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Heterotic string in an arbitrary background field
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An expression for the fight-cone gauge action for the first-quantized heterotic string in the pres-
ence of arbitrary background gauge, gravitational, and antisymmetric tensor fields is derived. The
result is a two-dimensional local field theory with X =

2 supersymmetry. The constraints imposed

on the background fields in order to make this theory one-loop finite are derived. These constraints
are identical to the equations of motion for the massless fields at the linearized level. Finally, it is
shown that if there is no background antisymmetric tensor field, and if the gauge connection is set
equal to the spin connection, the effective action is that of an N =1 supersymmetric nonlinear o.

model.

I. INTRODUCTION

The discovery of anomaly cancellation' in type-I super-
string theories by Green and Schwarz has given us hope
that superstrings may provide us with a unified theory of
nature. Since then, two new string theories have been
discovered, ' one of which has SO(32) as its gauge group,
while the other is based on the gauge group E8&E8. Both
of these theories are expected to be anomaly free, since the
limiting field theories obtained from them in the zero-
slope limit may be shown to be free from anomaly at the
one-loop level. Of these the E8XE8 theory seems to have
a good phenomenological prospect.

Since these theories are defined in ten dimensions, we
must compactify the six extra dimensions in order to get a
realistic theory of nature. Two different approaches have
been taken to study this problem. In the first approach
one studies the compactification of the ten-dimensional
field theory which is the zero-slope limit of the string
theory. 5 '0 The compactification is then achieved by
giving the various massless fields (e.g., the graviton field,
the antisymmetric tensor field, and the gauge field) associ-
ated with the massless excitations of the string vacuum
expectation values. In the other approach, "' one tries to
formulate and study first-quantized string theory in an ar-
bitrary background metric, which gives us a nonlinear o.
model in 1+ 1 dimensions. Attempts have also been
made to formulate new kinds of string theories by adding
%'ess-Zumino-type terms to this nonlinear o. model. '

The requirement of being able to formulate a consistent,
reparametrization-invariant string theory gives strong
constraints on the two-dimensional field theory describing
the first-quantized string action. In particular, it requires
that the theory should be conformally invariant, and
hence all the P functions must vanish to all orders in the
perturbation theory-, .

In a previous paper' we studied the connection between
these two approaches by investigating the dynamics of a
string in a weak background graviton and antisyrnmetric
tensor field associated with massless closed-string excited
states. In particular, we showed that the presence of a

background antisymmetric tensor field is equivalent to
adding a Mess-Zumino term to this string action. For the
fermionic strings the effective action for the first-
quantized string reduces to the supersymmetric extension
of a nonlinear o model with a Wess-Zumino term. A
similar action for the heterotic string was also written
down in the presence of arbitrary background gauge, grav-
itational, and antisymmetric tensor fields.

In this paper we further pursue this approach and study
the ultraviolet behavior of the two-dimensional field
theory that describes the heterotic string in arbitrary
background fields. In Sec. II we derive the action for the
heterotic string in the presence of arbitrary background
fields. Section III is devoted to the study of the one-loop
ultraviolet divergences in the theory, and deriving the re-
quirement for finiteness of this model. In Sec. IV we dis-
cuss the various implications of our results. In particular,
we show that the criterion for finiteness of the nonlinear
a model is equivalent to the field equations in the weak-
field limit. From this we conjecture that there may be a
deep connection between the condition for finiteness of
the o. model describing the string in a given background,
and the equations of motion of the string field theory (It.
was argued in the first of Refs. 6 that the conformal in-
variance of the o model automatically guarantees that the
background is a solution of the classical equations of
motion. We, however, believe that the correspondence
goes both ways, namely, any background field configura-
tion satisfying the classical equations of motion automati-
cally describes a conformally invariant o. model. ) It is
also shown that in the absence of any background an-
tisymmetric tensor field, the action derived in Sec. II
reduces to that of an %=1 supersymmetric nonlinear o.
model if the gauge connection is set equal to the spin con-
nection. This, in turn, implies that the effective o- model
is finite to all orders in the perturbation theory if the
background is Ricci flat. In Appendix A we show that
the effective nonlinear o model derived in Sec. II is invari-
ant under an N = —,

'
supersymmetry transformation. Ap-

pendix 8 contains some details of the one-loop calculation
performed in Sec. III of the text.
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II. HETEROTIC STRING
IN ARBITRARY BACKGROUND FIELD

