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Nonperturbative study of hadronization with heavy sources:
The screening length as a function of the quark mass in the Schwinger model
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We discuss the dynamical quark-mass dependence of the screening length (1.0), the distance at
which the interaction between two (heavy) quarks begins to be screened as a result of pair produc-
tion. We compute 1.0 in the one-flavored massive Schwinger model in the continuum limit of its lat-
tice formulation. The results of our numerical simulation (ensemble projector Monte Carlo) are
shown to follow closely the lower bound eLO) [m/16+(m /e)i)'~2/(string tension}, in which most of
the quark-mass dependence is contained in'the hadronic mass of the numerator. The vacuum expec-
tation values of the electric field and the fermion occupation number have also been computed,
showing directly the hadronization process. Finally, we apply those ideas in estimating the screen-

ing length in charmonium and Y systems.

I. INTRODUCTION

According to the confinement hypothesis, two outgoing
quarks will see their interaction screened by quark-pair
creation, as their separation reaches a certain critical
length Lz. The outcome will be such that, far beyond Lo,
each quark and their respective cloud of dynamical pairs
will form two (or more) distinct hadrons. '

The exact definition of the screening length Lz is pro-
cess and formalism dependent. Quark-pair production is
stochastic in nature (it is a quantum effect); one appropri-
ate quantity could be the pair production probability per
unit length or separation (dP/dL). For example, in the
phenomenological approaches to quark jet fragmentation
such as the Lund model, ' one uses Monte Carlo tech-
niques to generate pairs and subsequently to form had-
rons. There, dP/dL depends on the flavor of the created
pairs, the energy available, the spatial extent of the gluon
background, etc. Presumably, one could get some kind of
"average" or "statistical" screening length by integrating
dP/dL. In one of the simple Lund models, such an Lo
gets smaller as hadronization proceeds further in time, be-
cause there is less kinetic energy available, as well as less
background color to be screened.

The calculation of the screening length from first prin-
ciples, i.e., from QCD, is a task that cannot be ap-
proached by perturbation theory, the latter being valid
only for length scales much smaller than Lo. In this pa-
per, we would like to use instead the lattice approach, '

which has been shown to be quite successful in the investi-
gation of nonperturbative aspects such as glueballs and
the string tension.

The state vectors in lattice QCD are eigenstates of the
fermion and gauge fields, and therefore do not carry the
degrees of freedom of individual quarks and gluons.
Screening phenomena are usually studied by computing
the interaction energy of a. system of static color field
sources, for various source separations. Physically,
such a calculation would correspond to situations involv-
ing heavy quarks (the sources), surrounded by gluons (the

color gauge field), and light quarks (the dynamical fer-
mions). Here the field sources are at rest; in doing so one
is assuming some sort of adiabatic or Born-Oppenheimer
approximation, ' valid when the (slow) movement of the
heavy quarks does not disturb the state of the gluons and
light quarks. In that context, the screening length Lo is
defined as the heavy-quark separation for which the ener-

gy of the whole system is equal to the hadronic mass(es)
one wishes to produce. "

Unfortunately, we are still waiting for a fast algorithm
that will include dynamical quarks on the lattice. Pro-
gress is being made, however, ' both in hardware and
software; realistic calculations with light quarks should be
within reach in a few years.

In the meantime, there are a few aspects of the
screening-length calculation that could be studied with
si mpler lattice gauge theories. The benefits of such
research would be to gain some insight about the screen-
ing mechanism, as well as developing efficient ways of
computing Lo There hav. e been a few studies done along
those lines already, by Bernard, Dosch and Miiller, and
DeCxrand in strong-coupling lattice QCD, and by many
others on the continuum' ' as well as on the lattice
Schwi. nger model. '

Screening by the dynamical fermion fields can be seen
easily in lattice QCD at strong coupling (i.e., coarse lat-
tice). ' This effect arises when one computes the interac-
tion energy, or the potential V(L), of two sources in the
fundamental representation of SU(3). The small-
separation (L) behavior of V(L) is dominated by the
gluon part of the interaction and is given by

where T is the string tension. At large separation howev-
er, the contribution of the dynamical fermions (here of
mass m) balances the gluon interaction (screening), in
which case we have

i.e., an L-independent potential. In that example, the
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screening length would be of that order

2'Lo—

approximated by

mph' =[~/16+(m/e) ]' (1.4)

Ply)
ez, p )

(0)
(1.3)

T~o) is the (dimensionless) string tension for small L, and
m~ the binding energy of the dynamical quark to the
source. ma has also been computed and found to be well

Interestingly enough, quark-pair creation is not the only
mechanism leading to screening. Bernard has shown
that, in pure lattice SU(2) theory, the potential between
two sources in the adjoint representation of SU(2) can
indeed be screened by gluons only. ' Using 'Monte Carlo
techniques, Bernard was able to demonstrate the existence
of this mechanism near the continuum limit, and to evalu-
ate the screening length as

2plgI.o— (1.2)
RdJ

with mg being the physical mass of a "constituent gluon"
(500—800 MeV). T,~ is the "adjoint" string tension and
is —', times larger than the "fundamental" string tension. '

Besides the investigation of the various screening mech-
anisms, there are other aspects worth studying. Among
them is the question of the screening-length dependence
on the number of quark flavors, or even the number of
g1uons. In this paper, however, we would like to concen-
trate our attention on the mass dependence of Lo, in the
one-flavor massive Schwinger model.

