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Topologically massive chromodynamics in the perturbative regime
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Topologically massive SU{Ã) gauge theories are studied by using the loop expansion in the Lan-
dau gauge. Ward identities for infinitesimal and topologically nontrivial gauge transformations are
derived, and checked to one-loop order. The renormalized propagators and vertices are shown to be
well behaved about zero momentum to arbitrary order in perturbation theory. We also establish
that only massive states contribute to the discontinuities of physical amplitudes.

I. INTRODUCTION

There are dynamics possible for gauge theories in an
odd number of space-time dimensions which are not open
to those in an even number. In three dimensions, a
Chem-Simons term can be added to the fundamental ac-
tion for a gauge field. ' " The Chem-Simons term has a
coupling which scales like a mass, but unlike the ways in
which gauge fields are usually given a mass, no gauge
symmetry is broken by its introduction, although parity
Is.

The Chem-Simons term has topological significance.
For a non-Abelian gauge group, if the theory is to be in-
variant under certain large gauge transformations, which
are not continuously d'eformable to the identity, the ratio
of the Chem-Simons mass m and the gauge coupling g
must be quantized: ' 4am/g =an integer.

In this work we study topologically massive SU(N)
gauge theories in the loop expansion. Without the
Chem-Simons mass, the loop expansion would not get us
very far." The coupling constant g has dimensions of
mass, so for each order in g, we obtain a factor of
-g /(p )'~, where p is a momentum characteristic of
whatever process we are considering. Thus perturbation
theory cannot be used to compute in the infrared limit,
p ~0.

With the Chem-Simons term, however, ii seems possi-
ble that if we choose 4am/g to be a very large integer,
and if perturbation theory is in fact an expansion in
g /m, then the infrared behavior should be calculable
directly, at least in this region of small g /m.

We show that naive expectations are borne. out. %'ith
the proper choice of gauge, the renormalized propagators
and vertices are computable, about zero momentum, as a
power series in g /m. (We refer to this as their being "in-
frared finite, " and give a precise definition later. ) The
physical spectrum starts with X —1 gluons degenerate in
mass, and the only discontinuities of S-matrix elements
are from massive states.

These simple conclusions belie a great deal of structure
in the theory. While the two- and three-point functions
are infrared finite in the Landau gauge, they are not so in
any other covariant gauge. Even in the Landau gauge,
there are individual diagrams which bring in infrared-
singular terms -g /(p )'~ . Infrared finiteness happens

in the Landau gauge because of an infinite number of can-
cellations, to arbitrarily high order in perturbation theory,
between such singular contributions. These cancellations
are not proven diagrammatically —we do not know how to
do this —but as the result of a cancellation theorem. The
consequences of this theorem are quite surprising, consid-
ering the ease of its proof.

Similarly, to compute on-shell matrix elements, one
first calculates off-shell quantities. The discontinuities
from (unphysical) massless states only disappear as all
legs go on the mass shell. This, of course, is typical of
gauge theories. '

.
' %'hat is striking here is how the

mass shell is approached: the renormalized gluon propa-
gator does have a true massive pole on the real axis, but
the factor for wave-function renormalization is imaginary
even at the pole.

A priori, it is not obvious that a perturbative analysis
should be possible. After all, a customary assumption in
perturbation theory is that the (dimensionless) coupling
constant can be continuously varied. This is not possible
here, since g /m —1/(integer). Nevertheless, we see no
pathology in any quantity, in any gauge, which indicates a
problem with the loop expansion per se. At least as far as
topologically massive chromodynamics is concerned, the
usual assumptions about perturbation theory appear to be
unduly restrictive.

There is one check of consistency that is particularly
important. If the renormalized theory is to be invariant
under large gauge transformations, a certain Ward identi-
ty must hold. This relation is distinct from those implied
by invariance under infinitesimal gauge transformations,
and so we call it a "topological" Ward identity. This to-
pological Ward identity requires the difference between
the renormalized and the bare value of 4nm lg to be an
integer. Calculation in the Landau gauge for an SU(N)
gauge theory shows that this difference is X, to arbitrary
order in g . Consequently, not only does perturbation
theory respect the topological Ward identity, but it even
knows that the number of colors is an integer.

In Sec. II we explain what we mean by infrared finite-
ness, and derive the Ward identities. Two- and three-
point functions are computed to one-loop order in Sec.
III. Section IV presents the cancellation theorem, which
leads to a discussion of infrared finiteness to arbitrary
loop order in Sec. V. The discontinuities of amplitudes
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occupy Sec. VI. In Appendix A, we discuss some of the
physics of an Abelian theory with a Chem-Simons mass
term, including why it has fractional statistics. ' ' Ap-
pendix 8 examines the unusual way in which spontaneous
symmetry breaking affects the mass spectrum in a gauge
theory with a Chem-Simons term. Appendix C contains
some computational details necessary to Sec. III.

Lp is gauge invariant; L is not:

f dxL ~fdxL~
+ f d x O'" Bptr[(B Q)Q 'A2]

+8& ~
IM2 I (2.8)

II. THE QUANTUM THEORY

The Lagrangian is a sum of three terms,

L =Lp+Lm +Lgauge .

L p is the usual action for a non-Abelian gauge field,

Lo ————,
' tr(Fp, F"'),

F„,=a„A, O~„+—g[A„, A.] .

L is the Chem-Simons term,

L = imd—'" tr(ApB A2+ 3gApA„A2),

(2.1)

(2.2)

(2.3)

(2.4)

and Lg,„g, includes the gauge-fixing and source terms for
the covariant gauge,

(2.5)

The ghosts of Faddeev and Popov contribute

(B„g)Dpri =(B rI ')(capri )+gf I„(d"Fi')A ri' . (2.6)

The gauge group is SU(Ã), with a matrix notation:

Ap
——Apr', Fp =Fp, r . The r' are anti-Hermitian ma-

trices in the fundamental representation:

(2.9)

The set of gauge transformations is divided into global
gauge rotations, B&Q=O, and all others, for which we as-
sume that Q(x) —+1 as xp~co. Integrating over global
gauge rotations requires the system to have a total color
charge equal to zero. In this case, Ap(x) falls off faster
than I/

~

x
~

as xp~ oo, and the second term on the
right-hand side of Eq. (2.8), which is a surface integral,
vanishes.

The last term in Eq. (2.8) does not vanish in general.
The m of Eq. (2.9) is a winding number, which labels the
homotopy class of Q(x). For continuous Q(x), topology
tells us that w is an integer. Deser, Jackiw, and Tem-
pleton"' observed that even if the Lagrangian is not gauge
invariant, the partition function,

—f dA„exp —f d'xI.

can be, provided that m/g is quantized:

Pl
4m =q (2.10)

where

w = f d'x d' tr[Q '(BpQ)Q '(B,Q)Q '(BgQ)] .1

24m

the f'~' are the structure constants of SU(N).
The theory is defined in three space-time dimensions,

which we take to be Euclidean, of signature (+ + + ).
The coupling of the Chem-Simons term is imaginary in
Euclidean space-time [the mass m of Eq. (2.4) is real], and
real in Minkowski space-time. This is just like the cou-
pling of a 0 term in four dimensions.

For an odd number of dimensions, the operation of par-
ity, P, can be defined as a reflection in all axes:

q =0, 1,2, . . . . By convention, m and so q are taken to
be positive. In the perturbative regime, we assume q ~~1.

It does not matter if Lo is replaced by bLO in Eq. (2.1),
since by rescaling Az, g, and m, b can always be set to 1,
without affecting the quantization condition of Eq. (2.10).
The only exception to this is the degenerate case, when
b =0. This limit will be of help in Sec. IV in establishing
a cancellation theorem about the complete theory.

