed, the variational framework we have adopted
as well as the results we have obtained are quite standard
for this class of problems since the classic works of Nam-
bu and Jona-Lasjnjo and Vaks and Larkin.

Recent work on symmetry breaking in vectorlike gauge
theories also lends support to our (counter)argument.
The s-wave approximation is equivalent to taking the
functional integral for a SU(2) gauge theory with (mass-
less) Dirac fermions

integral (4.7) with two doublets, restricting the measure to
a dilute gas of instantons, ' ' we would find a four-body
condensate which breaks the anomalous chiral-symmetry,
but no two-body condens ates which break the
nonanomalous chiral symmetry .If this result were taken
at face value, the inference might be that the
nonanornalous chiral symmetry is realized in the Wigner-
Weyl mode for massless QCD [with SU(2) color], and that
the nonanomalous chiral charge must be conserved for
any scattering process. To us, the similarity between this
line of reasoning and the orthodox position on catalysis is
too close for comfort.

Nevertheless, one may question the applicability of our
results to GUT monopoles, since some differences exist
between SU(2) and SU(5) which may turn out to be signi-
ficant, once we go beyond the s-wave approximation. One
is that the analog of the fermion number no longer needs
to be conserved, since in terms of Weyl fields, three come
from the 10 representation and one comes from the 5".
Similarly, the origin of the fermion mass is different,
coming from the Higgs 5. Another difference is the ex-
istence of strong and weak ' interactions. Also, the
relation between the vacuum sector and the monopole sec-
tor becomes different for SU(5), since global color ceases
to be defined.

Actually, however, the last circumstance is presumably
a blessing as far as an extrapolation of our results is con-
cerned. Grossman has suggested that the fermion-
monopole system is analogous to a Kondo-type system,
with the dyon degree of freedom providing the analog of
the impurity spin. A Hartree-Fock type of approach such
as ours would then be ill suited for the problem.

The objection would indeed be quite serious if the dyon
degree of freedom were non-Abelian, since the two essen-
tial ingredients of the Kondo effect are the noncommuta-
tivity of the impurity spin and the existence of a Fermi
surface. However, in our case, the dyon degree of free-
dom is Abelian, and we have seen that it may be eliminat-
ed through the conservation law (3.35) in favor of a sim-
ple four-Fermi interaction. Therefore, it would seem that
superconductivity would be a better analog than the Kon-
do effect, as suggested by Srivastava and Widom.

In short, although there is nothing wrong with the basic
idea that fermions in the s-wave can probe the monopole
core, there is also nothing wrong either with GUT mono-
poles behaving like Dirac monopoles, particularly since
the Abelian BC mimics all the physics of the underlying
non-Abelian theory: the Mitten effect, chiral conden-
sates, ' and Nambu-Goldstone modes. ' To determine
which possibility is actually realized, ii is essential to
study the effect of mass terms; the evidence so far points
strongly to the Dirac scenario.

Even if the reader disagrees with this assessment, we
may still call attention to the following issues which have
a simple resolution within the Dirac scenario, but to our
knowledge, has not been resolved for the orthodox
scenario.

(i) How do the "half-solitons" combine to form a full
fermion'?

(ii) How do we recover the semiclassical results when
m~ &3E?
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(iii) What are the total charge and the charge distribu-
tion of the stable dyons if there are no massless fermions?

but not current

(4.10)

Q„,/I &2M . (4 &)

However, our previous results were that the breakdown
occurs when

tPl pr
ln &1.

4m M
(4.9)

Another problem was that we have ignored the back re-
action of the electric fields on the magnetic fields, an ef-
fect which exists even in a static situation, owing to the
non-Abelian nature of the monopole. The back reaction is
negligible in the semiclassical approximation; however, so
is the back reaction of the fermions, which we have seen is
actually quite important when the semiclassical expansion
is no longer valid.

In fact, if the back reaction on the magnetic field is sig-
nificant, there is no reason for monopoles to be heavy; for
all we know, they could even be as light as quarks and
leptons. On the other hand, there are some reasons to be-
lieve that the back reaction may not be important. We
have already noted in (II) that the ground state carries
charge

This would seem to be a case where common sense as well
as normal scientific practice would dictate that one should
not accept the exotic without ruling out the mundane.

Aside from implications for proton-decay catalysis, we
believe our analysis is also interesting from a general
field-theoretical point of view. One feature of interest is
that Nambu-Goldstone bosons can exist in 1+ 1 dimen-
sions, if space is restricted to a half-line. This could be of
relevance to materials with a boundary, or theories such
as the quantum I.iouville model where spontaneous com-
pactification may occur.