The Schwinger model is quantum electrodynamics in
one space and one time dimension (QED2). Due to the
absence of the two other space dimensions, static sources
(or charges) can be completely screened as a result of fer-
mion pair production. Moreover, this gauge theory is
Abelian and also has no transverse photon; there will be
no processes equivalent to gluon screening of adjoint
sources.

Total charge screening in the continuum has been
shown to occur in the case of massless dynamical fer-
mions, by Schwinger, ' Lowenstein and Swieca, ' and
Casher, Kogut, and Susskind' (Lo-v ale). Screening
also operates in the massive case (Coleman, Jackiw, and
Susskind' ) but quantitative statements on Lo for arbi-
trary masses are nonexistent, since the model cannot be,
or has not been, solved exactly [there is a semiclassical
study of the very massive case by Rothe, Rothe, and Swie-
ca their Lo is proportional to the (renormalized} fer-
mion mass).

There are a few lattice studies of the potential V(L) in
massive QEDz, by Ranft and Schiller, ' by Bender, Rothe,
and Rothe, ' and by Duncan and Furman (two flavors).
None of them were concerned with the systematic investi-
gation of Lo's quark mass dependence as done, here, in
this work.

To summarize our results, we have computed Lo for
large and small dynamical quark masses ( m). The defini-
tion of the screening length, plus certain fairly natural as-
sumptions about the mass and length dependence of the
"string tension" T~L) = V~t. ) le L, imply the lower bound

so that

eLo & 2[m./16+(m/e) )'~ (1.5)

II. CONTINUUM QED2

The Schwinger model is defined by a Lagrangian iden-
tical in form to the four-dimensional QED Lagrangian,
except for the fact that there are no F or Z directions.
Consequently, only one space integration is required—
along the x axis; this in turn implies that the gauge field
A is dimensionless (here A=c =1), while the condensate
gg carries dimension of a mass. Moreover, the dynamical
fermion's charge e as well as its mass m have also the di-
mension of a mass. The theory is therefore super-
renormalizable, i.e., it requires no infinite renormaliza-
tions other than a redefinition of the zero energy density.

In the temporal gauge (A =0, A'=A), the model's
Hamiltonian reads (E= —B,A) (Ref. 13)

r

H„„,=fdx if a(d„+ie—A}/+md Pg2
(2.1)

1 0 0 1
~= 0 —1

=
1 0

In order to implement gauge invariance, the physical ener-

gy eigenstates must satisfy Gauss's law,

(a„E—ePtg)
~

PHY) =p(„)
~

PHY) . (2.2)

The function p~„) is the eigenvalue of the operator on the
left-hand side (LHS) of Eq. (2.2). When different from
zero, p~„~ represents a static, external charge or source lo-
cated at x. Qf course, when p[„~——0 for all x, the corre-
sponding eigenstate with lowest energy will represent the

The data follow closely this last inequality and we con-
clude that most of the Lo's m dependence is contained in
the binding energy nba.

We have also calculated the expectation values of the
electric field and fermion occupation number, showing
hadronization and screening quite clearly.

Our study of screening will be done in the continuum
limit of the lattice Hamiltonian formulation of QEDz
(Refs. 4 and 18). Quantitative results are obtained by us-

ing the ensemble projector Monte Carlo (EPMC) algo-
rithm2z' which is only one of several Hamiltonian Monte
Carlo algorithms in use in physics.

The paper will be organized as follows. In Secs. II and
III we review the continuum and lattice Schwinger
models, and mention some known results that will be
relevant to us. In Sec. IV we explain how we define and
compute the screening length. Section V is a brief expose
of the EPMC algorithm as well as a detailed discussion of
our systematics control. The Monte Carlo data are
presented and discussed in Sec. VI. Finally, we elaborate
in Sec. VII on future work and speculate about the screen-
ing length L, o in charmonium and Y systems.
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vacuum. In this work, we consider the cases where p(„)/e
is an integer. The readers interested in the situations
where p( )/e 6 N may consult Refs. 16 and 28.

A few remarks. Note that in practical calculations,
Eqs. (2.1) and (2.2) have to be normal ordered. We will
discuss this question in more detail in the section on the
lattice Hamiltonian (Sec. III). Normal ordering in contin-
uum QED2 is discussed by Coleman.