Quantizing the theory is straightforward. The exact
gluon and ghost propagators are, in momentum space,

x" -+ —x", P p P

The usual gauge field Lagrangian is even under parity,

Lp~ +Lp,
P

but the Chem-Simons term is odd,

L —+ —L
P

Two reflections give the identity, P =+1, which is the
analogy, in Euclidean space-time, of PT (and CP'1) invari-
ance in Minkowski space-time. Under a gauge transfor-
mation,

&p (P)=&' &p (P),

g ab(P2) gabe(P2)

From Eqs. (2.2)—(2.6), the bare propagators are

bare ~P~& P, 1
~pv (p '8pv 2

m ~pv2
p p +I

g bare( 2)

(2.11)

(2.12)

(2.13)

(2.7) Self-energy terms combine with the bare propagators to
give the exact ones:
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(2.15)

b„„(p) '=[&„'„"(p)] '+ 11„(p), (2.14)

&(p') =
Z(p')p'

Z(p') =1+11(p') . (2.16)

The analysis of invariance under infinitesimal gauge
transformations proceeds in much the same way as for the
massless theory. ' The longitudinal part of the gluon
propagator is not renormalized,

The exact three-point functions are

r/ A(p q r) =igf r/. A(p q r)

r~ (p q;r)= igf"'r~(p q;r),
(2.22}

p+q+r =0. I &„~ is the proper vertex for the coupling
of three gluons, one with momentum p, Lorentz index p,
color index a, and so on. I ~' is the ghost-ghost-gluon
proper vertex, for a gluon with momentum r, Lorentz in-
dex A, , and color c, etc. We define'

p "p"~,.(p}=0,
which means that the gluon self-energy, II&„(p), is trans-
verse in p:

r~(p q;r) =p r.~(p q;r) .

At the tree level,

(2.23)

II„(p)=(5„~ —p„p, )II, (p )+me„,~ II, (p } . (2.17} I „g(p, q, r) =meq, g+5„,(p —q)p„

The exact gluon propagator is then
r

PI Pv

P
p

mren(p )~@vs,

(2.18)
Z(p')[p'+m„„'(p')] (p')'

+5„(q—r)„+5,„(r—p)„,
r'.V. '(p q r) =5.~

(2.24)

(2.25)

The Ward identity which relates the three-point vertices
1s14—17

p'q "~".d r)r,.~(p q, r)

where

and

Z (p ) = 1+II, (p ),
Z (p )= I+ Il, (p ),

(2.19a)

(2.19b)

1 f' P'

5 ~ — q"r~&(r,p;q); (2.26)
z(p )

b,"~(r) is the transverse part of the gluon propagator.
We shall establish that these vertices are infrared finite

in the Landau gauge, so for (=0 we can expand them
about zero momentum:

(2.19c)

Z—=Z(0), Z =Z (0), and Z=Z(0), (2.20)

are all well defined, and computable as a power series in

g /m:
Pk

00 g2Z=l+ g a„
n 1 m

(2.21)

etc. %'e shall show that the Z's, which are gauge depen-
dent, are infrared finite only in the Landau gauge, /=0.
Notice that the Z(p)'s, as defined, are dimensionless func-
tions, so requiring each Z (0) to obey Eq. (2.21) is a much
stronger condition than merely requiring that II„„(p)and

p II(p ) be finite as P~O.

Z~(p )

z(p')
m „„(p ) is the renormalized, momentum-dependent
mass.

Power counting shows that only the gluon self-energy
might be ultraviolet divergent. By the form of Eq. (2.17),
II, (p ) and II, (p 2) are free of ultraviolet infinities, so any
gauge-invariant regulator can be used to compute II& (p).
We use our freedom in choosing a regulator scheme. to re-
quire that it respect parity; then bare and renormalized
quantities are uniquely related to each other.

What happens in the infrared is much less obvious. For
perturbation theory to make sense, it is clearly necessary
for the renormalized propagators and vertices, about zero
momentum, to be essentially the same as the bare ones, up
to small corrections -g /m. To be precise, we call the
propagators "infrared finite" if

r„„„(p,q, r) =z [m~„„,+S„„(p—q),

+5„(q r)„+5 „(r—p)„—]+
(2.27)

I „„(p,q;r)=zs5 q+ (2.28)

as p, q, and r~0. The Ward identity of Eq. (2.26) gives

Zg Zg

Z
(2.29)

Z
m=m„„(0)= m .ren (2.30)

Equation (2.29) is the same as in the massless theory; Eq.
(2.30) is new, but hardly surprising.

Invariance under infinitesimal gauge transformations
can be used to derive relations between higher-point
Green's functions. For example, the gluon four-point
function satisfies the same relation as when m =0. We
note that the P-odd part of the gluon self-energy,
II, (p ) =Z~(p ) —1, is in no way constrained by the in-
finitesimal Ward identities

To derive a topological Ward identity, we rescale the
fields and couplings so that we obtain a renormalized La-
grangian L"" which generates the exact Green's func-
tions, at least about zero momentum. With

Ap~v ZAp'", g~+Z q"",
(2.31)

g~ 3i2 g, m —+ m, f~zg, Jp~z J~
Zg m —1/2
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then

L""=—iZ md" t 3""8A""
m = —I m~ r

JM v

(Refs. 1 and 12), receiving no contribution from the P-odd
part of the virtual gluon propagator, and so is infrared
finite:

+ g ~ ren~ ren~ ren2Z
Z p v A, (2.32) II(p2) g k P (k—p) d3k g

p k (k~p) (k +m )
(3.1)

Q '' —3 +A"" 0Z 1

Z' g. P P
g

(2.33)

and similarly for I Q'" and L g',"„g,. Under a gauge
transformation,

Except for the tadpole diagram, the contributions to the
gluon self-energy are those of Fig. 1.

The P-odd part of the gluon self-energy, II, (p ), is due
to Fig. 1(a). For instance, consider the piece of Fig. 1(a)
which has a P-odd part at one. vertex, with the other ver-
tex and propagators P-even. In the Landau gauge,

4~ =—4m.zm

ren

f72

g
2

=9'ren (2.34)

The renorrnalized partition function is invariant under
large gauge transformations if g„„, kdk

I v-g ~ pvX (k +m )[(k+p)2+m2]
2

p~Q

(3.2a)

(3.2b)

is a (positive) integer; there is no reason why g„„should
be the same integer as the "bare" q of Eq. (2.10). We see
that it is only through the topological %'ard identity, Eq.
(2.34), that Z~ is related to the other renormalization
constants of the theory.

Topological %'ard identities will often arise in a theory
with a multivalued action. For example, following
Schwinger, consider a theory of charged particles in-
teracting with (Dirac) magnetic monopoles, where the
monopoles are viewed as fundamental particles, and not
as composite entities. ' Then twice the product of the
electric and magnetic charges must be integral, for both
the renormalized, 2(eg)„„, and bare, 2eg quantities.
This is precisely analogous to the statement that q„„and
electric and magnetic charges must be integral, for both
the renormalized, 2(eg)„„, and bare, 2eg, quantities. 2

must be a rational number; in the present instance,
Z~(Z/Zg) is a rational number. What is striking about
topologically massive chromodynamics is that we can cal-
culate q„„and the Z's directly (see Sec. III). As of yet, it
is not possible to compute Z3 in a field theory of mono-
poles.

III. ONE-LOOP ORDER

When /&0,

d k
IIp~ g m Ep~2p'

k (k+p)

g 2/+2
Plop Q7

32(p )

(3.2c)

(3.2d)

k "(k +p) d k
F'g. ~~b~ k'(k +p)'(2~)'

(3.3)

The actual contributions are more complicated than as
written in Eqs. (3.2a) and (3.2c), but the differences do not
change Eqs. (3.2b) and (3.2d).

Using this type of analysis, it can be shown that II, (p )
is infrared finite in the Landau gauge, II, (0)-g /m.
Because of the contribution of Eq. (3.2d),
II, (p )=—g Xg /[32(p )' ]+,II, (p ) is infrared
singular for /&0. [There is a term linear in g in II, (p ),
but that is infrared finite. ]

For the P-even part of the gluon self-energy, II, (p ), it
is clear that the virtual ghost loop, Fig. 1(b), is a problem:

Before plunging into calculation, it helps to isolate
which diagrams might be infrared singular. We shall dis-
cover several cancellations, the reason for which will only
become clear in Sec. IV.

There are several ways in which infrared-singular terms
could arise. One is any diagram involving ghosts, since
neither the ghost propagator, nor the ghost-ghost-gluon
vertex, are changed by the introduction of the Chern-
Simons mass term. For the gluon propagator, Eq. (2.12),
problems will arise from the P-odd part, and the piece
proportional to the gauge-fixing parameter g. The latter
should be worse, since for p~0, it is gp&p„/(p ), versus
—e„„2p /(mp ) for the P-odd part. In the three-gluon
vertex, Eq. (2.24), the P-odd piece is more dangerous than
the P-even, for a factor of momentum in the numerator of
a loop integral will tend to soften the infrared behavior.

