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Quantum roll: A study of the long-time behavior of the finite-element method
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Using the method of finite elements we investigate the quantum behavior of a particle starting in
an unstable equilibrium at the top of a potential hill and ro11ing down. In order to study the numeri-

cal accuracy of the method for large times we consider the exactly solvable model with

V(q)= —
2 q and an initial Gaussian wave function at t=0, g(q) 0:exp( —

2 q ) so that the initial

state
~

0) has (0
~

q~
~
0) = (0

~ p ~

0) =
2 . We study the accuracy of the large-time approximations

to (0 ( q (t)
~
0) based upon single finite elements of degree n The. Taylor series is exact up to t "

and even the coefficient of t "+ is a very accurate representation of the exact coefficient. We then
consider the convergence properties of the (X,n) approximations consisting of X iterations of the
finite element of degree n. For these approximations the corrections to the Taylor-series coefficients
in higher orders vanish as X

I. INTRODUCTION

One of the outstanding problems in field theory is that
there are no nonperturbative methods for studying pro-
cesses in real time. Monte Carlo techniques, which have
come to be an important tool in understanding field
theory, require calculation in Euclidean space or at finite
temperatures so that a probabilistic interpretation can be
provided to the path integral. As yet no one has found a
practical way for evaluating Minkowski-space path in-
tegrals. An interesting alternative to the path integral is
provided by the Heisenberg operator equations of motion,
which describe the time evolution of quantum-mechanical
operators. Many questions can be answered by studying
the time evolution of the Heinsenberg operators. For ex-
ample, in the early universe one would like to understand
how a field rolls down a relatively flat potential or tunnels
from a false vacuum into a true vacuum. If the initial
state is Gaussian all the matrix elements of
P(t =0),sr(t =0) are easy to calculate. If one can solve for
P(t), sr(t) in terms of P(0),sr(0) by a time iteration scheme
that preserves the canonical commutation relation, then
one can calculate (0

~

P"(t)
~
0) and watch in real time the

average motion of the field in a dynamical situation. The
other alternative is to consider functional Schrodinger
equations and try to watch the time development of the
initial wave functional. We feel that the Heisenberg ap-
proach is more feasible if we are interested in knowing
only a few selected matrix elements.

Recently two methods have been proposed for iterating
the Heisenberg equations in a canonical fashion: the im-
plicit finite-element method of Bender et al. ' and the
explicit method of Moncrief. In both methods one is

dealing with operators so the iteration methods are sym-
bolic. One obtains at the Xth-time iteration
srtv =f~( lrp Pp) Ptt =g~(harp Pp) and the calculations must
be done exactly algebraically. Numerical evaluations
enter only at the stage where matrix elements of m.& and

/tv must be obtained in terms of the matrix elements of
Pp harp in the initial state. Since we want to study the
long-time behavior of quantum processes it is important
to understand whether one needs a low-order scheme with
many iterates or a high-order scheme with a few iterates,
or whether a moderate-order scheme with a moderate
number of iterations is optimum to ensure that the algebra
be tractable and the accuracy reasonable. To illuminate
such questions we study a solvable model, a Gaussian
wave packet "rolling" down a quantum-mechanical hill,
where V(q)= —q /2.

II. THE FINITE-ELEMENT APPROXIMATION

As a laboratory for studying the long-time behavior of
the finite-element approximation in quantum mechanics,
we consider the inverted, one-dimensional harmonic oscil-
lator,

This model has the virtue of being exactly solvable, but
the operator q(t) is not periodic, so we can study its evo-
lution for large times. Previous work' on the finite-
element approach to quantum mechanics has concentrated
on the short-time behavior, as, for example, in the extrac-
tion of the level spacings for the anharmonic oscillator,
by identifying the first few terms in the Taylor expansion
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of e' '. In exploring the large-t behavior of the finite-
element approximation we have several goals in mind: (1)
to examine the limits of validity of a single nth-degree
finite element, (2) to study the convergence of repeated
iterates of the nth-degree finite element, and (3) to com-
pare the accuracy of high-order iterates of low-degree
finite elements with low-order iterates of high-degree
finite elements.