The theory based on the Hamiltonian (2.1) can be
solved analytically only in the regimes nz ~~e and m &&e
where, in fact, some analysis of its mass spectrum has
been done. Moreover, when I =0, one can compute ex-
actly the interaction energy (the potential) between two
sources of opposite charge e separated by the distance L
(Ref. 13):

The quantity a is the lattice sparing; the constants ea(:—g) and am (—:tu) are dimensionless, as well as H),«,
E„,and g„. The (anti)commutation rules are given by

[fn ~ 4m I =~n, m ~ j itn ~ 4m I

[A„,P ]=0, [E„,P ]=0,

The Hamiltonian (3.1) is invariant with respect to space
translations, i.e., translations by two sites; when m =0,
H),« is invariant with respect to (discrete) chiral transfor-
mation, i.e., translation by one site.

Because of the commutators in (3.2), it is possible to
find on each site a basis of state vectors that diagonalize
simultaneously the operators E„and @„@„:

V(L) ( 1 e eL/v n)—
2

Note that

(2.3) E„~e„,N„)=e„(e„,N„), e„=O,+1, . . . ,

@„@„(e„,N„) =N„~ e„,N„), N„=0, 1

and

e L
V(L) = when L «~m/e

2
(2.4)

(a lattice state would be
~ I e„,N„) ) =Q. (8)

~
eJ,NJ ) ).

As in the continuum, "good" lattice states mill have to
satisfy Gauss's law on each site:

V(L) = when L » v m. /e .ev~
2

(2.5)
6„~ latt) =p„) latt),

6„=(E„E„1)——(P„f„—Q„),
(3.3)

V(L) exhibits linear behavior at small distance, while
screening occurs at large distance [ V(L) =constant]. All
this can also be found in the case of very massive dynami-
cal quarks (large rn /e). '

With respect to confinement and screening, QEDz is
qualitatively closer to QCD4 than to QED4. For that
reason, we hereafter adopt the following nomenclature.
The dynamical fermions (i)j) will be called d quarks, while
the static sources p(„) will carry the name of c quarks or
heavy quarks The field. E will still be referred to as the
electric field.

III. LATTICE QEDg

A fair amount of work has already been devoted to the
study of the lattice Schwinger model. Most of that effort
was geared toward the test of various formalisms (Eu-
clidean, Hamiltonian, Monte Caro, Pade, etc.) by compar-
ing with known continuum results. I.et us mention the
study of the mass gap, ' chiral-symmetry break-
ing, ' ' screening, ' and miscellaneous aspects such as
SLAC fermions and the method of finite elements.

The lattice Hamiltonian for QEDq is given by'

s —1 (ea )2
Hi„,——g E„+(—)"(am)g„g„

n=0 2

+ —,
' (g„e "f„+1+H. c. ) . (3.1)

The lattice is a chain of S (even) sites; (anti)periodic boun-
dary conditions are assumed and the lattice fermions are
of the Kogut-Susskind type, i.e.,

gn~(i)"gI„"(', x =na, n even

fn~(i)"P(„) "', x=na, n odd.

where 6„ is the generator of gauge transformations. The
Q„'s are integers and correspond to the normal ordering
of Pti)'j (: it) P:). Recall that, in the continuum,

~n (up)~(u~) +yn (down)~(down)

On the lattice, this expression would correspond to

enitn +0n+len+1

so that

Q. +Q.+i=1 .

%'e choose to set

Q„=O for n even,

Q„=1 for n odd .
(3.4)

a ~0, g~O, p~O
e, m fixed

and

(3.5)

m/e =constant, )M/g=m/e .

Here e is independent of the cutoff a because QEDz is
super-renormalizable.

If we consider (dimensionless) lattice energies (e), for
example, we can wri. te

In plain words, this choice means that we are adding S/2
background (static) charges to the system, in order to neu-
tralize the charge of the Dirac sea.

The continuum limit of the lattice model corresponding
to (3.1) is defined by considering the physical quantities of
interest (energies, lengths, etc.) in the regime (recall that
g =ae and tu = am ) (Refs. 18 and 30)
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&=«~at =g

=constant, a independent .

Similarly, for (dimensionless) lengths (l) computed on the
lattice we have

cont lim(gl) =eL„„,=constant . (3.7)

Practically speaking, (3.6) and (3.7) will amount in com-
puting e and l for many small values of g and @-
typically g &0.5 and p &1.0 and fitting a straight line
through the data plotted on e vs g and l vs g

' graphs.
The slope of these lines should give the continuum results
we are seeking. More on this in Sec. VI.

Before closing this section, let us derive a few results to
be useful later.

In the limit of large g and p, the Hamiltonian (3.1) is
approximated by

S—1 2

Ht a=HO= g E +(—)~pf P (3 8)
n=0

n

It is seen immediately that the vectors
I e„,X„)are eigen-

states of Ho. Let

I
0) = + gtk gre; =0, N~ ——0) ~;

k odd i

(3.9)

For large a (or g), e will be a function of g and p. In the
continuum limit however, one would expect the continu-
um energy to be equal to e/a, and be independent of the
lattice spacing. In other words we should get sealing

P

cont 11m
6 -"t (3.6)
g e

IV. THE SCREENING LENGTH

A. De6nition

There are two distinct length scales involved in screen-
ing phenomena. First, there is the length at which two
outgoing c quarks have their interaction completely
screened, each forming now two distinct hadrons. This
length, called I.p' '", can be obtained in the lattice ap-

~L hadron)

proach via the condition V„=2m& (hadronization).
Examples of L 0' '" are given by Eqs. (1.1) and (1.2).

