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The problem of constructing a manifestly covariant field theory for spin-3 fields with interactions
is reconsidered using results from the light-cone treatment of higher-spin fields. In the case of self-
interactions, structure relations for the gauge algebra are studied. It is shown that the possible
field-independent structure relations that could be derived from the gauge transformations given to
first order in the coupling constant do not obey the Jacobi identity. Minimal and nonminimal cou-
plings to Yang-Mills fields are also studied. In this case, the gauge covariance of the field equation
fails.

I. INTRODUCTION

The theory of free fields of higher spin, both mas-
sive' and massless, ' is well established. The introduc-
tion of interactions has, however, met with considerable
difficulties. Minimal coupling of massless spin- —, fields
to electromagnetism or gravity fails Ev. en for spin- —,

'

fields, the coupling to an electromagnetic field leads to
problems with noncausal propagation.

Minimal and nonminimal coupling of spin-3 fields to
gravity has also been investigated. In this case, the spin-
3 gauge invariance of the action fails.

As regards self-interactions, this problem does not seem
to have been extensively considered in the literature. One
proposed approach is the generalized Gupta program '

for massless fields of integer spin.
It is clear that a manifestly covariant interacting

theory, if it exists, must be a gauge theory of some kind.
This is necessary since the field P& . . . &, totally sym-

metric in its indices, which can be seen to contain spin s,
has ('~+ ) components in four dimensions, but it should
describe only two degrees of freedom corresponding to the
helicities A, = +s. The alternative to a gauge theory is to
give up manifest Lorentz covariance, and try to formulate
the theory directly in terms of physical field components.
In fact, in a light-cone frame, it is possible to construct in-
teractions at least to first order in the coupling constant
for arbitrary massless fields of integer spin. ' In light of
this result it is natural to ask whether a covariant formu-
lation can be found which implements, in a Lorentz-
covariant way, the properties of the light-cone interaction
terms.

Higher-spin resonances do exist in nature, but they are
then massive and considered as bound states. As regards
massless fields, it is known from S-matrix arguments that
they cannot mediate long-range forces. " This, however,
rests on the assumption of a covariant formalism. Thus,
the motivation for a study of higher-spin massless fields is
mainly their theoretical interest. It can also be mentioned
that higher-spin fields have been considered in connection
with the question of extending supersymmetry beyond

X =8.
In this paper we will only study the case of spin 3.

II. PROPERTIES OF MASSLESS SPIN-3 FIELDS

The massless spin-3 field will be described by a totally
symmetric tensor field P& &~ . The wave equation ' '

~t t2t =+&t tW
p 1

+~ ~t |~t 2&~ »=0
p 1

is invariant under the gauge transformation

=0,
since under this transformation

(3)

This is equivalent to

y+++ y+-- y++i y+-~ y+&2 0

y++ — y+ & & y+22

The equation of motion yields

y++ — y+11 y+22 0

and

5 Wp, p~, 3B„,Bp "ci~,g ——=0 .

It has been shown that with a traceless gauge parame-
ter the gauge group is large enough to remove all but the
two physical helicities.

It is straightforward to reduce this free theory to a
light-cone gauge. Choose the nine gauge conditions
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From this we also learn that the coupling constant has
mass dimension —2 and that the three-point coupling
contains three transverse derivatives.

III. THE QUESTION OF EXTENDING
THE GAUGE ALGEBRA TO FIRST ORDER

IN THE COUPLING CONSTANT

y
1 li y22i

Owing to the tracelessness of P'j", the transverse com-
ponents describe precisely two degrees of freedom. The
complex light-cone field is conveniently defined as

y —/ I /2(pi l i+i/112)

Now, in the light-cone treatment of the spin-3 theory
we have shown that a three-point interaction can be con-
structed if the field belongs to the adjoint representation
of a Lie group. Otherwise, the interaction term vanishes.
In fact, we have found the action' to be

I d4X 1

y agua fabcg+3y a

Poincare group, ' ' although a slight modification of
Einstein's theory arises in that the spin of matter couples
(kinematically) to the torsion tensor. In this treatment
both the vierbein field e& and the spin connections ilj„' ap-
pear as gauge fields corresponding to local translations
and local Lorentz rotations, respectively. But as a conse-
quence of the field equations, co& is not independent of e&.

It is quite probable that an interacting theory of spin-3
fields would show a still richer structure. In the free
spin-3 theory there are three gauge potentials, since apart
from the field P&,&~ itself, we also have I"z'&~ . and

I '~p~& &~ (where the notation is explained in Appendix

A). The gauge-covariant (invariant in the free theory) ob-
ject is I"

p&.@ &&. However, all independent degrees of
freedom reside in the field P. It is tempting to suppose
that these features would be present also in an interacting
theory. Now the concept of gauge potentials is linked to
the procedure of making a global invariance local. One is
thus led to pose the question: which global invariance is
gauged by the potentials P, I "', and I' '? This seems to
be the central question in spin-3 theory. On the other
hand, it might be the case that only li)& z~ plays the role

of the gauge field corresponding to the parameter g&,(x),
and that I 1" and I' 1 have no significance as gauge po-
tentials.