The ghost self-energy is simplest. It is independent of g'

(a)

/
I

l
l

/

(b)

FIG. 1. Contributions to the gluon self-energy at one-loop or-
der. Solid lines denote gluons; dotted lines, ghosts.

This appears to contribute an infrared-singular term
—g /(p )'~ to II, (p ).

For an arbitrary diagram, we shall refer to that part of
it which comes from taking the P-odd piece of each gluon
vertex and propagator as the "purely e part" of the dia-
gram; the ghosts and their vertices are left unchanged.
The purely e part of Fig. 1(a) is
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kl'(k+p) m d k
II p — —gX

Fis 1(a), k (k +P) (k +m )[(k +P) +m ] (2'ir)'
purely @part

(3.4)

Gbviously, Eq. (3.3) cancels against Eq. (3.4) as P~O.
This cancellation is enough to guarantee that II, (p ) is

infrared finite to one-loop order in the Landau gauge.
This is not true if /&0. If for each gluon propagator in
Fig. 1(a) only the piece —g is included, the denominator
of the loop integral will depend only on k and (k+p},
and so contribute an infrared-singular term to II, (p ):

2+ 2 mII( ')= — ~ 1 — + ~ ~ .
64(p 2)1/2 .

p
2

(3.5)

There may also be infrared-singular terms -g in II, (p );
we did not evaluate them.

The cancellation about zero momentum between Eqs.
(3.3) and (3.4) is implicit in the calculations of Deser,
Jackiw, and Templeton, although they did not discuss it
as such. It turns out to be the key in understanding why
the theory is infrared finite in the Landau gauge.

Similar cancellations happen for the vertices. About
zero momentum in the Landau gauge, the purely e part of
Fig. 2(a} cancels against Fig. 2(b) [there is no purely e part
to Fig. 2(c), as the four-gluon vertex is P-even], as do the
purely e parts of Figs. 3(a) and 3(b). This implies that Zg
and Zs are infrared finite to one-loop order.

If ghosts are a problem, why not go to a gauge where
they can be ignored'? In an axial gauge n&A"=0, ghosts

decouple, and there is no P-odd part to the three-gluon
vertex. The gluon propagator is

gbare( )
(iipp +Ppp ) Ppp 1+n'p (n p) p +m

(pp, &v~ p pv&pz&—p )
&pv& +

Pl P

X 22
p 2(P2+~ 2)

(3.6)

Unlike covariant gauges, because of the terms —1/n.p
and —1/(n.p) in Eq. (3.6), in the axial gauge the in-
frared divergences of individual diagrams must. be regulat-
ed in some fashion. Given the difficulty of calculating
with the propagator of Eq. (3.6), we did not pursue this.
After all, as gauge-variant quantities, there is no reason
why the renormalized propagators and vertices should be
infrared finite in a given gauge: what is remarkable is
that they are so in the Landau gauge. Arguments in axial
gauge will help in establishing the cancellation theorem of
the next section.

The computation itself requires some diligence; see Ap-
pendix C. All results are in the Landau gauge:

g 2~ 2
( 2)1/2

II(p )=- ~ 1—
16&m p 2m

p +rn 2 2—+sin p —m

2 p +m
(3.7)

2~ 2 ( 2)1/2
110(p )= . 2+ 2 + 3 2 2

arm [(p ) +p m —m ]+2(3p —m )(p +m ) sin

—6p (p —2m )(p +4m )sin
p +4m

1/2 '

(3.8)

II ( )=
3277m

—5 —11
2 +

&

m.m [2(p ) + ", p m + —,m "]——(p —7m )(p +m ) sin
p 2m(p) p +m

'1/2 '

+[(p ) —13p m +4m ](p +4m )sin
p +4m

(3.9)

II
{a)

~rt'r
/

I
I

I
Ir

/

/ {b)

FIG. 2. One-loop order corrections to the three-gluon vertex. FIG. 3. One-loop corrections to the ghost-ghost-gluon vertex.
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These self-energies were also calculated by Deser, Jackiw,
and Templeton. II(p ) and II, (p ) agree with their re-
sults; II, (p ) does not (Appendix C). From Eqs.
(C7)—(C9),

Plugging into Eq. (2.34), we find

16Kq„„=q+K+ (a+2b ——, ) . (3.19)

1 g X
6m m

Z =1+ 7 g %
12& m

5 g X
24m. m

Further,

(3.10)

(3.11)

(3.12)

Z 1 ~ (3.13)

Because the gluon propagator is transverse in the Landau
gauge, whether or not m&0, arguments familiar from
four dimensions' can be used to conclude that Zz ——1 to
any order in perturbation theory. This is true only in the
limit of zero momentum —while Zs ——Zs(0) = 1,
Zs(p )&I for p &0.

By the Ward identity of Eq. (2.29),

q„„can be an integer for arbitrary X, and arbitrary
q »1, only if

a+2b = —, .1 (3.20)

Beyond, but not at, one-loop order, the topological Ward
identity acts like a "typical" Ward identity. That is, if we
know Z/Zs =Z/Zs to -O((g /m )"), and Z~ to
-O((g /m )" '}, n & 1, then the topological Ward identi-
ty tells us what the coefficient of Z is to -O((g /m )").

The topological Ward identity has a smooth limit at
large ¹ As X~ oo, m and g X should be fixed num-
bers, so take q=rX, qren ~ren+. r and pren are integers,
which are large in the perturbative regime, but they are
fixed numbers at infinite N. Equation (3.16) gives
~reo =~+ 1 ~

IV. A CANCELLATION THEOREM

Z, =1— ' ''~
24m m

(3.14)
We have seen that in the infrared, the worst problems

are due to the purely e parts of diagrams. So let us con-
struct a theory in which these are the only diagrams:

We also verified, directly from the diagrams, that the
Ward identity of Eq. (2.30) holds.

The properties of the self-energies for Minkowski
values of p (real p &0) will be discussed in Sec. VI. At
present we consider only their values at zero momentum.

The renormalized mass is

~a=~'+~gauge ~

L'= —iet' tr(A„'8 Ai ~ —,g'ApA', Ai ),
L s,„s,——— tr(B„A't')

mg

(4.1)

(4.2)

m„„(0)= m =m 1+Zm 19 g .V
Z 24m m

(3.15) + (d" ri)D„'ri 2 tr( J~A
'")—. (4.3)

The renormalized mass at zero momentum, m „„(0),
enters into the proof of infrared finiteness in Sec. V, but
otherwise it is not of especial interest. The gauge-
invariant quantity of physical significance is the position
of the pole in the renormalized propagator: this is given
by m„„(—m ), Eq. (6.11).

The topological Ward identity of Eq. (2.34) is satisfied:

m
qren =4~

ren

(3.16)

Even though perturbation theory includes only small Auc-
tuations about the vacuum, it still respects the invariance
under large gauge transformations. The sign of Eq. (3.16)
is also interesting since q„„&q, the renormalized value of
the dimensionless coupling constant -(g /m)„„, is less
than the bare value.

It is not difficult to argue that, at least in the perturba-
tive regime q&&1, the result of Eq. (3.16) is exact, and
valid to any order in perturbation theory. Suppose that
the Z's had been calculated to two-loop order:

2

This is just the original theory, with 1.0 ——0. 3& has been
rescaled, A& ——A&/v'm, and g'=g/V m is a dimension-
less coupling constant.

We call I., the "e theory. " Similar models have been
consider by Hagen. ' g' is still quantized, 4ir/(g') =q.

The gluon propagator is
A,

(4.4)
p2 (p2)2

As p —+0, this propagator has the same singularities as
that of Eq. (2.12).

The ultraviolet behavior, however, is very different
from that of the original theory. Instead of being super-
renormalizable, the e theory i.s only renormalizable and, at
least in principle, there can be logarithmic ultraviolet
divergences in perturbation theory.

Suppose that from the generating functional G (J'),

exp[ —G(J')]= f dA&(x)exp —f d3x L, , (4.5)

the effective action has been constructed by Legendre
transformation:

z
Zg

z
Zg

1 g% g%
6~ m+ ~m

7 gX gX
12m m ~m

2

(3.17)

(3.18)

A„'(x)= G(J'),
5J~(x)

S,tt(A„')=G(J') —f d x JpA'" .