The general finite-element approach was discussed in
detail in Ref. 5. We solve Hamilton's equations of
motion, here

0 i
—9'o

h

P&+Po
2

Pi —Po
h

9'i +9'o
2

Regarding po and qo as known operators, we solve for p&
and q~, the finite-element approximations to the momen-
tum and position operators at time t =h:

(h +4)po+4hqo
4—h

9=7~ 5'=9' ~

(h +4)qo+4hpo
(7)

by dividing the time interval from 0 to t into X steps of
length h =t/N. Gn each interval we represent the opera-
tors p and q by polynomials in the time with operator
coefficients:

p(t)= y ak(x/h)k,

q(t)= g bk(x/h)",
k=o

(3)

where x is a local variable, 0&x &h. We determine the
2n+2 operators ak and bk by imposing continuity at the
boundaries of the intervals and by applying the two equa-
tions of motion n times on each interval, at the Gauss
points given by the zeros of the nth Legendre polynomial
P„(—1+2x/h ). At the initial time we impose the canon-
ical commutation relation

[q( 0), p( 0)]=i . (4)

As demonstrated in Ref. 5, this procedure guarantees that
the canonical commutation relations are preserved exactly
at each lattice site. Moreover, for the specific examples
discussed in Refs. 3 and 5, the relative error is of order

",just as in classical applications.
For illustration we carry out this procedure for a single

linear finite element. We rewrite Eqs. (3) as
r

q(t) =qo 1 ——+—q),
h

Note that Eqs. (7) possess singularities at h =+2, which
limit the domain of applicability of these solutions. The
existence of such singularities is a general feature that will
occur in the higher-degree finite-element approximations.
The occurrence of these singularities is a result of the im-
plicit nature of the differencing scheme embodied in (6),
which is a system of equations that must be simultaneous-
ly solved for the operators p &

and q &
and is not specific to

the inverted oscillator potential
We have explicitly solved for p &

and q &
using finite ele-

ments of degree n =1, 2, 3, 4, and 5. The denominators
are of the form D„(h )D„(—h ) where D„(h ) is the polyno-
mial of degree n, given in Table I. The distance d„ to the
nearest singularity (also shown in Table I) controls the
range in h over which the single-finite-element approxi-
mation is valid.

We observe that for odd n the nearest zero of D„(h )
lies on the negative real axis, while for even n there are no
real zeros. We also note that all of the singularities lie in
a rather narrow annulus of outer radius comparable to d„.

These observations can be extended and made rigorous
as follows. Note that D„(h') can be written as

h "(2n —k)! ~ h" (n+l)!
k!(n —k )! ( o l!(n —l )!

P n+1/2 II /2
1&„+&x&( —,h ),

p(t)=po 1 ——+—p

(5) where IC„(z) is the modified Bessel function of the third
kind. One can, therefore, write D„(h) in many different
closed forms, for example,

We impose the equations of motion (2) at the Gauss point
t/h = —,:1

D„(h )=, I dt e 't "(1+t /h )" .

They satisfy the recurrence relation

TABLE I. For the single-finite-element approximation of degree n, the solutions q& and p~ have
denominators of the form D„(h )D„(—h ). The range over which the finite-element approximation can
be used is controlled by the magnitude d„of the zero of D„(h ) nearest to the origin.

D„(h )

h+2
h2+6h+12

h +12h +60h+120
h" +20h +180h +840h+1680

h'+30h +420h +3360h +15 120h+30240

2.0
3.464
4.644
6.047
7.293
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' D„+1(h)=(4n+2)D„(h)+h D„ 1(h) .

Using known results ' on the zeros of K~(z) one can
discuss the zeros of D„(h). In general, it follows that
D„(h) has only simple zeros and has no zeros in the
right-half plane,

~
argh

~

(—,
'

7r, and that D„(h ) and

D„+~(h), m =1,2, . . . , have no common zero. For
large odd n the zero of D„(h ) nearest the origin occurs at
d„-0.66274(2n+ 1). This asymptotic estimate has a rel-
ative error of only —0.6% at n =1. For even n this esti-
mate i,s roughly correct. The rms distance to the zeros of
D„(h), [D„(0)]' "-4n/e, is asymptotically larger than
d„by only 1 l%%uo.