The other feature of interest is that a physical Nambu-
Goldstone mode can accompany the spontaneous breaking
of an anomalous chiral symmetry. To our knowledge,
this is the first nontrivial example of such a phenomenon.
In particular, our result clearly shows that the Kogut-
Susskind mechanism' depends on the specific dynamics
of the theory, and not just the general fact that j&z is not
conserved or Q5" is not invariant under "large" gauge
transformations.

Another area where our analysis is of interest is of
quark models. It has already been recognized ' that the
BC (2.24) for the monopole is quite similar to that of the
bag model. If we take a spherical bag with free quarks on
the outside, we may bosonize each partial wave separately,
which would give us a Nambu-Goldstone mode associated
with chiral-symmetry breaking, i.e., pions [and a U(1) bo-
son]. Equation (2.49) then suggests that one may now
consistently delete the quark states from the spectrum.

However, to return to the fermion-monopole systein, it
must be mentioned that we have left unsolved many prob-
lems, some already noted in (II). One is that the varia-
tional approach, although conceptually unambiguous and
qualitatively satisfactory, is quite unsatisfactory in its
quantitative aspects. Simple energetics suggests that the
semiclassical approximations should break down when

(4.11)

Also, the back reaction of the electrostatic potential J and
the Higgs field H cancel in the Prasad-Sommerfield lim-
it, whereas the Montonen-Olive-Witten argument sug-
gests that the mass of the monopole is still governed by
the Higgs field in supersymmetric theories.

The third problem is the validity of the s-wave approxi-
mation, particularly with respect to the emission of soft
photons or gluons. If we consider a classical charge-
monopole system, we find that the charged particle ex-
periences infinite acceleration in the minimum angular-
momentum state. Similarly, for the quantum system, the
expression for the phase shift

tan5(E) = k 0
tan —+-

E+M 2 4
(4.12)
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implies that the collision time do(E)/dE tends to zero as
E/M +0. —

The fourth problem is the behavior of a multimonopole
system interacting with fermions. Here the one-particle
approach runs into conceptual as well as technical diffi-
culties. The (extended) charge quantization condition9
requires that 8 must be common to all monopoles (dyons),
and it is not at all clear how that may come about. A re-
lated problem is how the various symmetries are broken
or restored in a monopole-antimonopole system (monium)
as the antimonopole is moved off to infinity. In particu-
lar, the behavior of the Narnbu-Goldstone mode associat-
ed with the anomalous chiral symmetry is of great interest
in connection with the U(1) problem. '

The last and also related problem is what happens to
the chiral currents when a Dirac monopole is itself a
dynamical object, since (2.55) suggests that j»" actually
ceases to be invariant. The major difficulty here is that a
satisfactory formalism for a dynamical point monopole is
lacking so far. The fiber-bundle description ' ' does not
adapt well to creation and annihilation of monopoles,
whereas the traditional "string" formulation ' does not
seem to accommodate 0 properly. The most promising
approach would seem to be a lattice formulation. 94 Even
then, however, nontrivial obstacles are expected when
adding fermions.

Evidently, a satisfactory approach to these problems
would be most welcome.
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APPENDIX A:
PARTIAL-WAVE ANALYSIS OF THE ANOMALY

Q [f]= fdx f(r)Ãt(x)%'(x):,

Q5[g]= fdxg(r):(pt(x)y5%(x): .

(Al)

(A2)

We wish to compute the commutator [Q[f], Q~[g]],
where

a.( —i V —e A)ukj
' (x)= —

kukjm (x),
J ukjam(X) =j(j+1)ukjam(X), J,ukj

' (X)=mukj ' (X),

J ukjm(X) =j(j + 1)ukjm(X), J,uk(jam(X) =mukjm(x),
(a) (P)f (a) (P)~

Ibkjm~bk'j'm' I Idkjmrdk'j'm' I

=~5jj5 5 p5(k —k') .

