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Current-definition freedom in a derivative-coupling model
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The problem of the construction of a covariant current operator in a two-dimensional field theory
is reviewed and subsequently applied to a recently proposed derivative-interaction model. It is found
both by solving the equations of motion as well as by path-integral techniques that there exists a
family of admissible solutions labeled by a parameter g, only one choice of which corresponds to
that previously derived. This is shown to be in agreement with results for the other known soluble
two-dimensional field theories in which a gauge principle is absent.

INTRODUCTION

It is well known that for the case of a massless spinor
field the current operator j& in two dimensions has the
property that (at least in the absence of interactions) it has
vanishing divergence and curl, i.e.,

this approach is made to the derivative-coupling model
and the existence of the more general solution demonstrat-
ed. Similar results are shown to emerge from the path-
integral approach in Sec. IV with some concluding re-
marks offered in Sec. V.

This implies that the spectrum of j" consists solely of a
zero-mass particle and is presumably the principal reason
for the solubility of the various models in which this
current is coupled either to itself or to a vector field. In
the former case one has the Thirring model' while the
latter is either the Schwinger model or what will be re-
ferred to here as the current-coupled vector meson de-
pending upon whether the vector field is massless or mas-
sive. Of these, the Schwinger model has probably enjoyed
the greatest popularity since it possesses an exact local
gauge invariance, a concept which is widely held to be the
appropriate starting point for a complete four-
dimensional theory. Because of this, the current operator
is uniquely prescribed and the solution of the model is
fixed up to a gauge transformation.

Recently, however, there has been work reported on a
coupling of the current operator j" to the derivative of a
scalar field P. This model does not possess a local gauge
invariance and consequently cannot be expected to resem-
ble the Schwinger model with its necessarily conserved
current operator. Thus one expects that at least qualita-
tively it should resemble the soluble theories which lack a
gauge principle. Since, however, it is known that both the
Thirring model and the current-coupled vector meson
are dependent on a parameter which does not appear in
the Lagrangian (but is necessary to specify a particular
current construction) there immediately arises the ques-
tion as to whether the solution obtained in Ref. 3 is the
most genera1 result. It will be shown in this paper using
the approach of Refs. 4 and 5 as well as the path-integral
techniques due to Fujikawa that the derivative-
coupling model in fact possesses a one-parameter family
of solutions as suggested here.

In Sec. II the issue of' current construction in two di-
mensions is briefly reviewed and the origin of the so-
called g parameter displayed. In Sec. III application of

II. CURRENT DEFINITION WITH
AN EXTERNAL SOURCE

Since the solutions of the known two-dimensional field
theories can all be obtained from the more manageable
case of a spinor field coupled to a classical vector field
At'(x), one conveniently starts from the Lagrangian

(2.1)

In writing (2.1) the field P(x) is taken to be Hermitian
with the current given by

j"(x)= ,' g(x)a"qp(x)—, (2.2)

where

1

0
0 1 01, a —a, —0

and q is a matrix of the form

0 —i
0

in an internal charge space.
Since the definition (2.2) is a formal one, it becomes

necessary to prescribe a technique for the circumventing
of divergences which appear in the calculation of its ma-
trix elements. One such approach is that of regularization

, which seems to be quite adequate to the case in which
current conservation is required for the model. Since,
however, one is particularly concerned here with those in-
stances in which the current need not satisfy such a condi-
tion, it will be convenient to begin with the definition pro-
posed by Schwinger for the gauge-invariant case, i.e.,
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X
j"(x)= lim ,' g—(x)a&qexp iq f,dx&A&(x") P(x'),

X~X X

(2.3)

where the limit x=x' is to be taken after setting x =x' .
This specification of the current operator is clearly ap-
propriate to the case of a conserved current inasmuch as it
preserves the invariance of ji'(x) under the combined local
gauge transformations

g(x)~(1+iq5A)g(,x),
A"( x)~ A"(x)+8%A, ,

during the process of taking the limit. Specifically, one
obtains

( p( )) (0 i j (x) i 0)
(ohio)

D""(x)= —(g—& ~ +qg" g )8 B&(x)
7r

(2.10)

with g'=1 and g= 1 corresponding, respectively, to the
cases of vector and axial-vector current conservation.

The case of a quantized interaction is now easily han-
dled by use of functional derivatives. In the case of the
Thirring model with a term

in the Lagrangian one finds that the two parts of D&"(x)
undergo different renormalizations as a consequence of
the interaction. The result is

(2.9)

The current correlation functions DP"(x) and D~"(x)
are subsequently found to be replaced by the more general
result

D "x—x' A„x' x', (2.4)

where

DP"(x)= ——e" e 8 8+(x)

and D(x) satisfies
+ g~ g" a.a~(x) .1

1 —A.il/m.
(2.11)

—a'D(x) =5Ix) (2.5)

subject to the usual causal boundary conditions.
Although Eq. (2.4) implies Bp"=0, it does not yield

B&d'"j„=odespite the formal invariance of the Lagrang-
ian under

exp iq —dx„"yqei'"A (x")
X

which preserves the invariance under (2.6) together with

A~(x)—+A~(x)+a~„B 5A, .