(B,—B )XI=0, (2.4)

25

g B~'B x'
1 =10

(2.1)

where a =0,1 denotes the world-sheet parameters ~ and o.,
respectively. X' and X are bosonic coordinates, and iV

are the fermionic coordinates. (We have chosen the
Ramond-Neveu-Schwarz representation' for the fermion-
ic coordinates. ) The A,"s satisfy the Majorana-Weyl condi-
tion; for definiteness we take them to be left-handed. The
X 's satisfy the constraint that they are always right mov-
ing. We choose to work in the Majorana representation
for the two-dimensional y matrices:

r

0 1
0 —i 0 i
i 0 ' P i 0 (2.2)

and define

0 1
1

'VI'=P P =
0

The constraints on X and A.
' may then be written as

In this section we shall derive an expression for the ac-
tion of the heterotic string in arbitrary weak background
gauge, gravitational, and antisymmetric tensor fields. If,
however, we want the background to satisfy the classical
equations of motion, we should not only consider back-
ground fields corresponding to the massless states of the
string, but also background fields corresponding to the
massive states of the string, since the massive fields cou-
ple to the massless fields through three-point vertices.
The problem may be avoided by taking all the background
massless fields to be small (-e). Then a consistent solu-
tion of the field equations may be obtained where the
massive fields are of order e (since the massive and the
massless fields couple through cubic coupling). For this
reason we restrict ourselves to the case of weak back-
ground fields only.

We start our analysis by writing down the light-cone
gauge action for the free heterotic string,

8

g = f dr f do g (B~~B X'+iA, 'p B A, ')
I=l

(2 5)

(1—yp)A, '=0 . (2 6)

Equations (2.5) and (2.6) tell us that A,
' is real, and its

lower component must vanish. Hence we may treat the
A,"s as one-component real spinors, which we shall again
denote by A, '. The action (2.1) may then be written as

s= ' f'd~ f do g [(B,—B.)x'(B,+B.)x'
E =1

+iA, '(B,+B )A, ']

25

(B,+B.)x'(B,—B.)x'
I =10

(2.7)

gq f do[(B, B)X'+—kiA, A, '](B,+B~)XJe

(2.8)

where ~ is the gravitational coupling constant. The polar-
ization tensor g;~ for the external tensor field is assumed
to be transverse. It is symmetric for the graviton, and an-
tisymmetric for the antisymmetric tensor field We m. ay
now use Eq. (2.8) to derive the effective action for the
first-quantized string in the presence of a background
graviton field h;J (X) and antisymmetric tensor field
b~(x). If h,j(k) and bj(k) are the Fourier transforms of
these fields with respect to the transverse coordinates X',
the operator whose matrix element between two states
gives the correct transition amplitude from one state to
another is given by

There are massless states of the heterotic string belong-
ing to the symmetric and antisymmetric tensor represen-
tation of SO(8), giving rise to the graviton, a massless sca-
lar, and an antisymmetric tensor field. The vertex opera-
tor for the emission of such a state with momentum k in
the @+~0limit is given by

f dr f der f d k[h,&(k)+b J(k)](B +B )XJ[(B —B )X'+kIA, A, ']e'"

f dr f do(B,+B )X t(B,—B )X'[h; (X)+b; (X)]—iA, 'A, '[h;. i(x)+b; i(x)]I, (2.9)

g,j(X)=6(J + 2m.hij (X),

B()(x)=2abgi(X) .

Finally, note that the addition of a term

(2.10)

where f i denotes BfiBxi for any function f. Let us de-
fine f d~ f dcr[h;J(x)+b~i(x)]A, '(B,+B )A,

' (2.11)

to (2.9) does not affect the transition amplitudes from one
state of the string to another in first order in h and b,
since in the zeroth-order approximation equations of
motion for V give (B,+B )iV=0. Thus to first order in
the external fields, the effective string action may be ob-
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S = f dr f do g; (X)[a~'a Xj+iX'p (L).X)j]
2m' 0

+a,j(x)wi'a~'a~j

iS,—&k(X)A, 'p Ajeija, ~'x"

+ —a [X'p ua; (x)] (2.12)

where

(D a)'= a.a'+I,', a~&a", (2.13)

S' 'k —(a'+jk +aj+k' +ak+'j ) ~2 (2.14)

i & ilI jk=Tg (gij, k+gik, j gjk, —i) . (2.15)

tained by adding to (2. 1) the expressions (2.9) and (2.11)
without the factor of i W. e may then write down the full
effective string action as

S,= ' f dr f d~[A,,(X)(a, —a.)X'

i—Ag'i(X'Q, A, ']

x 1 (a+a )xI
2

(2.18)
L

absorbing a factor of ( —2V2x) in A;I. The reason for
choosing this particular normalization will become clear
later. It is easy to verify that (2.18) is invariant under the
supersymmetry transformation (2.16).