(A5)

(A6)

Since we are interested in the short-distance singularities,
we set the fermion mass to zero. As usual, (P and %' are
expressed in terms of eigenfunctions of the Dirac Hamil-
tonian:

%(x,t)= —f dkg[b„' 'u„' '(x)e
ajm

(A3)

For higher partial waves corresponding to given (E,j,m),
there exist two eigenfunctions:

+kj"(rCj'm «) +kj'«)
(&) (1)ukjm(x)= (1)( )s(2)(~) ~ ukj (r) G())( )r GkJ r ~Jm

(A7)

Ek '(r)g' '(Q) F' '(r)
(2) (2)ukjm(x)= —

G(2)( g(l)(+) ~ ukj (r)= G(2)( )

a ( i V e—A)u—kjm(X) =kuk(jam(X),
(A4) (and similarly for v). We then have

(A8)

([Q[f), Q5[g]]&,~o=
' f "dk f dk'y y„[(vkjm, fuk j )(uk j m ~g/5ukjm) (u~u)]

ajmpj'm '
(A9)

where

(v,fu)= fdxv (x)f(r)u(x) . (A10)

Higher partial waves do not survive the angular integra-
tions. By orthogonality of gj

'

(u„'. ',fu„'P' ) 5 '5 5 p (A 1 1)

while

I

Point splitting in the time direction with the standard
phase factor

y[„(a)t( )
„(a) ( )

iktdk
ajm

—uk(j' (x)oukjm(x)e ' ']e ' . (A16)

Using properties of monopole harmonics, this reduces to

(P) i~ ~(ukj''m'&g3 5uukjm ) ~ 5jj'5mm'&ap ~ rap 1 ()
(A12)

r2 f dkg[uk, ' (x)o"»k (x)e' '
ajm

The contribution for j) 1 is then proportional to
rap5ap=0 and thus vanishes. On the other hand, the
lowest partial-wave contributes

—u' ' (x)o"xu' '(x)e '"']e

(A17)

&[Q[f], Q [gl]&=—f, d f'( )g( ) (A13)
We can now see that higher partial waves will not contri-
bute to this expression, since they involve the vanishing
quantity

[a.( i V eA)+eA—o(r)—]ukjm(x) =kukjm(x),

[a ( iV eA)+eAo(—r)]vkj—m(x)= —kvkjm(x) .

%"e calculate

(A14)

~)M, ~jpm5 & =V ' f g [ukjm (x )a ukj m (x )
ajm

—ukjm (x)crukjm (x)] . (A15)

as shown in the text.
For the anomalous divergence, we wish to consider a

dyon with an electrostatic potential Ao(r), which is regu-
lar at the origin Ao(0) & Oo. Then the wave functions
satisfy

yg(a) t .~xg(a) (A18)

Only the lowest partial wave remains, giving

B~ij ~s & = —
2 z Ao(r) — Ao(0)5(x) . (A19)

APPENDIX B:
RENORMALIZATION OF THE CHIRAL ANOMALY

In this section, we shall mainly follow the paper of Bar-
deen. Bare quantities and renormalized quantities will be
distinguished by the superscripts 8 and R.

Let us consider the bare chiral current
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iI s=+ XIXs+ =Z2+ XpXs+
~ B B B R R (81)

in a SU(2) theory with a massless Dirac isodoublet. If we
use a gauge-invariant regularization, such as the
Fujikawa-Vergeles prescription, we arrive at the unrenor-
malized form of the anomalous divergence equation

By2.invB (e ) FaBP aB

R 2«) FaBF-aB
PV PV (82)

Introducing the (bare) Chem-Simons current' '

B 2 B
B (e) aB aB aB bB cB

Cp ——— ep~p F~pAy — cab, A~ A p Ay
32m2 3

we may rewrite (82) as

(83)

~ invR invB
Jps ZAJps ~ (86)

Therefore, we may introduce the renormalized quantities

(87)

a -aR 2

32~'2 [F~&~.] =~uc~ .

We find that renormalization does not affect the proper-
ties under gauge transformations

eR 2

16m.
(89)

|il [FtXi:.] =o (810)

Also, [F&g &,] may still be regarded as a topological
charge density, since it is a total derivative. However, as
emphasized by Crewther' and Witten, ' ' ' its spectrum
will depend on the fermions, as expected from (87) and
(88).

The addition of a Dirac mass does not significantly af-
fect the situation, since it will only add a "soft" diver-
gence

2sm~+By, +B

to (82). In particular,

Qs = JdxJos

(811)

(812)

will still generate chiral transformations at equal times.
On the other hand, a Higgs-boson mass leads to signifi-

cant changes, since it will add the "hard" divergence

2 GBqpB qgByaB'Vs
2

(813)

.symB 0 symB invB +2CB (84)

Since j&~ is an external conserved current, it follows
that its matrix elements are actually finite, i.e.,

~ symB .invB (85)

On the other hand, j&s" is not finite, since F& F&„ is not.
However, since it is the only gauge-invariant pseudovector
with dimension three, it is still multiplicatively renormal-
izable

In particular, one no longer has a meaningful chiral sym-
metry, and it is possible to generate a Dirac mass start-
ing from M =0 but 6 &0.