Here, the problem will be approached in a simple, prag-
matic way by studying to what, extent the Abelian gauge
algebra of the free theory can be deformed9 into a non-
Abelian algebra which closes to first order in the coupling
constant e. To get a hint of what we should look for, let
us exploit the systematics inherent in the use of the gen-
eralized Christoffel symbols. For Yang-Mills theory and
gravity, the gauge transformations are to first order in the
coupling constant

5A' =c) P gf' 'g A' =D P—

In Ref. 5 it was shown that the free field theory of
higher-spin fields can be nicely formulated in terms of
generalized Christoffel symbols. These symbols general-
ize in a natural way the field strength Ez for spin 1, and
the affine connection I ~, and curvature Rz, for spin 2 in
the linearized theory. It was hoped that the generalized
Christoffel symbols would be useful when studying the
question of interactions.

Since we are here only interested in self-interactions, the
spin-1 field will be the Yang-Mills potentials A&. The
spin-2 field is the graviton hz„, defined through the usual
split gp~ = 'fI@~+K'h p~.

A simple approach to spin-3 theory would be to first
bring out the similarities between Yang-Mills theory and
gravity, and then try to generalize these to spin 3 using

-the information provided by the light-cone treatment.
One important property in this context is then, of course,
gauge covariance. For Yang-Mills theory, the nature of
gauge covariance is clear. ' ' However the situation is
somewhat more complicated for gravity. It is well known
that gravity can be treated as the gauge theory of the

D„g„+D g~ . (12)

The rationale for this choice of the form of the transfor-
mation is the following.

(i) On dimensional grounds there must be two deriva-
tives on the field in the nonlinear part of D&, since a has
mass dimension —2. These derivatives could in principle
act in a lot of different ways, but I ' ' is a well-defined ob-
ject which in a natural way generalizes I "' which appears
in the covariant derivative for spin 2.

(ii) The commutator of two covariant derivatives should
be a gauge-covariant object. With the above choice of D„
one finds that the commutator is a linear combination of
I (3)

A natural candidate for an extension of the gauge
transformation to O(a) for spin 3 would be

~6 j 2i =X (~j ~i2j
p 1

(13)
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(15)

The notation is best explained by recording the structure
relations for the non-Abeiian gauge algebra for spin 1 and
2, respectively,

[k,nl'=gf"A'
[f 9]P=&'(k a3.9P 9'a34—P') .

(16)

(17)

The point is that the structure relations which can be de-
rived from the first-order gauge transformations must be
independent of the field. Therefore, all possible forms of
such structure relations can be written down and it can be
checked whether they fulfill the Jacobi identities

g [[k,n1.4]=—[[k.~l, f1+[[n.fill
cycl

+[[40] n]=0 (18)

In the cases of spin 1 and 2, inserting (16) and (17) in (18)
it is seen that the identity holds. The question is whether
the same is true for the spin-3 structure relations. To
study this question, we will rely on the fact that to lowest
order in the coupling constant, the structure relations are
field independent as noted above. Therefore we can make
a general study of such structure relations without actual-
ly having to construct the gauge transformations.

EV. STRUCTURE RELATIONS FOR SPIN 3
(TO FIRST ORDER IN a)

%'e will not here attempt to construct the first-order
gauge transformation, but rather proceed directly to a
study of the structure relations that could be derived as-
suming that the transformations exist To be defini. te, the
following assumptions are made about the properties of
the structure relations.

(i) They are independent of the spin-3 field.
(ii) They contain two derivatives.

However, in order to attempt a construction of an in-
teracting spin-3 theory, a more general ansatz for 5P
should be used. Schematically this would contain terms
of the forms

fabcgbaayc

~fabcagbayc

&fabcag bye

where space-time indices are suppressed. By commuting
such gauge transformations (if they exist), the structure
relations can be read off. By demanding the commutator
of gauge transformations to be a gauge transformation, we
would get to first order in the coupling constant

[5,,5„]y„',„,=g a„,~„', , (14)
p 1

where co& & defines the new parameter. When doing this&jI'2

calculation one must also know how the parameters
transform.

From the commutator (14) one could then extract the
structure relations

'la. ,
~'...,a. p .—(&

~ ~ ~=2'�'"x„„' 'a.
,q'...,a.,g..., .

a)' a6 al . a6
Here, Q„and X& denote linear combinations of
products of four Kronecker delta symbols, or

Q„„' '=g a;(5555);„' (21)

X„„' '=g b;(5555);„', (22)

Thus the symbols Q and X simply yield all different con-
tractions of indices.