Calculation now yields the result

&j&(x) &
=fD„""(x—x')A„(x')dx',

where

g(x)—+(1 +iqyi5A')g(x), ,

where y5 ——cxj. This symmetry, however, can be restored
by replacing the exponential in the definition of j"(x)by

The corresponding calculations for .the case of the
current-coupled vector meson are also readily carried out
and display a similar dependence upon the g and ri pa-
rameters. In point of fact, the appearance of g in the ex-
pression for the renormalized mass makes the dependence
on the current definition even more striking than in the
case of the Thirring model.

In sum then one finds that all the known soluble
models in two dimensions which involve the coupling of a
current operator depend upon a parameter which can be
prescribed at will. (The sole exception to this is the
Schwinger model whose equations of motion require
current conservation for consistency. ) That such an ambi-
guity must also cha, racterize the model of Ref. 3 would
appear logical, the explicit demonstration of which is
given in the next section.

III. GENERAL SOLUTION OF THE DERIVATIVE
INTERACTION MODEL

D„""(x)= ——8"8"D(x) .
fr

(2.7)

The Lagrangian of the madel of Ref. 3 can be written
Although Eq. (2.7) clearly implies the conservation of

the dual of j"(x), it requires that one dispense with the
usual idea of a conserved current. At the same time it
raises the suspicion that there may be a definition of j"(x)
intermediate between the case of current conservation and
axial current conservation. This is indeed accomplished
by taking the exponential in ji'(x) to be

X
exp iq f dx&'[gA&(x") —ilyzd'"A„(x")], (2.8)

where g and ri are required for reasons of cavariance to
satisfy

I = 4~"dl 4+Wdl 4—'+ 2 W0„2m'0'—
2

+gB"pj "e„„+Kg+A "j„, (3.1)

where K and A& are classical sources coupled, respective-
ly, to the spin-zero field p and the current j". The action
principle implies that the variation with g of the
vacuum-to-vacuum transition amplitude is given by
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or

(O)0) = (0(ag [O)~„„=— e„„a" (0[0)
5g P

(0
~

0)g= exp —ig'f e& 8 dx (
~

0)g=q (3.2)

Using the fact that for g =0 one has the factorization

(o
i
o)f;,'=(o

i
o) (o

i
o), ,

one readily obtains that

(0
~

0)g=g ——exp —fA„(x)D""(x—x')A„( x') dxdx' exp —fK(x)b, (x x')E—(x')dx 'dx'

where D»(x) is given by the g-dependent form of Eq. (2.10) and h(x) is the usual mass-m propagator

(3.3)

( —8 +m )h(x) =5(x) . (3.4)

The insertion of Eq. (3.3) into Eq. (3.2) yields a precise prescription for the calculation of the vacuum-to-vacuum tran-
sition amplitude. FoHowing somewhat tedious calculations analogous to those of Refs. 4 and 5 it follows that

(0
~

0)g= C exp —fA&(x)Dg "(x — x)A (x')dx dx' exp —f IC(x)hg(x —x')K( x') dxdx'

r

&exp i K xM" x —x'2& x' x x' (3.5)

where C is a constant and
r

2+2 2p

Dg "(x)=D""(x) eI" —B~e 'B,hg(x), hg(x) = 1— b, '(x), M"(x)= O' B~—b,g(x), (3.6)

with 6'(x) being the propagator for a field of mass squared m (1—g g/m ) ', i.e.,
r

2—a'+, ~ (x)=gx) .
1 —g g/m.

(3.7)

The fermionic matrix elements are also computed in straightforward fashion using the source method. In particular
one finds that for vanishing external sources the 2n-point function has the form

lg
t xzn ) =Gg o(x i ~ =~x2n)exp QKVJYs'Y5gg(x2 J

This implies for the two-point function the result

~ 2
G(x —x') =Gg o(x —x')exp g [b,'(x —x') —b, '(0)]

1 —g g/m
(3.8)

One finds upon comparison with Ref. 3 that in all cases
there is agreement for the gauge-invariant (i.e., /=1)
choice while at the same time one has accomplished an
explicit demonstration of the fact that as in the previously
known gauge-noninvariant models there exists a one-
parameter family of solutions.