APPENDIX C: TECHNICAL ISSUES

In this section, we compare our results with the existing
literature on some technical issues.

(i) Anomalous commutators
For an Abelian monopole, we have seen that there ex-

ists an ambiguity (2.8) and (2.11) associated with the ex-
trapolation of the anomalous commutator from the vac-
uum sector. Similarly, the commutator between the elec-
tric charge and the axial charge was found to be ill de-
fined, a point which seems to be frequently overlooked.

On the other hand, a careful treatment showed that

[Q Qs[g]]=0 (C 1)

as well as (3.44) must be satisfied in the point limit. The
first condition (C2) is incompatible with transformations
of the type

indicating that the electric charge is a chiral singlet, con-
trary to Wilczek and Callan [second citation in Ref. 22,
Eq. (4.7)].

The source of the discrepancy with the latter is clear:
Callan has not retained the 5'(r+r') term in (2.29). As
for the former, we believe Wilczek has not correctly taken
into account the discontinuity associated with the limit
M~0. If there fermions are strictly massless, the electric
charge of the ground state is zero independently of the
chiral angle. On the other hand, if the fermions are mas-
sive, the electric charge is proportional to 0; however, the
different ground states are no longer related by (active)
chiral transformations.

The argument is also consistent with our previous re-
sults for the non-Abelian case: In the gauge
(3.16)—(3.18), the total charge is given by the momentum

p~ conjugate to the dyon degree of freedom, which com-
rnutes with the fermion field at equal times.

(ii) Two forms of bosonization
For the Abelian case, we had noted the existence of two

dual forms of bosonization (2.38) and (2.50), both which,
however, gave the same results as p~O. In particular, no
question was involved of the dyon degree of freedom, in
contrast with Kazama and Sen.

The source of the discrepancy seems to lie in their ex-
pression for the electric field (3.16). As we have noted
in (III), the correct expression should contain the surface
term pl. ( oo ) —pB ( oo ), which in turn leads to a change in
their commutator (3.20).'

The authors have also attempted to justify the charge-
mixing BC for the fermions on the basis of a decoupling
argument (p. 194). It is easy to see, however, that their ar-
gument is not valid precisely when our (3.44) is satisfied.

(iii) Reduction to 1 + 1 dimensions
As we have noted, the consistency of the reduction to

1 + 1 dimensions requires that

Xt(0)ysr+(0) =0
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(C3)

(C4)

~iR ~iR~
—+U ~, U U=l,

a point which seems to be overlooked by Craigie and
Nahm.

Also, for a non-Abelian monopole treated as a back-
ground field, we have found that the higher partial waves
contribute to the anomalous divergence. Strictly speaking
therefore, the equation

2

8~
is inconsistent with the s-wave approximation, a point
which is sometimes ignored in the literature.

On the other hand, it follows from (3.25) and (3.26) that
the integral version of (C4) does not suffer from such in-
consistencies, so this is a relatively minor problem.

(iv) The Witten charge for a Higgs-boson mass
On this issue, we shall merely add the following obser-

vations.
(1) As noted in previous papers, the proper quantiza-

tion of the dyon degree of freedom shows that the boson-
ized Hamiltonian used by Callan ' and Harvey lacks

certain surface terms which are crucial for the problem at
hand.

(2) If m~ (M, we expect that the semiclassical approx-
imation should give the correct results, treating the mono-
pole as a background field. The Jackiw-Rebbi zero
mode then satisfies the charge-mixing BC, and carries
fermion number I'=+ —,', but no net electric charge. Our
procedure recovers this result, whereas Callan and Harvey
do not.

(3) Harvey has also argued that a chiral rotation in the
lowest partial wave will transform a Higgs-boson mass
into a Dirac mass, and hence 0 should be shifted away
from 8. This argument we believe is doubly incorrect. As
we have seen, higher partial waves contribute to the
anomalous divergence, so it is necessary to include these
contributions, as done by Niemi et al. " Furthermore,
even in the lowest partial wave, a chiral transformation
will change the charge mixing term y5rzK(r)!r to
r2K(r)lr as well, so the case of a Higgs-boson mass can-
not be reduced to that of a Dirac mass.

Finally, we wish to record our opinion that among the
various expositions of the orthodox calculation, the one by
Polchinski is technically the most reliable.
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