(4.6)

(4.7)

In general, S,tt(A„') will be a very complicated functional
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of A&(x). It can only depend on gauge-invariant opera-
tors such as tr(F&, ), but its dependence on them can be
nonlocal, to arbitrarily high order.

An exception is the Landau gauge, where S,rr(A&) is
very simple. I.' is always odd under parity,

L' —+ —I.' .
P

As g—&0, the term -tr(B&A'") in Lg,„g, can be taken to
vanish W. hen this happens, ri, g, and Jz can be defined
to transform under parity, in such a way that L g,„g, is also
P-odd,

L gauge ~ -L gaugers 1=0 .
P

Hence in the Landau gauge, we have the unusual cir-
cumstance of a theory in which all fields, and so their
bare propagators, as well as all bare vertices, are odd
under parity. The effective action is constructed in the
usual fashion by tying together these bare propagators and
vertices. But if each and every propagator and vertex is
P-odd, then order by order in perturbation theory, there is
simply no way that any P-even term can enter into
S ff ( A p ): being odd under parity is a symmetry of the e
theory, respected both by the bare and effective actions.

This conclusion is only possible because all of the bare
propagators and vertices are P odd-If. some fields in the
theory were P-even, the bare action would have P-even
parts to it, so that although it might be P-odd overa11, this
would be violated by loop effects, through P-even terms in
the effective action. Such examples can easily be con-
structed with (interacting) scalar fields, for with scalars it
is inevitable that if some fields are P odd, -others will be
P-even. Of course, if the bare action has both P-even and
P-odd terms to begin with, so will the effective action. As
we shall see below, this happens in the e theory outside of
the Landau gauge /&0.

Indeed, it is so extraordinary to have an (interacting)
field theory in which all propagators and vertices are P
odd, that the only other examples we are aware of are
essentially direct generalizations of the e theory in the
Landau gauge. These are gauge theories in an odd num-
ber of space-time dimensions, with no matter fields, for
which the action is entirely a Chem-Simons term; general-
izations that involve supersymmetry and gravity ' are
also possible. As for the e theory, we expect that in a
gauge which does not introduce P-even terms, such as
Landau, that the effective action of these theories is P-
odd, like the bare one. Equation (4.8) also generalizes to
these theories in an obvious manner.

Returning to the e theory, how can we construct an ef-
fective action which is P-odd? To be odd under parity,
S ff(A& ) must involve an odd number of A„''s and 8„'s; to
be Euclidean invariant, these need to be contracted with
objects such as the antisymmetric tensor e"" . Thus we
might expect S,rr(A„') to be constructed from f d x L'
times P-even functions such as tr(F„'„) . Remember,
however, that L, ' transforms nontrivially under gauge
transformations, Eq. (2.8), so any term such as

~

~

~ ~

~ ~ ~d x L' tr(F& ), etc., cannot result in a gauge-invariant
partition function. The only way that S,rr(A„') can be P

odd, and exp[ —Serf(Ap)] gauge invariant, is if Seff(Ap)
has exactly the same form as the original action:

S,rr(A&) = J d x ( iZ—'d'"
)

g'=0

I

&&tr ApB„Ag+ —,g'ApA'Ag, (4.8)
3 Z'

where Z' and Zg are wave-function and vertex-
renormalization constants. The Ward identity of Eq.
(2.26) holds and implies

Ãg' Zg~

Z' Z' (4.9)

with Z' and Zg the renormalization constants for the
ghost and its vertex. In the e theory, there is no constant
analogous to Z

To determine S,rr(A„') in the Landau gauge, we need
only to find Z' and Zg. To do so, we consider the e
theory in the axial gauge n&A'"=O. It is apparent that in
the axial gauge the e theory is a free field theory. [It is
less obvious why m/(g') is still quantized, but it is. ]
This means that in the axial gauge, all renormalization-
group functions must vanish. This includes the P func-
tion for g', P(g'), the anomalous dimension of A&,
y„, (g'), and the anomalous dimensions of composite

P
2operators, such as that for tr(F„',), y. ..(g'):tr~S„'„)'

P(g') =y~, (g') =y„(~, p(g') = (4.10)

for a11 g'.
The renormalization-group functions of a gauge theory

are gauge invariant only at a fixed point. Since every
value of g' is a fixed point P(g') =0, Eq. (4.10) is valid in
any gauge For P. (g')=y, (g')=0 to be true, Zg and Z'

must be finite functions of g'.
Let us return to the Landau gauge. To all orders in g',

Zg =
——1 (Ref. 15). By the Ward identity of Eq. (4.9), this

implies that Z' is also a finite function of g'. Explicit
calculation to two-loop order shows that

Z =Z =1 (4.1 1)

to -O((g') ), there are not even finite terms &1 in the
Z s.

Our cancellation theorem is the statement that, in the
Landau gauge, the effective action of the E theory is given
by Eq. (4.8), and that the Z"s are finite. [We suspect that
Eq. (4.11) holds to all orders in g', but have not proven
this. To establish infrared finiteness in Sec. V, the Z"s of
the e theory do not have to be = 1, but merely finite. ] All
of the cancellations between the purely e parts of dia-
grams in Sec. III are examp1es of this theorem.

For an arbitrary n-point function between gluons in the
original theory, the theorem guarantees that when /=0,
to any order in g, the leading infrared divergences from
the purely e parts of diagrams must cancel against each
other.

What happens in the e theory for covariant gauges oth-
er than Landau'? The term -tr(B&A'~) in Lg,„g, does not
vanish if g&0, so the bare action has both P even and P-
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odd terms. Consequently, the effective action will include
P-even terms such as tr(E& ) and the like. Equation (3.5)
is the simplest example of such a contribution.

By Eq. (4.10), any gluon renormalization constant is
finite. Z ' and Zs might be infinite for /&0, as long as
Z '/Zs is finite. The detailed form of S,fr(A&) embodies
one simple property. To recover Eq. (4.8) in the Landau
gauge, any gluon n-point function need vanish as a power
of g, when g—+0, if n )4.

V. INFRARED FINITENESS

I
I i

/
I
l I

I

FIG. 4. Two contributions -0(g ) to He(p ~ In (b), the
cross denotes a term for ghost wave-function renormalization,
-0(g /m ), from EI..

Henceforth we restrict ourselves to the Landau gauge.
We start by considering the infrared singular terms for

the P-even part of the gluon self-energy II, (p ). To two-
loop order, there are no diagrams whose purely e part
contributes to II, (p ). There are still infrared-singular
terms, such as that of Fig. 4(a):

11„„(&) — g' f,"(,k+p', k'11(k')~'k
»8 4~~~ (k')'(k +p)'

—g'fl(O) I k",(k+P),"Z'k .p-O' k (k+P)
(5.1)

II(0)-g /m, so this seems to give a piece
-g /(p )'~ (g /m) in II, (p ). The purely e part of Fig.
4(a) vanishes, since to one-loop order, the ghost self-
energy does not depend on the P odd pa-rt of the gluon
propagator (Sec. III).

The diagram of Fig. 4(a) can be viewed as a self-energy
insertion on one of the ghost legs of Fig. 1(b). The other
diagrams which are in danger of contributing
-g /(p )' (g /rn) to II, (P ) include a diagram which is
like a vertex renormalization for each vertex of Fig. 1(b),
and similarly for Fig. 1(a).

There is a convenient way of organizing these contribu-
tions, which is a kind of "infrared renormalization. " Let

I

&&- stand for the corrections to the bare propagators and
vertices, computed about zero momentum. For now, we
include only the one-loop terms in &&, so &&- -O(g /m).
We rewrite the bare Lagrangian L, as

(5.2)

II„,(p) — +g X2

Fig. 1(b), z
L ren

k "(k +p) d k
k (k+@) (2m. )

The purely e part of Fig. 1(a) gives

L"'" is the renormalized Lagrangian of Sec. II which gen-
erates the renormalized propagators and vertices, about
zero momentum, to one-loop order.