Before leaving this brief discussion of the Green's func-
tions of the model it is of some interest to remark that
operator calculations of the divergence of the current and
its dual give

2

Bp"=0, B„d' j = — 32$ . (3.9)

lt is the latter equation which readily yields the previously
calculated mass renormalization of the model. Perhaps
even more interesting, however, is the fact that when all
the external sources are removed, the current is conserved
despite its gauge noninvariant form. This, however, is
also identical to what happens in the Thirring and
current-coupled vector-meson models. In fact in each of
these cases it is an accidental conservation law which
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could be broken by the inclusion of additional (but solu-
ble) coupling terms.

and

5/= igF(x)yslt (x) (chiral gauge tf ") (4.5b)

IV. FATH-INTEGRAL SOLUTION

The previous two sections have shown that in the ab-
sence of a dynamical gauge-symmetry principle the defini-
tion of the current and hence the most general solution of
the model with a derivative coupling involves an arbitrary
parameter. Attention will now be directed to a study of
the same model following methods of Fujikawa with
the avowed goal of deriving the one-parameter .class of
solutions within the context of path integrals. The La-
grangian in Euclidean space has the form

L = di 4'—0+ 0' &Vyl d—i 0+g fy syI Cd' 0P

and the generating functional is given by

the invariance of the generating functional leads to the
naive conservation laws

5jp =di (Pyl 4)=o

didl'=dl (Pysy„W) =o
(4.6)

However, those conservation laws are known to be
anomalous because of quantum corrections. ' As is
known from the analysis of Fujikawa, the measure is
not necessarily invariant under such transformations and
the noninvariance leads to anomalous conservation laws.
As an illustration of this point it is useful to calculate the
most general change in the fermionic measure under an
infinitesimal chiral transformation.

Let P„(x) satisfy the eigenvalue equation

Z= D D D e (4.&) yap(g)P~(x) =yq(B~+i ggA~)$~(x)

Ap = —
LED+ ~ =

—lE~QQ . (4.3)

Note that this allows one to mimic the form of a gauge
interaction even though there is no dynamical gauge prin-
ciple operating in this model. There are many models (at
least in two space-time dimensions) with this property and
it is useful, therefore, to study the most general behavior
of the fermion functional in the absence of a gauge-
invariance principle. To do that it is sufficient to look at
only the Lagrangian of the fermion interacting with a
background field. That is,

Lf = i fy~(B~+igA—~)p

with

In order to proceed it is convenient to imagine the in-
teraction of the fermion fields as a gauge interaction, i.e.,
one writes the fermion interaction Lagrangian as

5gA'syi it'~i .

This can always be done in the path-integral formalism by
introducing a delta functional of the form

5(~„'(x)—a„y(x))

and functionally integrating over the new field A&(x).
Furthermore, using the two-dimensional identity

5
Xsz~~] =Xp~p

where 2„= ie„Q„ —in Euclidean space, the complete
Euclidean Lagrangian can be written as

I.= 'a„ya„y+— y' i yy„(a, +igw—„)y2" " 2

with

This allows expansion of the fermion fields as

P(x) =pa P (x), g(x) =gP (x)b

so that

DPDg= gdb da (4.10)

It is helpful to emphasize here the reason for selecting a
basis that is not gauge invariant. Normally, if a theory
has a gauge invariance one expands in a basis which
respects the symmetry of the theory. Since, however, in
the absence of any such symmetry principles, one basis is
as good as any other, it is clearly desirable to choose a
very general basis. Note here that the deviation of the pa-
rameter g from unity measures the gauge noninvariance.

To find the change in the measure undei an infini-
tesimal chiral transformation, recall that the fields
transform as

g(x) ~g'(x) =g(x) +5/(x) =[1+igyse(x)]f(x),
(4.11)

g(x)~g'(x) =g(x)+5/(x) =f(x)(1+igyseg .

Further, by expanding

P'(x)=pa' P (x)=QC taiP (x),

(x) . (4 7)

Here g is an arbitrary parameter and hence P„(x) are the
eigenfunctions of a gauge-noninvariant operator. Note,
however, that for g= 1, the operator is gauge invariant. If
the P~'s form a complete set, then they must satisfy

Id x P (x)Pt(x) =5 t,
(4.8)

gg~(x)P~(y)=5 (x —y) .