Finally, let us turn to the off-diagonal gauge fields.
These states are given by the direct product of the mass-
less states of the fermionic strings in the left-handed sec-
tor carrying vector index i, and the ground state of the bo-
sonic string in the right-handed sector carrying momen-
tum p +k', where k' is the physical momentum of the
state, and p is a vector in the root space of the gauge
group, labeling a particular off-diagonal generator of the
group. The emission vertex for such a state is proportion-
al to3

Equation (2.12) may also be obtained directly from the ex-
pressions derived in Ref. 13 by using the constraint (2.6).
This Lagrangian is that of a supersymmetric nonlinear o.
model' with a Wess-Zumino term. ' ' Equation (2.12)
is invariant under the X = —,

'
supersymmetry transforma-

tion laws,

(2.19)

where C(pr ) is the cocycle factor.
Hence, in the presence of a background gauge field

A;(X',p ), the action receives an extra term,

5X'=i@A,', M,'= —(a,—a~)x'e, (2.16) f d~ f d~g[(a, a.)x—'A, (xj,p, )

PI

f d~[(a. a.)x'~k —x-x'](a.+a.)x'

ik Xm
Qe (2.17)

Hence in the presence of a background gauge field
A;I(X') the effective action acquires a term

where e is a real one-component spinor. Moreover, the
proof of invariance of (2.12) under the above supersym-
metry transformation does not require the use of equa-
tions of motion. [This is related to the fact that the au-
xiliary fields vanish identically when (2.6) is satisfied. ] As
a result, any extra term added to (2.12) will keep the full
action supersymmetric if the extra term is supersym-
metric by itself. Equation (2.12) also shows that 8;j cou-

- ples to the string as a Kalb-Ramond field. '

Let us now turn to the effect of introducing back-
ground gauge fields. They may be divided into two
classes, one corresponding to the diagonal generators of
the ESXE8 or the SO(32) groups, and the other corre-
sponding to the off-diagonal generators. First we shall
consider the ones corresponding to the diagonal generators
of the group. These states are labeled by two indices i and
I, where i is the polarization index (i = 1, . . . , 8), and I is
the interrial index (10(I(25) labeling the 16 generators
of the gauge group. The vertex for emission of such states
with momentum k is given by

iA, (Xj,p, g, X—']

Xe "' C(p, ) (2.20)

with properly normalized A;(X,p). Here the sum over p
runs over all the roots of the group. If we define

2ip xI
A, (X',X')= g A, (X,p, )e'"' C(p, ) (2.21)

then (2.17) may be written as

S3 —— — f d~ f der[(a, a)X'A;(XJ,X )—

—iA; (XJ,X )iPA, ']

(2.22)

which may again be shown to be invariant under the su-
persymmetry transformation law given in (2.16). Equa-
tion (2.22) may also be derived from (2.18) by applying the
gauge transformation operator constructed in Ref. 20 on
this expression.

Thus, in the presence of arbitrary background gravita-
tional field g;1, antisymmetric tensor field 8;j, and gauge
field A;I and A;(XI), the full effective action for the
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first-quantized heterotic string is given by the sum of S|,
S2, and S3. This action is invariant under the N = —, su-

persymmetry transformation given in (2.16).
For doing quantum calculation, however, it is more

convenient to replace the 16 right-moving bosonic coordi-
nates X by 32 right-handed Majorana-Weyl fermions g
(s =1, . . . , 32). For the heterotic string with SO(32)
gauge group, the 32 fermions belong to the fundamental
representation of the group, whereas for the heterotic
string with E8&E8 as its gauge group, the fermions be-
long to the (16,1) + (1,16) representation of the
SO(16)XSO(16) subgroup of the EsXEs group. [In the
rest of the paper we shall assume that the background
gauge fields always belong to this SO(16)XSO(16) sub-

group. ] The current (8,+B )X may then be expressed in
terms of the fermionic coordinates as

f d~ f do PT p @[A; (X)B~' ——A, 'p A,'A;, (X)] .