Our strategy is transparent. To calculate to -O(g"), in
two-loop diagrams we take L"'"-L, so Fig. 4(a) is un-
changed. AL -O(g /m) contributes through insertions
in one-loop diagrams, like that of Fig. 4(b). Evidently,
Figs. 4(a) and 4(b) cancel about zero momentum. Because
the Z's contain terms of -O(g /m), one-loop diagrams
must be recalculated, using I.""instead of L, . For Fig.
l(b),

II „(P)
Fig. 1{a3,

purely e part,
L rcn

k (k +p) mren d k
k2(k+P)2 (k2+m„„)[(k+P) +m„„2] (2~)i

(5 4)

m„„=m„„(0).By the Ward identity Zz/Z =Zs/Z, Eqs.
(5.3) and (5.4) cancel against each other about zero
momentum. This is enough to show that there are no
terms -g /(p )' (g /m) in II, (p ).

The extension to higher orders is direct. At n-loop or-
der, the most infrared-singular term in II, (P ) can be no
worse than -g /(P }/(g /m)" '. There are several ways
these terms could arise.

The first is from the purely e parts of n-loop diagrams.
These vanish unless n is odd, as for Figs 1(a) and . 1(b).
Calculating with I ""-L„the cancellation theorem to n-
loop order tells us that the sum of the purely e parts of
these diagrams vanish about zero momentum.

Second, there are infrared renormalizations of the pure-
ly E parts of diagrams to n'-loop order, n'&n These ar.e
diagrams computed to n'-loop order with L, ""; n' must
be odd, and the Z's of L"" include terms up to

-O((g /m)" "). An example is Eqs. (5.3) and (5.4).
The sum of these terms vanish by the Ward identities, and
the cancellation theorem to n'-loop order.

Finally, there are contributions which can be viewed,
diagrammatically, as self-energy and vertex insertions into
the purely e parts of diagrams at n"-loop order, n" odd
and &n. These diagrams will have parts that are not
purely e-like, arising from the self-energy and vertex in-
sertions, such as Fig. 4(a). These diagrams cancel about
zero momentum against insertions of hL, computed to
-O(g /m)" " ), into the purely e parts of n" loop dia-
grams: e.g., Figs. 4(a) and 4(b).

This shows that order by order by order in g, all terms
-g /(p )' (g /m)" ' in II, (P ' cancel about zero
momentum.

The possible infrared singularities of the I'-odd part of
the gluon self-energy II, (p ), the ghost self-energy II(P ),
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g

2 2

d kid k2
k) k2 (k(+k2+p) (k) +m )

r

ln
p~0

and the three-gluon vertex are all similar. For instance, at
two-loop order each of them had diagrams whose purely e
part contributes, in a schematic form,

singular as all of its external momenta ~0. Suppose we
insert a I'"', n & 5, as part of a diagram for a propagator
or vertex to some high order in g . Then the point at
which I '"' is singular will be set of measure zero for the
loop integrals, and can be ignored. Thus the infrared
singularities of the I'"' for n & 5 does not contradict our
proof of infrared finiteness for n &4.

In any case, our real interest in the I'"', n & 4, is when
all of its external legs go on the mass shell. This is the
subject to which we turn next.

To arbitrary order, the worst terms are
-(g /m)"ln(m /p ), where n must be even. Because
these terms arise from the purely e parts of diagrams,
they have a direct interpretation in terms of diagrams in
the e theory of Sec. IV. A term -(g') "in(A /p ) in the e
theory (A =an ultraviolet cutoff) corresponds to one
—(g /m)"ln(m /p ) for the purely e part of a diagram in
the original theory. We know from Sec. IV that to any
order in (g'), there are no ultraviolet logarithms in Z',
Z ', and Zz, this implies that to any order in g, there are
no infrared logarithms in II, (p ), II(p ), and the three-
gluon vertex, respectively.

There is one point which we have overlooked. Besides
terms -g /(p )' (g /m)" ' in II, (p ), there are also in-
frared logarithms possible, -(g /m)"ln(m /p ), for even
n. By the Ward identity of Eq. (2.26), these infrared loga-
rithms must cancel, since they do so in Z~ and Z
(remember Ze ——1 in the Landau gauge). Similarly, by its
Ward identity, the four-gluon vertex must also be infrared
finite.

Having made no pretense of rigor, this concludes our
proof that the renormalized propagators and vertices are
infrared finite in the Landau gauge.

Our process of infrared renormalization is similar to ul-
traviolet renormalization in a renormalizable field theory,
but the analogy is not exact. Consider, for example, a
proper n-point function of gluons, I'"'. We suppress the
color and Lorentz indices, and take the n —1 independent
momenta, and their dot products, etc , to be of. the same
order, -(p )'/ . To one-loop order, the purely e parts of
dkagrams gsve

n
I-(n)

[(p 2) 1/2] n —3

VI. THE DISCONTINUITIES OF AMPLITUDES

The bare equation for the propagation of a gluon is

(6.1)

in the Landau gauge. Expanding A&(x) in plane waves,

A„'(x) =e„'exp(ip x)+c.c. ,

the polarization vector e& is transverse to p&, p"e&——0.
Under gauge transformations,

(6.2)

Aq ~Aq+dqA'+gf' 'AqA' . (6.3)

We neglect the last term in Eq. (6.3), on the grounds that
it generates perturbative corrections to asymptotic states.
For the gauge transformed A„'(x) to remain in the Lan-
dau gauge, 8 A'(x) =0. A solution is

A'= —ic'exp(ip x )+c.c. , (6A)

with p„a null vector, (p&) =0. Thus, if the gluon's
momentum is null, p =0, by setting pz ——p&, e& is de-
fined only up to the transformation

a a aep~ep+c p~ (6.5)

a a, v A,ep= &@vs
' 5'

Pl

For massless gluons, the part of e'„parallel to p& can be
eliminated by E~. (6.5), with the remainder perpendicular
to p&. e& e'p„, where ——p p=0, but d"" p„p2&0. This
shows that for each color index, a massless gluon in these
dimensions has one (physical) degree of freedom, versus
two in four dimensions.

For m~0, consider first the massive pole in the propa-
gator, at p = —m . The polarization vector satisfies

[I' ' is -g (p )' since I ' '-II&„(p).] By the cancella-
tion theorem, the purely e parts of diagrams cancel about
zero momentum, and so I'"' is really only singular as

p ap"e„=0 .

For ex~mple, in the rest frame

(6.6)

n

I (n)

m [(p 2) I /2] —4

I'"' is finite as p ~0 for n &4, but it seems improbable
that this will be so if n & 5.

This is unlike ultraviolet renormalization, where once
the ultraviolet infinities are removed from the propagators
and vertices they will not show up in higher n-point func-
tions. With our infrared renormalization, the propagators
and vertices are infrared finite, but higher point functions
are not.

This is not a significant matter, though. I'"' is only

p"= ( —im, 0,0);
we take the first coordinate to be time, and the other two,
space. The solution for ez is

ea
e~ = (0, l, i),v'2

so e& is a right-handed (spatial) vector for m & 0. For the
opposite sign of the Chem-Simons mass m &0, e& is left-
handed in the rest frame. Outside of the rest frame, e„'
has both time and spatial components; the latter are a
definite mixture of left- and right-handed terms, depend-
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ing upon the sign of m.
When m&0, if p =0,

md'"~e'pq —0, p"e„'=0. (6.7)

tity, the discontinuity of Eq. (6.8) must start with the ex-
change of two massive gluons. Kinematically, this is im-
possible at p = —m, hence

The solution is e& ———c'p„, but by the residual gauge
freedom we can set c'=0. Consequently, while the bare
gluon propagator does have poles at zero momentum,
there are no physical degrees of freedom associated with
the massless modes.

This result is not that surprising. Unlike a Higgs
mechanism, the introduction of a Chem-Simons mass
term does not alter the number of physical degrees of free-
dom for the gauge fidd. Qn the mass shell, there is one
degree of freedom per color index for a massless gluon, so
when m&0, this single degree of freedom goes into the
massive mode, leaving only gauge-variant parts for the
massless pole.

Physical amplitudes are obtained in the usual fashion.
For example, to obtain n-particle 1-matrix elements T'"',
one starts with ihe proper n-point function
I'"'„',. :.(p, q, . . .). Each leg is put on the mass shell,
p2 =q = . - - = —rn, , and dotted with a suitable polariza-
tion vector,

T'"'=e„(p)e', (q) r'"'~.::.(p, q, . . . ) .

If it can be shown that the massless modes do not con-
tribute, then the Cutkosky rules imply that the only
discontinuities of T'"' for Minkowski values of the mo-
menta, p real and (0, are those of massive particles.