Furthermore, X has the additional symmetry

ala2a3a4asa6 a4asa6ala2a3
Xp =Xp (23)

as is seen in (20). [In fact, the proof can be carried
through even without this restriction. The important
thing is that X is not antisymmetric in (o1cr2cr3)(o4o5crb)
since in that case the structure relation would vanish. ]

Of course, the most general structure relation is a linear
combination of (19) and (20), but as we will see, (19) is ex-
cluded by itself, hence (19) and (20) can be analyzed
separately.

Now let us first focus on (19). Upon computing

g,„,& [[$,21],1t], there will turn up terms with the generic
form g, ,~

$21aaaag. These terms have the form

~2(fabcfcdeQ 1 6Q 1 6
~sA

fadcf cbeQ 1 2P3 P6QP1P2 3
pv ~&A

~P1P2~a la2 P3 P4 3 4~a5a68 8
cycl

P6Q 1 6 Q 1 2P3 P6QP1P2 3 6
P~ P3P6 P" ~sA

(iii) They involve f' '. We will check whether structure
relations fulfilling these requirements obey the Jacobi
identities (18). Here it should be pointed out that the
structure relations for spin 1, which are field independent,
and the structure relations for spin 2, which are field in-
dependent in lowest order (i.e., when they are extracted
from first-order gauge transformations), obey the Jacobi
identities by themselves without recourse to explicit field
transformation laws. This is a reflection of the underly-
ing group-theory basis for these theories. Note that when
we say that the structure relations should fulfill the Jacobi
identities, we mean that the commutator brackets should
fulfill the identities.

We will prove the following proposition: There are no
structure relations which fulfill requirements (i)—(iii) that
obey the Jacobi identities by themselves.

To prove this, we first write down all possible forms of
the structure relations compatible with (i)—(iii). These
can then be summarized in two general formulas:

[g,~]„'.=~f "Q„„' '[&'...,a.,a. g. ..—(&
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then the terms are clearly nonzero. If, on the other hand,

Apl p6n 1 6 0 1 2p3 p60plp2 3 6
pv p5p6 pv p5p6

with some constant c, QB factor out and in that case

fabcf cde fadcf cbe+0

Thus it is clear that it is the combined presence of the
constants f' ' and Il that prevents cancellations between
the two groups of terms. In the absence of derivatives, for
spin 1, we get zero due to the ordinary Jacobi identity for
f'b'. If there were no f' ', we could arrange to get cancel-
lations between the two groups of terms by demanding
equality between the products of two 0 above.

Finally, it has to be proved that

Q„, Qp~, &0 .

This is somewhat awkward to prove and for this reason
the proof is put aside in Appendix B.

Next, turn to (20). In that case all terms have to be
computed since they are all of the same form

a/a21 aalu. The result is

2( fabcf edema
1 6y 1 6

p5p6

f aecf ebs
4 3 Pd'%6y~1~21 3 1 2 3)

PV p5p6

x g (a, q,
' a, a. q"..a. g'.,.) . (25)

cycl

The proof that this expression is nonzero proceeds in ex-
actly the same way.

The failure to find field-independent structure relations
for spin-3 gauge transformations does not mean that
transformation laws of the form (13) are necessarily
wrong. For spin 1 and 2 it is possible to extract the struc-
ture of the gauge algebra from the gauge transformations
given to first order in the coupling constant. For spin 3
this seems not to be the case. This is an indication that
there is no field-independent gauge algebra and that the
spin-3 theory lacks a group theory basis of the type that
exists for lower spin.

5g~„' =D„P, 5,A„' =0,
gf abcgbyc

5 6,~~,=X D~, g~, .
p 1

These transformations form an algebra

[5g,5, ]=5, ,

[5g,5g] =5g,
[5„5,]=0 .

(29)

(30)

However, the equation (28) is not covariant under the
-transformation 6, . This is due to the fact that the covari-
ant derivatives do not commute. Typically, 8 p p2p

varies into terms proportional to the Yang-Mills field
strengths. There is, however, one nonrninimal term, co-
variant under 6g, which can be added to the field equa-
tion:

J~,», =X gf"I'~", &'-~~,
p 1

(31)

Unfortunately, this is not enough to cancel all the
unwanted terms. The result is

5( WP» +JP 14~ )

p I

(32)

where W& is the free equation of motion for the Yang-p)
Mills field. The presence of the field strengths in the vari-
ation of the field equation thus seems to be a common
feature to attempts to couple higher-spin fields.

p ].