(2.25)

Since k p X' is antisymmetric in i and l, we may replace
A; i by Fgi /2 in the weak-field approximation, where,

~M AM AM+fMNPA NAP (2.26)

Since the g's transform linearly under the SO(32) or
the SO(16)XSO(16) groups, the generalization of (2.24) to
the case of arbitrary background gauge field A; (X) [T
denotes an arbitrary generator of the SO(32) or the
SO(16)XSO(16) group] may be obtained from (2.24) by a
global gauge transformation, and is given by

(8,+8~)X = gT (pa+pi)f,
2

(2.23)

where T is a diagonal generator of the gauge group, nor-
malized to tr(T ) =1. The action S2 may then be ex-
pressed in terms of the fermionic coordinates as

f dr f do fT p /[A;I"d~' —
A, 'p~—A,'A,.l I(X)] .

(2.24)

[TM TN] fMNPTP (2.27)

Thus the full action of the heterotic string in the pres-
ence of an arbitrary background field is given by

Here f are the structure constants of the group de-
fined through the relation-

S= f dr f do g; (X)[d X'8 Xi+tX, 'p (D A', )J]+B; e Pd~'dpXJ tS; (X')X—, 'p'VP. pB~X"

+ '~.[~'p ~iB—,,(X)]+iy p.a.g+q (T )„p q' A, a~' 'F,, X'p.X—'— (2.28)

This action is invariant under the X = —, supersymmetry
transformation, as shown in Appendix A.

III. ONE-LOOP ULTRAVIOLET DIVERGENCES
IN THE THEORY

In the last section we derived an expression for the ac-
tion for the heterotic string in the presence of arbitrary
background fields. Although these results are valid only
in the weak-field approximation, the resulting two-
dimensional field theory has an exact X = —,

'
supersym-

metry, and may be of interest in its own right. With this
in mind, we shall study all the one-loop divergences in
this theory, and derive the constraints on the background
fields required by the vanishing of a11 the one-loop diver-
gences. In interpreting this result, however, we must keep
in mind the fact that we should take these constraints
seriously only to first order in the background fields.

We use the background field method for our analysis,
which has been widely used by many authors. ' ' ' In
this method, each bosonic coordinate X in the action is
replaced by X'+m', where X' is the background field
satisfying the classical equations of motion, and m is the

dg
P(X,m) =

t=0
(3.1)

where g' is defined through the equations

(3.2)

quantum field. We may then expand the action in a
power series in m, and derive the Feynman rules for calcu-
lating graphs involving the m lines. In this method, the
external lines are always made of the background fields
X', whereas the internal lines are always made of the
quantum fields m'. The fermion fields g and iV are treat-
ed in the same way as in ordinary perturbation expansion,
and hence they appear both in the internal as well as the
external lines of a graph.

Although this method can be used directly to calculate
all the counterterms, we lose explicit general coordinate
invariance in this method, and hence the calculation be-
comes very complicated. This problem may be avoided by
expanding the action in terms of the normal coordinates
P(X,m. ) instead of the fields m' themselves. g'(X, n) is de-
fined as



2106 ASHOKE SEW 32

X'(0) =X', X'(1)=X'+~' (3.3) a ae;e j ——g&. (3.5)

P=e';g', A,'=e';iY,
where e are the vielbein fields, satisfying

(3A)

Physically, g' may be interpreted as a vector whose
direction is along the tangent vector at X to the geodesic
passing through the points X and X+~, and whose
length is equal to the length of the geodesic between the
points X and X+m. The fields g' transform covariantly
under a general coordinate transformation on the mani-
fold spanned by the coordinates X'. Let us also define

The action for the heterotic string after the replacement
of X by X+m, and using the X' equations of motion
takes a simple form when expanded in terms of the fields
P. The part of the action (2.28), that does not involve the
field g, represents the standard action for a supersym-
metric nonlinear o. model with a Mess-Zumino term, with
the restriction that the spinors A,

' are Majorana-Weyl.
This theory has been studied by previous authors, and the
extra term in the action from this term, obtained due to
the replacement of X' by X'+n' is given by'

f dr f do[a pa~@ B'—" (pa g —g a p)+B"B'"pg

+R...,(a~'a xj ~.j'a~'a~jg'gb+o(g')+o(~'g)], (3.6)

where

Bab (
ab g p & p a b gij )a~k (3.7)

e' e —(ake' )eb g' (3.8)

is the spin connection, and

ikjl= k 1 ibaj gim(al+jk aj+lk lk+jn++jk+ln) (3.9)

ijk ( ijk ~tjk ) =ginFjk (3.10)