The contribution of the massless modes to the discon-
tinuities of physical amplitudes cancel as a consequence of
gauge invariance, in essentially the same way as they do in
ordinary gauge theories with spontaneous symmetry
breaking. ' ' To show that the discontinuities from in-
termediate states with a single massless mode vanish, we
start with an n-point amplitude in which all of the legs
except one are on the mass shell T'"'&(p); p is the
momentum of that one leg, etc. The infinitesimal Ward
identities can be used to show that p"T '"'„'(p)=p times a
function which is regular at p =0 (Ref. 17). For the
massless mode, ez —— c'pz, so —e&(p) T '"'z(p) ~0 as
p ~0, which establishes what we desire. The extension
to intermediate states with more than one massless mode,
for which the contribution of ghosts must be added, can
be carried out, following, e.g., Ref. 17.

The massless modes do not contribute to the discon-
tinuities of physical amplitudes, but they do for quantities
that are gauge variant. This is illustrated by the self-
energies to one-loap order, Eqs. (C15)—(C17); they all
have branch cuts which start at zero momentum.

This raises an obvious question —if .II, (p ) and II, (p )

each have such branch cuts, how can the renorrnalized
propagator have a simple pole at p = —m ? To answer
this, we observe that a physical amplitude is farmed from
the gluon self-energy II&"„(p), by contracting each leg with
the proper polarization vector, and setting p = —I:
(e„')*II~ (p)e

= —(e,* e')I [II,( —I ) —II, ( —I )], (6.8)

where Eq. (6.6) has been used. As a gauge-invariant quan-

1m[II, ( —I ) —II, ( —m )]=0. (6.9)

2+
m ~h„,

=—m „„(—m ) =m 1+ (27 ln3 —4)
32&fP2

(6.11)

to one-loop order. This 7?1 phys determines the gauge-
invariant position of the pole in the renormalized propa-
gator, and so is properly termed the physical mass.

Our arguments about the discontinuities of physical
amplitudes apply only to one-loop order, but they can
easily be extended to arbitrary order. To higher order, it
is necessary to take into account the shift in the physical
mass fram its bare value, and that Z( —m~h„, ) is com-
plex. Equation (6.8), evaluated at p = —m~h„, , will en-
sure that the massive pole in the gluon propagator
remains a simple pole. Thus the renormalized on-shell
equation for a gluon differs from the bare one, Eq. (6.1),
merely by the replacement of m with m~h~, ', Z( —m~h„, )

factors out. The remaining steps go through unchanged.
Our results can also be used to show that the correla-

tion functions of gauge-invariant operators fall off ex-
ponentially over large distances in Euclidean space-time.
This is best shown by example: we compute the two-point
function of tr(F&„). At leading order, we can take only
the Abelian piece of the operator tr(F~„)
—tr(B„A„—8 Az ), and the bare gluon propagators in the
one-loop diagram. The result is

(0
i tr[Fp ( —p)]tr[F„„(p)]i

0)
=8(K —1)

y
[k (k+p) —I ] +k (k+p) —m d k

(k +In )[(k+p) +I ] (2m)

(6.12)

The renormalized mass is given by Eq. (2.19c), so Eq. (6.9)
ensures that m„„(p ) is real at p = —I to one-loop or-
der, although m„„(p ) is complex for 0)p & —m and
—I?l )p

The results of Sec. III obey Eqs. (6.9), (C18), and (C19):

Im[II, ( —m )]=Im[II, ( —m )]= . (6.10)
64m

It is worth mentioning that Eq. (6.9) is a Ward identity
which must hold in any covariant gauge. An example is
the g terms in II, (p ) and II, (p ) —at p = —m, these
terms cancel, Eqs. (3.2d) and (3.5).

By Eq. (6.10), the wave-function renormalization con-
stant is complex on the mass shell, Im[Z( —m )]&0.
This phenomenon is only possible if the gauge theory is
non-Abelian and has a Chem-Simons mass term, for
without the Chem-Simons mass, the gluon has only a sin-
gle self-energy II, which satisfies Im(II)=0 on the mass
shell. Even so, that Im[Z( —m )]&0 here appears to be
just a curiosity, since Im[Z( —m )] cannot be measured
directly in any physical process.

On the mass shell, the renormalized mass is [Eqs. (C18)
and (C19)]
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independent of g'. Terms involving k (k+@) in the
denominator of the loop integral have canceled against
identical terms in the numerator. This can be understood
by computing the two-point function as an infinite sum of
form factors,

g„represents the sum over intermediate states. Gauge
invariance for the operator and its form factor exclude
any massless states from the g„. To leading order, only
(massive) two-particle intermediate states contribute, Eq.
(6.12).
questions about the physics of topologically massive chro-
modynamics. Further studies are presently underway.

Note added. The relation between q«„and q is not al-
tered by the addition of scalar matter fields to the theory,
but it is changed by the presence of fermions. Let the fer-
mions lie in a representation R of SU(N), and contribute
to the Lagrangian as

Lf it/i[y"——(Bp+g A;A q ) —mf jP .

represents a two-component spinor, with
tr(A, 'A,")= 5' Tz. S—ince by convention we have chosen
the Chem-Simons mass m to be positive, the fermion
mass mf can be of either sign. We assume that
g /

~ mf ~
&&1, so that fermions can be treated perturba-

tively.
About zero momentum, the renormalization constants

for the gluon become

Z~ =1+ +sgn(mf )
7 g% ~R g

12m m 4m m

Z=1 — +5 gN ~z g
24tr m 12'

( mf
~

Z is still as in Eq. (3.10). Then

q„,„=q+N+sgn(mf )Tz .

In the fundamental representation we recover the re-
sults of Redlich. For this expression to be consistent, T~
must be an integer. Then as before, this value for q„„ is
exact, and is unchanged to any higher order in the loop
expansion.

After this paper was submitted for publication, an in-
teresting work by Coleman and Hill appeared. They
considered an Abelian gauge theory with a Chem-Simons
mass term; to avoid confusion, we denote this mass by
m~. They showed that at zero momentum, the P-odd
part of the photon's self-energy, 110'(0)=Zr —1, receives
contributions only to one-loop order.

Does the same thing happen in the non-Abelian theory?
For example, one simple thing to do is to assume that the
fermions are very heavy,

~
mf

~
&&m, and evaluate the

terms -O(g /(mmf )) in Z~ and Z. By using the
relevant Ward identities, and the process of infrared re-
normalization in Sec. V, it can be shown that there are no
terms -O{g /(mmf)) in either Z or Z. This is like
similar results by Kao and Suzuki.

P1
2

ren

Hence Coleman and Hill have shown that (mr/e )„„is
equal to its value at one-loop order. This is precisely the
same conclusion we reached concerning q«„/4tr
=(m/g )„„. [Note also that (e /mr)„„, which is the
same for all matter fields, determines the fractional nature
of the statistics in the Abelian theory, Appendix A.]

In one respect the results of Coleman and Hill are much
stronger than ours, for they need no assumptions concern-
ing the relative magnitude of e and the masses of the
matter fields. While we naturally suspect that our expres-
sion for q„„ is valid not just in the perturbative regime,
but for all m&0, much more powerful techniques than
we employ are required to show this.

APPENDIX A: THE ABELIAN THEORY

In this appendix we consider some elementary aspects
of an Abelian gauge theory with a Chem-Simons mass
term. After solving two problems in statics, we discuss
how charged particles can be said to exhibit fractional
statistics18 19 over large distances.

The Lagrangian is

L =—„Fp + O' A~8 Ag+ J~Ap,
2

(Al)

F»——B„A —0 A&. - The space-time is Minkowski in this
appendix, with signature ( —++). Also: x"=(x,x),
eo,j ——+e,j, i,j = 1,2. In two space dimensions, the curl of
two vectors is a scalar, sXb=e,ja'b .

The action transforms by a surface term under a gauge
transformation, so m is not quantized.