To make numerical comparisons among the different
finite-element approximations, we consider an initial state
consisting of a Gaussian centered at the origin,

& qo& =&po& =0

& qo'& = &po'& = -' .

TABLE II. The single-finite-element approximation of de-
gree n for &ql ) agrees with the exact result through the term
g

" in the Taylor series. The next term, t "+, j.n the Taylor
series for the approximation has a coefficient that closely ap-
proximates the correct coefficient. As shown in this table the
relative error in the coefficient of t "+ decreases dramatically
with increasing n.

Relative error in coefficient of g~'"+"

~ 10-'
—6.25 ~ 10
+ 6.25~10-'
—5.58 ~ 10-4
+ 4.65 ~10-'

q = (a+A), p = (a —P),1 1

2
'

2

which give

The exact continuum solution of the equations of motion
gives

t4 2&'
&q (t)&= —, + sinh t= —, +t +—

45 315

2g 10 2t 12

14 175 467 775

a=a, /3= —/3 .

We represent a and P by nth-degree polynomials in x
on each interval and impose (12) at the Gauss points. For
one finite element we find

at ——aoF„(h ), /31 ——/30 /F„(h ),

where
We find for a single nth-degree finite element agreement
with this exact result through order t ":

n = 1: & q 1 & = —,
' +t2+ ( —,

' + —,
'

)t + .
D„(h )

F„(h)= D„—h
(14)

n=2:

n 3'

n =4.

&qt &= 2+t + gt +(45 560)t +
&ql &=2+t +T~t +45t

8+( 315 + 50400 ) +

10+ ( 14175 12700800 ) +

12+( 487775 + 5029516800 )t +

and D„(h) is the polynomial in h of order n given above
and in Table I.

If we express ao and po in terms of po and qo, the
operators qN and pN at the Xth lattice sites are

qx= 2qo(F~ +F, )+ ,po(F„F„—), —

p1v= 2po(Fn +F, )+ , qo(F, " F„), ——
which we can compare to the continuum answer

Note that the nth-degree finite-element approximation
not only agrees with the exact result (9) through order t ",
but the error in the coefficient of t '"+" gets rapidly
smaller as n increases. A similar phenomenon occurs for
the higher coefficients. This is the reason the finite-
element method works much better than might be expect-
ed. This is indicated in Table II.

q(t) =qo cosht+po sinht,

p(t) =po cosht+qo sinht
(16)

by making the replacement Xh =&.

Once again we will examine & qlv & with the initial con-
dition (8) and compare with the continuum result (9). The
(N, n) approximant is given by

III. THE ITERATED FINITE-ELEMENT
APPROXIMATION

We now turn to iterated finite elements to pursue the
long-time development of &q (t) &. We note that the
equations of motion can be diagonalized by introducing a
and P defined by

&q &=-2=1
4

2N !2N '

It is interesting to write out the first few terms in the Tay-
lor expansion of this function:
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n=l: (q~ )=T+t +—1+2 1 2 1 ' 4+ ~ ~ ~ ~

2X

1 11+ ~ ~ ~

3 15 160+6
1 4 & 6n=4: (q~ )=7+t + 3t + 4gt + 315

(18)

n=2: (q~ )=2+t +3t + 1—2 i 2 [ 4 2 1 6+ ~ ~ ~ ~

16K

n =3: (q~ ) =
2 +t + 3 t ++ t

TABLE III. At t = 10 the exact result is
(q~(10)) =1.212912988524474X108. We display the results
of applying the nth-degree finite-element approximation iterat-
ed iV times. For convenience in comparison we underline those
digits that agree with the exact result. Entries marked + must
be disregarded because the magnitude of the pole of the finite-
element approximation (see Table I} falls within the -range

[0,10/N] for that iteration order. The last six entries, marked
n =M, are the results of iterating the explicit differencing
scheme of Moncrief (see text and Ref. 6). Note that this
scheme, which does not have singular points, here works some-
what slightly better than the linear (n =1}finite element.

2 11— tro+. . .
14 175 1792%

2 & 2 & 4 & 6 & 8 & 10
(qN ) 2+ + 3 + 45 + 315 + 14175

46»» 21 SO4X"

We note that the first term that disagrees with the contin-
uum result (9), O(t "+ ), has a relative error of order
N ", with an exponentially decreasing coefficient (com-
pare Table II).