R is the generalized curvature. ' Sjk has been defined in Eq. (2.14). In writing down (3.6), we have ignored the O(g )

contribution, since it does not contribute to the one-loop amplitudes. Terms of order P. may contribute to one-loop am-
plitudes involving external A, lines. The graphs involving external A, lines, however, are related to the graphs involving
external X lines due to the N = —, supersymmetry, and hence, we shall not consider any graph involving external A, lines
in our analysis. Owing to this reason we may ignore all terms of order A, g.

Next we must turn to the terms involving the p's. Again, in the term involving gp'A. 'A j we may replace X+nby X, .
the extra terms being of order A, g. The analysis of the term independent of A, may be carried out in the following way.
It has been shown ' that in a suitable frame,

a (X'+rl')=a~'+ (D g)'+ —,'R', ,(a Xj)pg + 0(g'), (3.11)

A, (X+~)=A; (X)+(D,A );g'+ , [(D,D A ); ——,R',; —A ']gjg", (3.12)

where

(D.g) =a.g +~",g'a~'= ' (ea.jg +r k, g'a~'),
(3.13)

and R is the usual Riemann tensor, given by the right-hand side of Eq. (3.9) with F replaced by I .
The total action for the heterotic string, evaluated at X +~ is then given by
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+F7,„(B~ 8 X"—e ~8~"8+")Pg"+i&'p (5, & +&' )~

+&/ p [5 d iA,—d~'(T ) ]1(+fp T /[A (X)(D P) +(D A ),Pa~']

+Pp T f(D A ),g (D g)'+ ,'fp —T g[(D,D A ), +R', A; ]B~Pg

gp T—QFi (X)A, 'p~A, ' (3.14)

where I~(X') denotes the part of the action involving only the background fields X'. This part is irrelevant for any
quantum calculation.

With this effective action, we may now proceed to calculate all the one-loop counterterms involving the external g and
X' fields. During this calculation we always have the X"s as external lines, P and A,"s as internal lines, and the g's as
both, internal and external lines. The details of the Feynman rules, and the calculation of various graphs have been
presented in Appendix B. After using the equations of motion for the X and the g fields, the ultraviolet divergent part
of the one-loop effective action may be shown to be proportional to

i f ( —,'R;„(B~'8 X~—e ~8~'BpXJ) — tgp T —
Qt d~S' —F,+[(D,F ), +f A, F, ]8~i]) .

2& + l 6

(3.15)

Hence the finiteness of the model to one-loop order gives
the following constraints on the background fields:

(3.16)

action was derived by ignoring all terms containing more
than one power of the external fields. To this order, the
symmetric and the antisymmetric parts of Eq. (3.16) are
equivalent to the equations,

(D FM) S bFM () (3.17)
Rl'zp j 0 (4.1)

(4.2)

where D denotes the full covariant derivative, including
the gauge, as well as the spin connection. Also, note that
Eq. (3.17) may be written as (D,F ),i ——0, where D is the
generalized covariant derivative, ' including torsion on
the manifold.

IV. DISCUSSION

In this paper, we have derived an expression for the
heterotic string in the presence of arbitrary weak back-
ground gauge, gravitational and antisymmetric tensor
field. The result is a two-dimensional local field theory
with N = —,

'
supersymmetry. A consistent formulation of

the string theory requires that the two-dimensional field
theory, representing the first-quantized string action must
be conformally invariant, and have vanishing P function.
This requirement gives strong restrictions on the back-
ground fields. In this paper we have studied the possible
ultraviolet divergences in the two-dimensional theory at
one-loop order, and have obtained constraints on the
background fields by demanding that all such ultraviolet
divergences must vanish. These constraints have been
summarized in Eqs. (3.16) and (3.17).

Although these conditions have been written down in a
nice covariant form, they should be taken seriously only
to order linear in the background fields, since the original

whereas Eq. (3.17) gives

(4.3)

Note, however, that these equations are precisely the
equations of motion of the graviton, antisymmetric tensor
and gauge fields, respectively, to first order in these fields.
This leads us to believe that there is a deep connection be-
tween the condition for finiteness of the two-dimensional
field theory describing the action for a string in a given
background, and the full equations of motion involving
the background fields.