On the other hand there is also the cc separation for
which the first few individual d-quark pairs pop out of
the vacuum. This length, LP", is more important in for-
malisms based on perturbation theory. ' Intuitively, we
expect L o"' to be much smaller than L o' "",especially in
the limit of small m.

The definition of the screening length Lo used in this
work will combine information from both L$"' and

t is given by
(L 0)

V„- =mD . (4.1)

Equation (4.1) is a compromise between LP' and
Lo' '" because, (1) Lo corresponds to an energy scale of
the same order of magnitude as the energy involved in
hadronization and (2) Lo does not correspond to complete
screening of the cc pair but nevertheless describes a situa-
tion where a few d-quark pairs have already been created
(this should be true for m/e &1.00, but not for m~oo
where only one pair is sufficient for complete screening).

then, Ho has the following eigenstates and eigenvalues.
The ground state (p„=O, all n):

I
0)'~egs=

2 9 .S (3.10)

The lowest, one-charged state (p„=+5„;,i is odd; the
lattice then contains one source, and S/2+1 dynamical
fermions):

B. Useful results

It is possible to derive Lo from (4.1) in the two extreme
cases m =0 and mirac.

In the massless case, we already have V,, [see Eq.(I.)

(2.3)]. When hadronization takes place at L »~m/e, we
have V,,=2mD. From (2.S) then

( —) 4 I» e+i= —2s+~. (3.11)

The lowest, doubly-charged states (p„=5„;—5„;+&, i
and 1 are odd):

'+' —' iaeA g g"STRING" Q ( ')
I
0); ei ————p+ l, (3.12)

J =i 2 2

=v'~/16,

which, included in Eq. (4.1) yields
r

eve. 1

2 2

or

ev m eLol~vr—
2

(1—e )=

(4.2)

(4.3)eLO= Vn. ln( 2 )=1.23—.
On the other hand, when m /e~ ao, we can approximate
H„„,[see Eq. (2.1)] by(3.13)

"TWO SOURCES" P;P;+t I 0); ei ——— p+2p . —
2

Let us mention that the vacuum energy of the full Hamil-
tonian (3.1) has been evaluated with strong coupling ex-
pansions, up to order 1/g ' (Refs. 32 and 33). This result,
plus a Fade-improved formula, can be found in Ref. 33.

Finally, when e and m are set to zero in (3.1), the re-
sulting Hamiltonian is equivalent to an X1' antiferromag-
netic spin chain. For long chains (S~ ao ), the ground-
state energy is equal to —S/m.

H~~~~ fdx +mQ I3@ (4.4)

since U =P—eA 0 (nonrelativistic approximation). For
eL &4m/e, the potential should be

2
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On the other hand, by applying the ideas of the nonrela-
tivistic quark model, the binding energy of the d quark to
the heavy one should be given by

U. THE ENSEMBLE PROJECTOR
MONTE CARLO (EPMC) ALGORITHM

A. The method

/

in which case (4.1) yields

PleI.O
——2—

e

(4.5)

(4.6)

Introduced by Campbell, DeCxrand, and Mazumdar,
the EPMC algorithm is a faster and more accurate ver-
sion of the projector Monte Carlo algorithm of Blanken-
becler and Sugar.

The EPMC algorithm is based on the following
theorem. Consider the Hamiltonian H~,«with ground
state

~

0) and energy eo, and let

C. A leaver bound u =exp( —tH»«), (5.1)

Let us define the "string tension" T~L ~
as

eI T(I)= V-(I ) (4.7)

where t is a positive real number. Suppose also that we
have the states

~ P ) and
~

f' ') such that

(y~0)~o, (y"'~0)~0.

This result in Eq. (4.1) yields

JIBEDeI.p
—— (4.8)

Finally, let us define S„as

S„=—

Then, it follows that

(5.2)

In the cases m =0 and m/e~ao, one can show that
T~L, 0~ ) T~L, &

for all L. If we assume such an inequality
to be valid for arbitrary m /e, we get the lower bound

Ala leI.p ~
e T(o)

(4.9)

Moreover, one can also check that T~o~ ———,
' for both

m =0 and m/e~ao cases; again, we assume this to be
true for all m /e, so that

eLo&2 (4.10)

Inequality (4.9) gives us a systematic way of studying
the m dependence of the screening length, by factorizing
two possible sources: T(0) and ma. More on this in Sec.
VI.

lim S„=e (5.3)

By virtue of (5.2) and (5.3), the EPMC algorithm will
compute the vacuum state energy of the theory. Actually,
it can do more. Because H~,« is gauge invariant, i.e.,
[G„,H»«]=0 [see Eqs. (3.1) and (3.3)], the EPMC algo-
rithm will compute to the lowest energy state of any set of
vectors characterized by Eq. (3.3) with giuen p„. In other
words, it will be possible to obtain the lowest energy of
any conceivable source. distribution. This is a welcomed
feature, since we need the lowest energy of states contain-
ing zero, one, and two c quarks.