Nevertheless, we conjecture that in the non-Abelian
theory, Z and so Z, are not given exactly by their values
to one-loop order. Certainly, the technical assumptions
necessary to the proof of Coleman and Hill do not carry
over. Moreover, in the Abelian theory the photon's self-
energy, and so Z, are each gauge-invariant, while the
gluon self-energy is not. It would be surprising if a
gauge-variant quantity, such as Z, were automatically to
vanish beyond one-loop order. While the terms
-O{g /(mmf)) in Z and Z do vanish, this is special to
the detailed manner by which fermions enter in at that or-
der. In particular, we expect there to be terms
-O(g /m ) in Z~ and Z, as written in Eqs.
(3.17)—(3.20).

Even if our conjecture is true, there is a close analogy
between our results and those of Coleman and Hill. In the
Abelian theory, the renormalized charge e„„and mass
m ~,„are related to their bare values as in Eq. (2.31):

e„„=t
Z' /[Z'(Zr)t 'j

~ e, m „„=(Z /Zr)mr .

Z~, Z', and Z,' are the renormalization constants for the
photon, some given matter field, and the (trilinear) vertex
between the photon and that matter field, respectively.
Unlike Z, assuredly Z~, Z', and Z,' do receive correc-
tions order by order in the loop expansion. From the
(Abelian) Ward identity Z,' =Z', and so the ratio of m„„
and e„„ is independent of Z~ and Z':
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We assume that all matter fields are heavy: if their
is m~, their charge e, e /m~ && 1. Proving in-

frared finiteness in the quantum theory is trivial, so we
can take the photon to interact with a fixed external
source J".

The field-strength tensor I'z„ is composed of an electric
field E and a pseudoscalar magnetic field B:

4=e„,/m (A14)

The Chem-Simons mass transforms a particle with charge
e into a flux "tube" of width -m ', and strength e/m.

Line charge:

a relation ' between the total flux'N= I Bd x, and the
total charge e«, ——J J d x:

E=a~'+a, A, B=axA.
There are three equations of motion:

B.E+mB =J
axB —a,E+mEX =J,

and one Bianchi identity,

a~ —axE=o.
For static charge distributions,

(A3)

(A4)

(A5)

J =e5(x), J=eU5(x)y,

which is a wire with current eU along y. For m =0,

B= U8 (x) E= 0" (x)x,
2 '

2

8'(x)=+1 for x&0. When m&0,

B=—[1+v8'(x)jexp( —m (x
~
),

2

E=B8'(x)x .

(A15)

(A16)

(A17)

B= (ax J—mJ ),
a —m

E=a J'— ax J$2m22 (A7)

a (B+mA )=axJ. (A8)

the E and B fields fall of exponentially, -exp( —mr),
over distances far (r »m ') from any charge distribution
(by convention, I&0). To solve static problems, it helps
to recognize that

It is amusing to note that if the charges move at the speed
of light, U = 1, by Eq. (A17) there are fields on only one
side of the wire.

The solution for the line charge shows that the Chern-
Simons mass produces a separate part of the electric field
E-vX from moving charges. This is like the Hall ef-
fect.

For two charged particles, the interaction energy be-
tween them, E;„„vamshes over large distances in the stat-
ic limit:

For the distributions we consider, this implies that
B+mA is constant away from sources, so

1 2VXr
p))~ —& 2&m r

(A18)

(A9)

J =e5 (x), J=O (A 10)

For I=0, E=er/(2m. r). When m&0, one matches
A -ln(r), valid for r «m ', onto the solution of the
free, massive wave equation which falls off at spatial in-
finity:

Eo(mr),
2m'

(Al 1)

ICp the modified Bessel function of zeroth order. In this
instance, 8= —mA, so

em
in(rm), r «I

2K
' 1/2

(A12)

e mB——
2 2&r

exp( —mr), r »m (A13)

This shows that static charges induce magnetic flux.
Indeed, consider a distribution of charge arbitrary except
that it is bounded j.n size. Integrating Gauss s law, Eq.
(A3), over a region A whose contour C is everywhere far
from any charge, since E-exp( mr)-0 on C, w—e obtain

in source-free regions. Equation (A9) is reminiscent of
the self-duality condition in four dimensions.

We turn now to our two examples.
Point charge:

The charges of the particles are e~ and e2', their relative
separation and velocity are r and v, respectively.

While E;„,(r)~0 as r +co, quantum-m—echanical ef-
fects can still produce correlations between particles over
large distances. Suppose that we fix particle 1, and rotate
particle 2 infinitesimally slowly around 1 by 2m, The
wave function of 2 changes by

exp ie2 f A.dl =exp(ieqN&)=exp(ie~eq/m) .

The wave function of 1 changes by an equal amount, since
2 is itself a source of magnetic flux, and so the total two-
body wave function changes by exp(2ie~e2/m). Inter-
change of 1 and 2 is like a rotation of the relative wave
function by m, so under interchange, the two-body wave
function changes by exp(ie

&
e2/m)

This phase is of little consequence if the particles are
not identical. If the particles are identical, e& ——ez ——e, let
us choose a gauge in which the vector potential is essen-
tially zero everywhere, except around the two particles.
In this gauge, the two-body wave function must be de-'

fined so that upon interchange of 1 and 2, there is an ad-
ditional factor of exp(ie /m) which multiplies the usual
+1.

It is in this gauge-variant sense that charged particles
exhibit fractional statistics. Wilczek' first observed that
flux tubes with arbitrary flux have fractional statistics. It
is known' that charged particles coupled to an Abelian
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gauge field with a . Chem-Simons mass, but no term
—4F„„,do as well, so it is not surprising to find frac-
tional statistics in the full theory, Eq. (A1). What we find
of interest is that the full theory provides, physically, such
a direct example of Wilczek's original insight, since any
charged particle acts like a flux tube over large distances.

The effect only occurs for particles separated by dis-
tances »m '. Over distances & m ', charged particles
do generate magnetic fields, but their mutual electric
fields are not negligible, and there is no simple expression
obtained as they encircle. In particular, it is sensible to
speak of the charged particles as being, fundamentally, ei-
ther bosons or fermions —the equal time (anticommuta-
tion) commutation relations between the charged fields
follow from their properties at short distances, and
remain those of (fermions) bosons. Further, it is only the
charged fields, and not the photon itself, which have frac-
tional statistics: e.g., the contribution of the photon field
to the generator of angular momentum is standard (see
the Appendix of Ref. 9).

The ratio e /m, which fixes how fractional the statis-
tics of identical charged particles are at large distances, is
an arbitrary number. We remark that the e and m
which enter here are renormalized, and not bare, quanti-
ties; they are obtained from the renormalized photon
propagator about zero momentum. In this way, the frac-
tional nature of the statistics, =e /m, is itself renormal-
czed.

Does a non-Abelian gauge theory with a Chem-Simons
mass term exhibit fractional statistics? To answer this, we
first need to understand how to measure the total color
charge in a non-Abelian system. ' '

Let Ji' be an external source of color, for either gluons
or matter fields. As before, we choose a region A whose
boundary C is everywhere far ( &&m ') from where
J"~0.

The obvious definition of the total charge,

g...= f J'Z'x, (A19)

is a color matrix, but otherwise it is not very physical.
The color current is only covariant conserved, D„J"=0,
so gto, is generally time dependent; g«, is also gauge
dependent.

To avoid these problems, we define the "global" color
charge Q:

This factor is not invariant under local gauge transforma-
tions, as would be a term like exp(2iQ, Qz/m). Conse-
quently, identical colored particles do affect each other
over large distances, but this has no (relatively) simple in-
terpretation as a sort of fractional statistics.

APPENDIX 8: SPONTANEOUS
SYMMETRY BREAKING

When spontaneous symmetry breaking occurs, the pres-
ence of a Chem-Simons term for the gauge fields alters
the mass spectrum in a striking way. We illustrate the ef-
fect with an Abelian gauge field, but it also happens if the
gauge field is non-Abelian.

We take as our Lagrangian

+ ' &"'~„d„~„+ID

(B1)

Dq ——8„+ieAq, p, A, , and m &0. We return in this ap-
pendix to Euclidean space-time. P is a coinplex scalar
field:

(No+4 i+i0z»1

2
(82)

invariant under arbitrary local gauge transformations 0,
as long as color fields at spatial infinity are unchanged by
O: if Q =exp(A ), by Eq. (A20) Q is invariant if
A(x, x)~0 as x~ co.

These properties of Q are not accidental. In A =0
gauge, Q is precisely the charge associated with global ro-
tations of color.