Finally, we shall analyze the action (2.28) in the special
case where b,z ——0, and the gauge field is equal to the spin
connection. Most of the attempts to compactify string
theories have been based on such manifolds. ' In this
case, the holonomy group of the underlying manifold,
which is a subgroup of SO(6) is identical to the subgroup
of EsXEs or SO(32) in which the gauge field takes its
value. Components of the field f which are singlets of
this group decouple from the theory as a set of free fields.
Similarly, components of I,, which are singlets of the
holonomy group, decouple from the theory. Components
of A, which are not singlets of the holonomy group, on the
other hand, transform in the same way as the components
of g which couple to the background gauge field. Hence
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there is a one-to-one correspondence between the g's and
the A,"s, and we may combine the fields g and A, to get a
Majorana spinor g with both right- and left-handed com-
ponents. Since the gauge field strength F is equal to the
curvature tensor 8 in this case, we may write the full ac-
tion as

S= f dr f do[g; B~'8 XJ

+iX,& (a.5', +I'„a~')XJ

+ —,
'
R,jk(X'(1+yp)X"X~(l+yp)X']

(4.4)

which is the action for an %=1 supersymmetric o. model
with background metric g;J.. This guarantees that the
model is finite to aH orders in the perturbation theory if
the background metric is Ricci flat. '

APPENDIX A

In this appendix we shall show that the full effective
action for the heterotic string in arbitrary background
field, as given in Eq. (2.28), has an exact X= —,

'
supersym-

metry. For this purpose, we shall express the action ex-
hcitly in terms of g;J. , +;J, and A; as follows

gi(X)(B,—8 )X'(B,+8 )XJ+igJA, '(8 +B )AJ —igj. ((B,+B )XJA, 'X'

+ ig(B,—8 )g +tP'( T)„f' A; (8,—8 )X'—iA;(A, 'A, ' ——fM~ A A A, 'A, ' (A2)

where we have used the one-component notation for the spinor fields A,
' and g. Under supersymmetry transformation

with one-component spinor e, the various fields transform as

(A3)

5f(x)=f ~ieA, ,
'

where f is any function of X. Using Eqs. (A2)—(A4), we get

(A4)

5W= —,'ie(B,—8 )[gjÃ(B,+B )AJ+B~JA, '(8„+B )V]

+ ,isa(T )„—Q'I(B, B)(A; A, ') —if A A, '[A—; A,"A, +iA; (8,—8 )X]I . (AS)

Contribution to 5S from the first term in (AS) vanishes except for the boundary terms. Contribution from the
second term may be written as, after doing an integration by parts,

5S=" f dr f d~I (a, a.)(QT„Q')A; —A,
' i—+T„Q'f A A, '[A—; A,"A, +A; (8,—8 )X]) . (A6)

From Eq. (A2) we may write the g field equations of motion as

i(B —8 )g+T g' A. (B~—B~)X'—iA A, 'A, ' — f A A A, A,
' =0, — (A7)

which gives
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(Q —Q )(gT P')=g[T T ] @'i A (8 —8 )X —iA. A, A,
' — f— A A A, k'

Substituting this in (A6), and using the relation

[TM TN] if'MNPTP

we get

gTKqtf MLKf LNPA NA PA Mgjglgi
o l l J

(A10)

Using the antisymmetry property of the product of l'L. 's,
we may replace f f by

(fMLKf LNP fPLKfLNM fNLKf LMP) (A11)

I

divergent graphs in the effective two-dimensional field
theory. The relevant action is given by Eq. (3.14). Ab-
sorbing an overall factor of (1/n ) in the loop counting pa-
rameter, we may write down the propagator for various
fields as

1+)'p ipS~(P)=
Z . 5~b i

p +l6'

which vanishes by the Jacobi identity. This shows that S
is indeed invariant under the supersymmetry transforma-
tion (A3).

1 rp —ip
Sg(p) = 5„.