The EPMC is a Monte Carlo algorithm; it has been
described in detail in Ref. 23. In brief, it is constructed as
follows.

The basic ingredient in an. EPMC calculation is the vec-
tor u

~
f), written in a convenient basis (here it is

u~P)= g a(, ~)
fe„,S„)

( I e„,N„}
~

u
~
Ie„,N„}) ( I e„,N„})

(e„,E„j
(5.4)

(5.5)

H~ (H2) is chosen to have the same form as H»« in Eq. (3.1), except that the index n in the sum runs over the even
(odd) sites only: this is the checkerboard pattern.

By inserting a complete set of states in between the two exponentials in (5.5), ( Ie„,N„ I ~

u
~
[e„,N„}) then can be writ-

ten as a sum, each term being a product of this type
even —th(") octad p (yg)

ff (e„,N„,N„+& Ie '
~

e„',N„',N„'+~ ) +(e„',N„',N„'+,
~

e '
l e„,N„,N„, )

(In the computer memory, ) P) corresponds to a collection of states
~
te„,N„}), with copies made according to j

a~ ~.)
The expectation value ( Ie„,N„}

~

u
~ [e„,N„}) is difficult to evaluate in closed form. This is why we break up the

Hamiltonian into two parts, H~,« ——II
& +H2, and use the approximation

tH) —
) H2 — (—
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with

2
h~(n) E z+( )j—i

In order to find eo through Eqs. (5.2) and (5.3), apply u
to a given starting state

~

i}r' ~); one gets a new ensemble,

~

g"'), on which u is applied again, and so on.

+ 2(g—„e "g„+i+H. c. ); j=1,2, (5.6)
S. The starting state

~

g"'&

i.e., a product involving matrix elements defined on two
gag «)

sites only. These (e„',N„',N„'+,
~

e '
~
e„,X„,N„+, )

can be evaluated in a straightforward manner. We refer
the reader to Schiller and Ranft' for more details, in par-
ticular their Table 1 which contains the worked out ex-
pressions (our results do not contain minus signs because
we have made the change of variable P„~(—)"g„; also
their a parameter should be set to zero).

At this point we rewrite the matrix clem. ent in terms of
probabilities and scores, i.e. (a„=:"„,N„,N„+ i),

(~ ~e "'t~ ) p~~ S~~ yp
~n

The I"s and the S's are otherwise arbitrary. The most
efficient choice turned out to be one similar to Campbell,
DeGrand, and Mazumdar. Let us distinguish four types
of nonzero matrix elements:

TYPE A: Np'g =Xgg + $
=Xgg =Ngg + ]=0 .

TYPE 8: Xgg =%gg+ ( =Xgg =Xgg+ &
= 1

TYPE C: X„' =1 and X„'+~
——0;

N„=1, X„+~——0 and vice versa .
TYPE D: N„'=0 and X„'+)——1;

N„=1, X„+~——0 and vice versa .
Referring to the expressions shown in Schiller and Ran-
ft, ' Table 1, the score ( S) will be given by the exponential
containing the square of the electric flux; the probability
will be given by the other factors (the quantity P will also
contain some normalization factor that has to be included
in S as well).

This choice of probability and score has the advantage
that P", is independent of the e„'s; one needs to store

~n ~n

only 4)& 2 (transitions) X2 (checkerboard) = 16 numbers.
As shown in Ref. 23, the P's and S's are recombined in

such a way that

E.J

With the overall probability H,j, one will generate a lat-
tiCe configuration j (i.e., state

~ Ie„X„I ) ) from a starting
state i. The number of copies of j will be determined by
the overall scores W,z.

We choose
~
P) to be a broad state, i.e.,

In order to compute the screening length, one needs to
find V,', ' and mD, or v,', ' and Mji in lattice units. With
the EPMC algorithm, we can calculate eo, e+~, e'+'&

which correspond, respectively, to the lowest energy state
containing 0 source (the vacuum), one c quark, and two c
quarks of opposite charge T. he relationship between
those quantities is as follows:

~D ——e+ ) —eo,
( l) ( I)

U —=6'+ ) &
—EO,

(l) (~)
U,, —~D ——e+) I

—e+) .

Note the following remarkable cases:

(5.7)

C. Systematics control

Let us review the two possible sources of systematic er-
rors. These have been investigated by comparing the
EPMC data with known facts, such as (2.3), (4.3), and
(3.8)—(3.13). Moreover we checked that eo —— S/n when-
g and @~0(Ref. 37).

Finite lattice size

i =0~a+, , —e+, = —mD,(0)

1= Do te'+&' i —a+i ——+~D (since v,',"'=2.&D), (5.8)

(lo)
l =IO~E+~ &

—E'+) =0 .