Now let J" represent two identical, colored point parti-
cles, 1 and 2. They are far enough apart so that we can
integrate over regions »m ' in size around each
without crossing the other. Their local color charges, as
in Eq. (A19), are gi and gz, and their global color
charges, as in Eq. (A20), are Q, and Q2. As particle 2 is
wrapped around 1 by 2m, the two-body wave function
changes by

I

-exp(ig, Qz/m )exp(igzQ, /m ) .

Q=2 (t)c 8' AX ndl 'm

2
(A20)

for real Po, P„and P2, with

(83)

K"=Bg""—me""~BQ i (A22)

has zero divergence, B&IC"=0. Neglecting surface terms
at spatial infinity, Q= fz K 1 x, BOQ=0. Second, Q is

n is the normal to C. Using Gauss's law, and that E-0
on C,

Q= f tJ —g[A, E]—mgAXAjd x. (A21)

The last two terms in Eq. (A21) represent the corrections
to g«, which are necessary in a non-Abelian theory.

Why is Q superior to g«, . Unlike g„„Qis indepen-
dent of time. This is because the vector K",

The gauge field is redefined as

B~——Ap+ Bp$2 .P

By a suitable choice of Ls»@, ('t Hooft gauge), the bare
inverse propagator for B& becomes

'„„=(@2+m,2)5&„+(g ' —1)p~„+m&„„ip, , (BS)

m, '=e'yo' . (B6)

The bare propagator for 8& is found to be
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pIJpv

(p +pm, ) (p +m, )
" D(p )

" D(p )(p +pm, )

where

D(p )=(p +m, ) +m p =(p +m+ )(p +m ),

and

(88)

p"e„=0,and

(p +m, )e&+me„„qe p =0.
We solve for the ez in the rest frame:

p"=(—im, 0,0), e~=(O, e&,e2) .

(817)

Pl 7l
m =m + + n =[m(m+4m )]'

2 2' S

(89)

What is remarkable about Az is that it has Geo distinct
poles which are physically significant, one at p = —m+,
and one at p = —m . The piece of b& -p&p~ also has
a pole at p = —gm, , but this is a gauge-variant
excitation —e.g., it decouples for g~ oo, as expected in the
't Hooft gauge.

About the two poles in 6„,
Vl +P1

p2~ ~ 2 2'+

6„ + 0 ~ ~

p +VS+
(810)

p —+ —m

n —pl2 2

2n

6„ + 0 ~ 0

p +pl
(811)

4
2 2 2m+ -m, m

Ul

and A„behaves as

6„
P& 2 2p2~ —m+2 p +~

m &(m

2
Plg 5~„

2 2 2p2~ gpss
2 Ill p +pl

m ((m

(812)

(813)

(814)

When m, ~O, m ~0, but from Eq. (814), the state at
p = —m decouples from the 5&, piece of b,„.Turning
off the symmetry breaking, $0=m, =O, removes one of
the two physical poles in 4z,' this agrees with our analysis
in the text.

To see why b,&„has two physical poles for m and
m, &0, we consider the (bare) on-shell equation for 8", as
in Sec. VI:

[(—8 +m, )5„—ime„„gB ]&'(x)=0,
dqBI'(x) =0. With

B„(x)=e„exp(ip x) +cc..

(815)

(816)

This shows that each of the two poles, at p = —m+ and
p = —m, contribute to the 5&„part of b&„with posi-
tive residue, so both are physical, gauge-invariant excita-
tions for m and m, &0.

In the limit that m, (~m,

Without the Chem-Simons mass, m =0, m =m„and
e& and e2 are arbitrary. This is what usually happens
with spontaneous symmetry breaking in three
dimensions —at p = —m, , the 8@ field has two degrees
of freedom, one from 2&, and one from the scalar $2.

With the Chem-Simons mass and m, &0, there are two
solutions to Eq. (817), m =m+. Their polarization vec-
tors satisfy

2 + 2. Pl 7l
e2 ——i ei

2plm +
(818)

APPENDIX C: THE SELF-ENERGIES
TO ONE-LOOP ORDER

We present here some of the details of the calculation
of the self-energies to leading order in Sec. III.

The integrals are

2 gX (k.p) —kp d k

p k (k+p) (k +m ) (Zm)

d kII, (p )= f 3, (C2)
p Q (Zn)

T

gK Pe dk 2mII, p 3+
4p Q (Zm)

where

(C3)

(C4)Q=k (k +m )(k+p) [(k+p) +m ],
P =[k p —(k p) ](5k +5k p+4p +2m ), (C5)

P, =6k +18k k.p+20k"p +22k (k p)p.
—12(k.p) +9k p"—7(k p) p
~m [2k +4k k p+k p +(k p) ] . (C6)

B„must still have two degrees of freedom on the mass
shell, but instead of one mass, with a two-component po-
larization vector, when m and m, &0, 8& is on shell at
two distinct masses, though the polarization vector of
each has only one (independent) component.

Why? Remember that the Chem-Simons mass is I'-
odd, so the mass spectrum should reflect this handedness.
This is not possible if 8„ is on shell at one mass point
with two independent components for e&. So, B& "splits"
into two on-shell masses, m+ and m . The polarization
vector of each e„—is a definite mixture of right- and left-
handed terms for m )0. When the sign of the Chern-
Simons mass is flipped, this mixture changes:
ep /e i ~—e2~/e j~ as m ~—m.
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Dimensional regularization was used to compute these
integrals; e.g., the last term in Eq. (C3) is due to the tad-
pole diagram. While generally care must be taken in ap-
plying dimensional regularization to theories that involve
the antisymmetric tensor e& ~, we do not need to concern
ourselves with such subtleties. Unlike a renormahzable
theory, in a super-renormalizable theory such as this, any
ambiguities in going from 3 to 3+@dimensions will van-
ish smoothly as a~0.

The resulting self-energies are given in Eqs. (3.7)—(3.9).
About zero momentum,

2 — 2

Resin ' = ——+m.8(s —m ),
p + Spy

I /2

(C13)

Re sin p
p +4m

=—O(s —4m 2), (C14)
2

O(s) =0 or 1 for s &0 or & 0, we find

N 2

lmlI = — 1 — 1 — O~(s —m 2), (C15)
32m ppz s

2'
11( z) g &

p2((m2 m
(p 2)1/2

6m 32m
+

2
~ ~ ~

30mm

(C7)

T

gX Vs 3s
64m m

2(3s+m )(s —m ) 2+ O~ s —m
s m

2+
11( 2)

p2 ((ppg 2 m

2'11( 2) g&
p ((Nl

7
12m

5

24m

(p
2

)
l /2 37p 2

+ + ~ ~ ~

240am'

( 2)1/2

128m

(C8)

I II= 1
128

3(s +2m )(s —4m )

sm

(C16)

For large momenta,

13p
480m.m

(C9) (s +7m )(s —m )

s m

2
2 1 m

II(p ) +
( )1/2 16 6 ( 2)1/2

+ (s +13sm +4m )(s —4m )

s m

(p 2)1/2

g 2+
2 t/2p'»m' (p )

m

32 2

4m

3m(p )'/

11 m
(p2)1/2

m
2

(Clo)

(C 1 1)

&&O(s —4m )

On the mass sheH,

II, ( —m )=
16am

2+
1+ "1 34

2

II, ( —m )= 3——",ln3 +i
16am . . 64m

(C17)

(C18)

(C19)

15m

64p
(C12)

The first terms on the right-hand side of Eqs. (C10) and
(C12) agree with the one-loop results in the massless
theory, " as they should.

The discontinuities of these amplitudes can be extracted
directly. To continue to Minkowski rnomenta, we take

p =exp( iver)s, —
with s a positive, real number. Using

Using the analyticity of the self-energies in the cut p
plane, they can be written in a dispersive form, as an in-
tegral over their imaginary parts along the cut. This is
the form that Deser, Jackiw, and Templeton chose. II,
Eq. (C15), agrees with their result, as does that for II„
Eq. (C16), up to an overall difference in sign for II, . Our
result for II„Eq. (C17), does not agree with theirs. How-
ever, our II, has the correct limit at large momenta, Eq.
(C12), and satisfies the proper Ward identity on the mass
shell, Eqs. (6.10), (C18), and (C19). The II, of Ref. 5 does
not satisfy this Ward identity; it was this that led us to the
labor of recomputing the self-energies in the first place.
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