P + l 6'
(83)

APPENDIX 8

In this appendix we shall give some details of the Feyn-
man rules, and evaluation of various one-loop ultraviolet

I

The various propagators are diagrammatically
represented as in Fig. 1. The various vertices of' the
theory that are relevant for one-loop calculation are
shown in Fig. 2. They are given by, respectively,

a~b
(a): ~ [B~ (2p k) +iB—~'B' +iR~b,„(B~ d X" e~d~ —dpX")]+

(c):—A; B~'p T„

(&4)

a~b
(e):

4 p T„ I(DbA ),ikl +(DbA ),co"lB~ + ,' [(D,DbA )l+R', b—lA; ]d~'I+

(f): 8 F.b ~r. p p .

t

Qr

5

(a) (b) (c)

p-k -k
I 2 p- k)+ k2-k 3

FIG. 1. Propagators for various fields.
FIG. 2. Various vertices relevant for calculating one-loop

counterterm s.
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In Fig. 2, the double lines always represent some function
of the background fields, which are stated explicitly in
Eq. (84). Notice that in writing down the Feynman rules,
all the quantum fields have been represented in the
momentum space, while all the background fields are still
represented in the position space. If the effective one-loop
action calculated with these Feynman rules has any
dependence on the momenta k carried by the back-
ground fields, we must replace it by i a if the momentum
is incoming, and by ( —ia ) if it is outgoing. Finally, note
that in calculating the combinatoric factor associated with
a given graph, we must take into account the fact that the
fields it. and g are Majorana, so that any of the two lines
coming out of a vertex quadratic in g (or A, ) may be con-
tracted with a given external P (or A, ) field

In order to study the ultraviolet-divergence structure of
the theory, we must list all possible operators of dimen-
sion 2. As mentioned in the text, we shall consider only
those operators which do not carry any i(, field, since
operators with A, fields are related to those without by su-
persymmetry transformation. There are four such possi-
ble operators, given by

p-k

(a)

r
7

/

p-I

(g)

(b)

(e)

(c)

s (J x) a~' axj,
T,,(X)~ l'a~'a~&,

g, (x)qT p pa~',
P; (X)QT p Pe~pB~X'.

(85)

(86)

(87)

(88)

Moreover, (87) and (88) are not independent since g is
Weyl. Here, S, T, P, and Q are arbitrary functions of the
fields X'. Graphs contributing to (85) and (86) have been
shown in Figs. 3(a)—3(d), while those contributing to (87)

FIG. 3. One-loop ultraviolet-divergent contributions to the
effective action involving external X' and g lines.

and (88) are shown in Figs. 3(e)—3(i).
The evaluation of most of these graphs is straightfor-

ward. The contribution from Figs. 3(c), 3(d), and 3(i) may
be shown to be ultraviolet finite. The total contribution to
the effective action from Figs. 3(a) and 3(b) is proportion-
al to"

d kf g (a~maaXn &apa~ma~n)
(2m) k +ie (89)

Total contribution to the effective action from Figs. 3(e) and 3(f) is given by, after doing an integration by parts and
using the equations of motion (A7) for the f field,

l f "", ,
'

qT p q[,'~.@I'x's",(D,w ).+ ,'D. [(D.-& ), (D,a —).]a~'
2m k +is

& fMNPg P(D g N) a~i I +0 ($2/2) (810)

(811)

where we have used Eq. (3.7) to express B in terms of the spin connection and the torsion. Contributions from Figs.
3(h) and 3(j) are given by, respectively,

d k
r

~nb a~if MNpg N~ P
& ~lXlS+b fMNPg Ng P ttiTM

)2 k2 . 4
~ i a b ~ap- l a b P

d k; f qTMTNTPpaqg Mg Ng Pa~i
(2ir) k +i@

(812)

Evaluation of the graph shown in Fig. 3(g) is somewhat more tricky. A direct calculation of the graph gives a contri-
bution of the form a +bp, where a and b are functions of the background fields. Since p is the total incoming momen-
tum carried by the fermion field P and the background fields attached to the left vertex of the graph, in writing down the
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effective action, we may replace p by i&, where the a operator acts both on the incoming fermion as well as the back-
ground field. The contribution to the effective action from Fig. 3(g) may then be written as

d k 1
l

(2n. ) k +iE
(qT T"p w. ia.(w."q)+iyTMT"p yI ~. [(a.a ),a~'+a,"~™,a~']

—a."[(D.w ),a~'+a, ~",a~']]) . (813)

This may be simplified by using the equations of motion for the f fields given in Eq. (A7). The final result is

d k 1
l

(2m) k +i@
( y aTM~f'MNPg xa g Pa~l+ 2q aTNTMTPyg Jvg Pa~i' M

+f~"'yTMp qI ~."[(D.~'),a~'+~„'~",a~']

—a,'[(D.A"),a~'+ a,"~",a~'] I ) . (814)

Adding (89), (810), (811), (812), and (814), we may reproduce Eq. (3.15) of the text.
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