The starting states
~

P' ') have been chosen so that they
are eigenstates of H»« in the strong-coupling limit fsee
Eq. (3.8)] and satisfy Gauss's law. They are the ones list-
ed in Eqs. (3.10)—(3.13). In principle, they should be in-
variant with respect to translations (by two sites} since we
are computing masses. Equation (3.10) certainly has this
invariance, but not (3.11) and (3.12); this is of no conse-
quence however. The reason is that, since H~,« is gauge
invariant, the static sources will not move on the lattice
upon any application of H. Moreover, because we have
used (anti)periodic boundary conditions, the expectation
values of H will not change upon moving "by hand" the
position of the sources, keeping their relative separation,
number, and charge constant.

Note that in the case p, =0 where H~,« is invariant
under translation by one site (chiral transformation}, the
state

~
0) itself is not. This is a statement of dynamical

chiral symmetry breaking. There is only one state charac-
terized by p„=O (all n) which minimizes the ground-state
energy of H0.

'

Ien ~N I

so that in the stochastic process outlined above,
(P ~

u
~ g) is proportional to the number of state generat-

ed through H,j, plus their copies (in this work this
amounts to about 3000—8000 states}.

We have used (anti)periodic boundary conditions, on
lattices of length S (even). Even if (anti)periodic
boundary conditions are known to minimize size effects,
we still have to make sure that S is much larger than the
length scale of the physics one is studying.

It appears that the algorithm works best in the coupling
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range 0.1&g &1.5. In order to estimate a good lattice
length for that interval, we have interpolated between two
known values of the screening length in the continuum
[see Eqs. (4.3}and (4.6}]:

glo = 1.23, p/g =0,
(5.9)

is g, =0.4. Our calculations confirm this also, as we will
see in Sec. VI.

On the other hand, the continuum Hamiltonian corre-
sponding to m/e —+co is given by (4.4). This translates
on the lattice into Mo [Eq. (3.8)], which is easily solved.
Equations (3.9)—(3.13), together with (5.7), yield

~D ~ m

Typical screening lengths would then be

6 if p/g=O,
g 02 lo 30f/ 3

and

gt, =2~= 2'
g e

1.7 if p/g=O,

Consequently, a lattice of length 30 should be large
enough to contain all the relevant physics for
0 &p/g & 0.6 with 0. 1 &g & 1.5, and p/g =3 with g = 1.

To check the absence of size effects in our data, we
have made a few calculations with lattices of length 22
(p/g=O, 0.4, 0.6 3 and g=0.3—0.5). No such effect has
been seen.

2. f systematics

By definition [Eqs. (5.1)—(5.3)], the EPMC algorithm
introduces an extra parameter t From. our choice of
probability P",, there will be more fluctuations (i.e.,a„,a„''

transitions of types C and D) with higher t. On the other
hand, if r is too small, no transition will occur;

~

g~"')=
j
g' '). If r is too large, it will take a very large

number of states in the ensemble
~

f'"') in order to get
any results. If t is too small, it will require too many ap-
plications of the projector u. We believe that the best
values which avoid these two comp1ications are contained
in the range 0. 1 & t &0.7, for which about 3000—8000 lat-
tice configurations were contained in any ensemble

~

p'"'). The total number of projector apphcations was
100—150.

We have computed energies for different values of t in
the above interval. For the cases p/g=0, 0.1, 0.6, 3, we
have noticed no systematics at all. However, in the case
0.3&p/g&0. 5, the energies were t independent in the
range 40&5t&0.7 only. Our explanation is that, in
terms of strong coupling expansion, 0.3 &p/g &0. »s a
range where the high-order terms in (1/g )" are enhanced
by factors such as

10(1+p)
(1+2p) (3+2p)

or

10 (1+10p,)
(1+2p )'(3+2p)'(1+p)

In the language of the EPMC algorithm, this means that
one needs more fluctuations, i.e., higher t.

3. Seahng regime

From the work of a few investigators' ' in the case
m /e =0, the value of g below which one observes scaling

i

i.e., the quantities MD/g and glo scale for all values of g.
From this we conclude that g, = Do.

By interpolating between those two results we conclude
tentatively that g, should increase with m/e. Unfor-
tunately, we do not know quantitatively what this increase
is. Therefore, we have chosen to set

g, =0.4 for m/e =0,0. 1,0.4,0.6,

g, = 1 for m /e =3 .
(5.10)

About 400 CPU hours on a Vax 11/780 were needed to
generate the data reported in this work.

'VI. NUMERICAL RESULTS

A. The screening length

According to (5.7), one needs to compute eo, e+&, and
a~+~i i as defined in Sec. VB. To measure the screening
length, we use Eqs. (5.8) and compute e'+'i i for three or
four values of l, as suggested by (5.9). 10 was estimated
by interpolating where the data were expected to cross the
zero line, on a e+] ~

—e+~ versus I plot.(l)

The continuum limit numbers shown in Table I were
extracted from the Monte Carlo simulation by using Eqs.
(3.6), (3.7), and (5.10). We see good agreement with the
exact results (numbers in parentheses), except maybe for
I o at m =0, where the simulation yielded a value a bit
high but well within a 2o.-deviation notwithstanding.