In Table III we compare the various (N, n ) approxima-
tions for a large value of t, t =10, for which the continu-
um result (q (10))=1.212912988524474&(10 . We
note that for n odd, the pole in qz is crossed for low N,
and (qz ) converges to the continuum result from above.
For even n, the poles lie off the real axis, and (q~ ) con-
verges to the continuum result from below.

Recently, Moncrief has proposed an explicit differenc-
ing scheme

2 dV
qk+ 1

—qk+hpk ——,h (qk),

, «(q.), «(qk+i)
pk+ i ——pk ——,

'
h —~h

dqk dqk+ i

(19)

qx= zqoI[f(h)]"+[f( —h)] j

These equations are canonical in that they preserve the
equal-time commutation relations. Because they are ex-
plicit rather than implicit, they do not have the large-time
singularities of the finite-element method displayed in
Table I. On the other hand, it is not clear how to general-
ize this scheme to higher degree. With Moncreif's
scheme, for the Hamiltonian (1), we obtain at time step N

4
4

4
4
4

1

2
3
5

10
100

1

3
5

10
100

1

2
3
5

10
100

1

2
3
5

10
100

1

2
3
5

10
100

1

2
3
5

10
100

)fc

8.72X10
1.233 X 10

7.06X 10'
1.18X 108

1.212 910X10

1.86X 10'
1.231 X 10'

1.213 2X 10'
1.212 912988 76X 10

6.84X10'
1.19X 10'

1.212 64X 10
1.21291201X 10

1.212 912988 524464 X 10

1.255 X 10'
1.213 4X 10'

1.212 9157 X 10'
1.212 912 9909X 10'

1.212 912988 524476 X 10

1.35 X 10'
7.52X104
7.75X10'
8.48 X 10
5. 15X 10'

1.201 4X 10'

where

—1/2

+ 270 + h I[f(h)] —[f(—h)] j, (20)
This implies, for our initial conditions (8),

(q ') = —,
' I[f(h»' +[f(-h»'"j

' 1/2

f(h)=1+h 1+—h

4
+ —,'h2. (21)

+ I [f(h)]"+f( —h)"j'
—1

h2
1+

(22)
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The first few terms in the Taylor expansion of (22) are
(t =Ah)

(qg )=—, +& +— 1 — r +2 1 5 4

8X
(23)

For small t, Moncrief's scheme is less accurate than the
linear finite element [see (18)].

In Table III we also display numerical results for (q~ )
at t = 10 as predicted by the Moncrief scheme; for large r

this scheme is somewhat more accurate than hnear finite
elements.

IV. CONCLUSIONS

We have studied the large-time behavior of the finite-
element approximation to quantum mechanics for a sim-
ple explicitly solvable model of an inverted harmonic po-
tential. %'e believe that the general qualitative features
will persist in nonlinear problems, which are currently
under investigation.

The nth-degree finite-element solution has 2n complex
singularities in mirror pairs in the t plane, all occurring in
a narrow annulus about the origin. For odd n two of
these singularities occur on the real axis. The presence of
these singularities implies that there is a value of t (the
magnitude of the distance to the nearest singularity)
beyond which one cannot sensibly extend a single-finite-

element approximation. As the degree of the finite ele-
ment increases, the pole nearest the origin moves out, so
that finite-element approximations of higher degree have
a larger range of t over which they can be applied.

The single-finite-element approximation of degree n

agrees exactly with the Taylor series of the continuum, ;

solution through the term r " and the coefficient of the
t "+ term rapidly converges to the continuum result as n

increases.
Each of the degree-n finite-element solutions can be

iterated X times to carry the solution to large time. In the
X-fold iterated nth-degree finite-element solution the er-
ror in the r "+ coefficient decreases as X ". Moreover,
the coefficient of this error term decreases exponentially
with n. As a result we were able to extend solutions to
very large times with extremely high accuracy by straight-
forward 1teratlon of the basic oQe-step solution.

Finally we studied the explicit differencing scheme of
Moncreif and found that it is of slightly lower accuracy
than the linear finite element at short times and of slightly
greater accuracy at 1ong times.
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