+ —,X ID., D., IC:,=0
p ]

The complete theory must be covariant under the follow-
ing set of transformations

V. COUPLING TO YANG-MILLS FIELDS

4p p~ =gf 5 PI4 I4~ (26)

where g and P are dimensionless. It is interesting to
check whether this symmetry can be made local resulting
in minimal coupling to Yang-Mills fields. Following the
standard recipe we introduce the gauge-covariant deriva-
tives

Dab 5aba gf abcg c
p p p (27)

into the equation of motion (or Lagrangian) for the spin-3
field. The minimally coupled equation of motion then be-
comes

The free field theory of spin 3 has the same internal
symmetry as the light-cone theory, namely,

V. CONCLUSION

The limitations of the present work must be stressed.
We have started from the assumption that the spin-3 field
is described by a totally symmetric field P„» and that

the would-be interacting theory shares some definite prop-
erties with the light-c6ne formulation of the theory. It
might be that this is too narrow a framework. It could be
that it is necessary to use a field with more auxiliary com-
ponents than P„' », or that only more than one higher-

spin field could cooperatively form a covariant interacting
theory. However, within the framework of this paper, the
existence of a covariant self-interacting theory for spin-3
fields is still an open question. The most pressing ques-
tion to answer is whether a gauge-invariant action can be
found along the lines outlined in Sec. III.
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APPENDIX A

For the sake of completeness, the definitions of the gen-
eralized Christoffel symbols are given here. The mth
symbol is defined in terms of the (m —1)th symbol ac-
cording to

~(m) ~(m —1)

I (m —1)

m ~ I'1 P2 Pm:P1P2 1"s '

p 1

The first symbol is given by identifying

(0)4)'''pg ' pi'''pg

Their properties under gauge transformations

are given by

~T (m)
P1' ' 'Prn:I 1' '1"s

=( —1) (1+m) Q
p, m+1

from which it is seen that I'pl' p:p p and

are gauge invariant. For further
P3

' ' ' Pm:I 1 I s

properties consult Ref. 5.
The summation symbol g denotes a sum of the terms

p k
following it consisting of (k) terms and such that it is
symmetric in the indices p;.

The order of the Christoffel symbols (m) is suppressed
in some formulas in the paper, as it is evident from the in-
dex structure which symbol is meant.

APPENDIX B

We give a proof of the statement

S=Q„, Qp~, &0 .

Introduce the following notation for Q,

QPl P6 gPjgPI gPmgPn ~ Qijklmn
PV

=
P,. P~ () V) ~

where Q,'j" " are constants depending on the values of
i,j,k, l, m, n. Note that i&j&k&l&m&n and that they
take values 1,2,3,4,5,6. Write also

~ ~ ~

b

In the sum S, there will be distinct classes of terms ac-
cording to whether (m, n)=(5, 6), (I,m)=(5, 6), (I,n)
=(5,6), (j, m)=(5, 6), (j,n)=(5, 6), or (j, l)=(5,6). Ow-
ing to the symmetry in (p5p6) it does not matter whether
m =5, n =6, or m =6, n =5, etc. , it just yields a factor
2. Thus, we get the following expression for S,

J

f pj's
i ~ Qijkl56 Q i

' ' '
6+2 g jg n ~ Qijk56n Q

1' ' '
6

p; pk~ a PV PI V)

a a
J

J

+2 gpjgpm ~ ~ijk5m6 ~ 1 6+2 apl gpn ~ ~i5k16n ~ 1 6

pk V) pk (p ~ a
a a

't

apl cpm ~ gi Sklm6 ' ~ 1 6+2 gpmgpn ~ ~i Sk6mn ~ 1

pk (p ~ a Pi V) (P V) ~ 6'pk
a a

Furthermore, nothing is changed by interchanging (i,j)~(k, l) and m~n, hence
r

gpjgpl ~ ~ijkI56 ~ 1 6+8 gpjgpn ~ ~ijk56n ~ 1 6+2 gp~gpn ~ gi5k6mn ~ 1 6
pv pkv) (p v) ~ a ps pk

a a

Now since Q&0 and all terms in S have a different index
structure, no cancellations can occur, and therefore S&0.

To be more precise, the first term is proportional to
1 6

0& which is nonzero and the factor in front is a sum
of different products of Kronecker deltas. This follows
from the obvious symmetry properties of Q'j"' . It is
symmetric in (ij), (kl), and (ij)(kl) Therefore .we have
the terms

gP2gP4g 123456 gP3gP4~ 132456 gP4gP3~ 142356
P1 P3 P1 P2

Going back to (24) we see that these terms multiply some-
thing that is symmetric in p1p2 and p3p4, thus we could ar-
range to get zero by choosing O' = —Q'
Q' =0. But since the structure relations themselves
are symmetric in p1p2 arid p3p4, this solution only means
these contributions to the structure relations vanish. The
first set of terms therefore yields a nonzero result.

In an analogous way one can go through the other two
sets of terms and show that no cancellations occur.
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