Scaling is clearly seen in the calculation of MD and lp,
as shown in Figs. 1 and 4. On the other hand, screening
shows up rather nicely in v,', ' (Fig. 2), while hadronization
is observed in Fig. 3, on a @~+~i i

—e'+& plot [compare
with (5.8)]. To summarize the data of Table I, we have
Figs. 5 and 6, which are mD/e vs m/e, and I.oe vs m/e
plots.

0
0.1

0.4
0.6
3.0

mD/e

0.43+0.05 (0.44)
0.47+0.03
0.69+0.05
0.89+0.08
3.11+0.22 (3.00)

eI.p

1.62+0.25 (1.23)

2.00+0.21
2.27+0. 17
5.97~0.60 (6.00)

TABLE I. Calculated continuum values for the binding ener-

gy mD/e and the screening length I.pe. The numbers in
parentheses are exact results.
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FIG. 3. The energy difference e+~ ~
—e+~ ——v, —M~ versus(&) (I)

the separation l.

FIG. 1. The binding energy M~ (in lattice units) versus the
coupling constant, for two values of the d-quark mass. Crosses
arid boxes represent data calculated on lattices of length 30 and

22, respectively.

obtain

Lee &2[m./16+(m/e) ]'~ (6.3)

In Fig. 5 we compare the data with the following as-
sumed interpolating curve:

mD
=[m./16+(m/e) ]'~

e
(6.1)

.MD 1==(mD+m, )—=
e e e.

+[m/16+(m/e) ]'~ (6.2)

This expression is reminiscent of the MIT bag model, s

which describes hadrons as cavities enclosing (quasi)free
quarks. In the case corresponding to (6.2), the hadron
would be made of one flavor of light, relativistic quark
and one flavor of static heavy quark.

On the basis of the close agreement between the data
and (6.1},we use the latter in the lower bound (4.10}and

Equation (6.1) is seen to be closely followed by the data.
Recall that in our model, the mass of the c quark ( m, ) is
infinite so, in reality, mD/e is the binding energy of the
d-quark "cloud" to the c quark. In fact, if MD is the
mass of the hadron, we would have

This is the dashed curve in Fig. 6. We see how close the
data are with respect to that bound. It shows that the
m/e dependence of the screening length is mostly con-
tained in the factor mz, since the data imply that

Lce =2[m /16+ (m /e) ] '~ at m /e ~ac,
Loe =3[@/16+(m/e) ]' at m/e=0.

B. Gauss's law in action

By looking at the potential V,', ' in Eq. (2.3), we distin-
guish two regimes, one characterized by L, &&L,o where

V,—,
' increases linearly, and the other where L »Lo, for

which the potential is constant. It should be interesting to
see how all this translates in terms of the electric field and
the d-quark occupation number.

Fortunately, the EPMC algorithm allows for the com-
putation of the expectation value of any operator o diago-
nal in the basis

I e„,N„). It is given by

I I I I I I I I

0 UJ2~ 10

~~ 0.8

0.6
~(DO

0.4

0.2

K/e =0
g = ItO. I

LATTICE LENGTH = 30

EXACT

14

12

IO

20

I I I I I I I

0 I 3 5 7 9 I I 13 15 17 19
QUARK SEPARATION

FIG. 2. The heavy quark potential v,
'" (in lattice units) as a

function of the separation I. The continuous line represents the
exact answer [Eq. (2.3)j.

I 2. 3 4 5 6 7 8 9 10
-I

g

FIG. 4. The screening length lo (in lattice units) versus the
coupling (g '). Both straight lines are fits, from which the con-
tinuum value is extracted.
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VACUUM
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I.O
0.8
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0.4
0.2
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Q/e

3.0

0.6—
04—
0.2 =

(E')
0.8—
0.6—
0.4—
02

M::~X y ~~~~ X~~ g X

L=5

L=5

L= I5

FIG. 5. The binding energy m~/e versus ihe d-quark mass
m/e. The solid and dashed lines represent, respectively, the
high-e [Eq. (4.5)7 and the MIT-bag-inspired [Eq. (6.1)] predic-
tions. The arrow indicates the exact result at m /e =0.

for n- large (extra work is needed here, because the
quantity

I
(f("'

I Ie„,N„I ) I
is a major ingredient and is

not available in a straight energy calculation; for details
see Ref. 23).

Since we are using Kogut-Susskind fermions, the
dynamical fermions occupy two sites, instead of only one
like the c quark. This wiH result in a "saw-tooth" oscilla-
tion of the electric field with respect to the lattice site In.
order to remove this effect, we have chosen to compute
the expectation value of a smoother expression for the
electric field, i.e.,

E„'=(E„,'+E—„,'+E„'+E„+,'+E„+2')/5, (6.4)

which should be closer to the continuum E&~~ anyway.
We have computed (E„') and (N„) between the state

I
e+'»), for I /g=0 with g =0.31, and p/g =0.4 with

g=0.4; for both masses, 1 =0,3,5, 15. Figures 7 and 8
show the m/e =0.4 case, where lo—5.

By looking at (E„') first, one clearly sees the presence

I +xx y XX*&z'xx I XI~X~ X
T T T T I I I I I I I

4 6 8 IO I2 I4 I6 I8 202224
LATT I C E S IT ES

FIG. 7. The expectation value of the (averaged) square of the
electric field (E ), versus the lattice sites. m/e=0. 4, g =0.4;
the screening length is lp ——5+1. The +1 indicates the position
of the sources.

of two distinct hadrons at a separation larger than the
screening length (i=15). Inspection of (N„) confirms
this also. On the other hand, pair formation seems to be
absent for l &lo,' it barely starts to show up at l=lo.
(This can be seen in the case m/e =0 also. )

From these observations we conclude that for I & lo, the
interaction between the sources is essentially mediated by
the electric field. On the other hand, both electric field
and pair creation are present at l ~~lo, canceling the ef-

VACUUM
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I I I I

0.6 +——g —~
—$ —$ —2 —x- —I —2- —z- ~~—-—'It/»'T '5/&/'/'/i/x/i0.4=—I —'- - -' I. z

+I -I

O
4

L=5

0.6 ————————~——y —-I—~— —x- —X——X——
g*~/~~~/g/xg 'g/g/x0.4 —&

+/' g x.

+I

2

0 0.2 0.4 0,60.8 1.0 2.0
7P/e

L=I5

0.6 ———————————~ —~ ~ y- „~~—
/

I''/i/''* * z'X

I+I I I I I I I I
-, I I !

2 4 6 8 10 t2 I4 I6 IS 20 22 24
LATTICE SITESFIG. 6. The screening length el.p, versus the d-quark mass.

The solid and dashed lines represent, respectively, the high-m
[Eq. (4.6)] prediction and the lower bound (6.3). The arrow

. shows the exact result at m /e =0.

FIG. 8. The expectation value of the d-quark occupation
number versus the lattice site. m/e =0.4, g =0.4; the screening
length is Ip =5+1. The +1 indicates the position of the sources.
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feet of each other (screening). Unfortunately the data
were not accurate enough to get a quantitative picture of
all this.

Let us point out that the behavior of the quantity (N„)
seems to indicate the onset of pair production at l=lo
(in=5 in Fig. 8). This observation together with the fact
that the ratio e Lo/mD has a small but noticeable m/e
dependence, confirms some of the physics we intended to
represent in our definition of the screening length (i e , .th. e
production of the first few pairs of d quarks involved in
screening).

VII. CONCLUDING REMARKS

V,',—'= — ' +(0.17 GeV )L . (7.1)

The c and b quarks are heavy compared to the (constit-
uent) masses of u, d, and s quarks ( m„ /m,
=m~/m, =0.2; mt, /m, =3). Presumably, we could use
the ideas developed here to evaluate the screening length

In a subsequent work, we mill study screening phenom-
ena in the Schwinger model with two flavors of dynainical
fermions. It should be interesting to see the contribution
of each flavor, especially when their masses are different.
From the results obtained in this work we anticipate most
of the flavor dependence to be contained in rnid, using
MIT bag ideas, we could write

2

eLp ) QN~[c; +(m; /e) ]' +B(m i,m2)
eT(p) g

The definition of the screening length used throughout
this work is general enough to be applied to several cases
pertaining to the real world; charmonium systems come
immediately to our mind.

It is now well known that charmonium and Y bound
states can be well described by the Schrodinger equation,
with a potential V,—, given by

involved when charm (bottoin) quarks are adiabatically
separated from each other to form D mesons (B mesons).

The potential (7.1) is incomplete in the sense that it de-
scribes only the physics at short distances, i.e., I. &4.0
GeV ', so that T~I ~

is unknown. However, intuition
0

suggests that, for longer distances, V,—, should increase
monotonically with L, up to a point where it levels off
(hadronization). This behavior should be such that
T&t ~

((0.17 GeV ), in which case

1
~0 + +DB

(0.17 GeV )
(7.2)
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Here trtD z is the binding energy of the u and d quarks to
the charmed one (or bottom) in D (B) mesons. It is given
by

mD=MD —m, =(1.9—1.4) GeV=0. 5 GeV,

mtt-Mz mb =—(5.3—4.8) GeV=0. 5 GeV,

so that

Lo' )2.9 GeV '=0.58 fm .

This lower bound is smaller, but close to the mean radii of
the cc and bb states nearby the DD and BB threshold:

R~ =0.85 fm, Rz- -0.95 fm .
The screening length derived from the condition
V~I ~

——mD ~ seems to be realistic indeed.
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