Zf —— D D e (4 4)

If the fermion fields inside the functional integral are
redefined by

where

C t=5~t+ig fd x e(x)P~(x)ysPt(x) (4.12)

5$= ige(x)g(x)—(gauge tf") (4.5a) it follows that
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detC ( =exp Tr ln 5 I +ig fd x e(x)P (x)y s(x)P((x)
T

=exp igg fd xe(x)P (x)ysP (x)
m

=1+igg fd2x e(x)P (x)ysP (x)

lim igg fd x E(x)p (x)ysp (x)e =1+ lim igg fd x e(x)p (x)yse '~' p (x) .
M ~ oo pg M2~ ce gpss

Using the completeness relation this can be written as

detC~~=1+ lim ig d x e(x)Tre '" "yse + '~' e+'"d k —tk.x — 2 M~ ik x
M2 —+ ce (2m. )

d2k=1+ lim ig fd'x, max)gg
"

M ~ce (2n) M

&p»Fp» mM i g= 1+ llm le fd x e(x) ~ 2
= 1+ fd x E(x)e~+~»,M (2n) 4~

where use has been made of the two-dimensional identity

(4.13)

y„y+„(g)D (g) =( 5„ie—„„ys—)D„(g)D„(g)= —D„(g')D„(g)+ yse„+„„.2

It is clear now that under the infinitesimal chiral transformation

(4.14)

2

+d gd ' =d tC, ffd = 1+ d' ( ) „&„„+d (4.15)

Similarly it is easy to see that under the same transformation

l gQdb ~Qdb' = 1+ fd x 6x)e„+„, 'gdbl1l Ill 4
Nl

so that the change in the measure is given by

6(DQDQ)= fd x e(x)e„+„„DfDg .

(4.16)

Consequently the naive conservation law for the axial-vector current becomes
Ii'dp, =~,(4ysy~W) =

27'
(4.17)

Similar calculations show that the measure is invariant under a gauge transformation so that the conservation laws take
the form

a~„=a„(yy,y„y)= e„~„.= -a„~—„=— a„a„y ..s
2m.

(4.18)

Use has been made here of Eq. (4.3), namely, 2&—— ie&„BQ —It is info. rmative to compare this with the point-splitting
results of the previous section given in Eq. (3.9). This shows that in the absence of a gauge principle the axial anomaly is
ambiguous.

To solve for the derivative-coupling model, let us note that if we make a finite chiral transformation

P(x)~g'(x)=e ' P(x), P(x)~g'(x)=g(x)e (4.19)

the fermion Lagrangian changes to

If= —iyy„[a„+igy, a„a(x)—igy, a„y(x)]y(x) .

It is clear, therefore, that if one chooses

(4.20)
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a(x) =P(x)

the fermions would decouple.
Following Roskies and Schaposnik" one can now calculate how the functional measure changes under a finite chiral

transformation. The finite transformation, of course, can be thought of as X infinitesimal transformations with parame-
ter e(x) such that

lim Ne(x) =a(x) =P(x) .
g~o, N~ ao

(4.21)

Supposing that n such infinitesimal transformations have already been done, the fermion Lagrangian would have the

Lf = i gyp—(ay+igy5napE igy5—dye)y= t qy—pf'ap igy—5A p(n)]/= iyy—p[ap+igA p(n)]lP,

where as before

(4.22a)

A&(n) = i ez—Q „(n ) = i e&P—„(p ne)—. (4.22b)

It is clear now that upon expansion in the basis

y„D„(g,n)P =y„[B +iggA„(n)]P =A, P (x),

the functional measure changes under an infinitesimal transformation as [see Eq. (4.16)]

(4.23)

2

DPDg~DgDP 1+ fd x e(x)e„+„„(n) =DgDg 1 — fd x e(x)B„A„(n)
277

=DgDP 1 — fd x e(x)B„B (P —nF) (4.24)

Thus under a finite chiral transformation, the measure changes as

gg2
lim Q 1 — fd x Px)B„B„($—ne) DQDitj

r~o, +~m, xr=a=y n =o

2

=Di7tDg exp — fd x a(x)B„B„[P——,
' a(x)]

(4.25)
2 2

=D&D&exp — fd x P(x)B&d&P(x) =D&D&exp fd x B&P(x)B&P(x)
2m 2m

Clearly, therefore, the finite chiral transformation which decouples the fermions leads to an effective action of the form

Z= D D D e

where

8 g =fd x B~QB~Q+ P —l fy~c1~$ B~QB~Q—= fd x (4.26)
2 Pl

a„pa„y+ y2 i yy„a„y—

This is the one-parameter solution of the model. For
g'=1 there follows, of course, the results of Ref. 3 corre-
sponding to a special case of the most general solution.
The Green's functions can be calculated in a straightfor-
ward manner by introducing sources and give results al-
ready quoted in Sec. III.

V. CONCLUSION

In this paper the most general solution of the
derivative-coupling model has been derived both in the
point-splitting method as well as in the path-integral for-
malism. The results obtained forcefully indicate that even
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though the gauge principle is a beautiful physical idea, an
insistence on a gauge-invariant regularization in the ab-
sence of a gauge symmetry can be too restrictive. Gauge
invariance may, of course, be necessary for renormaliza-
bility when true gauge interactions are present. On the
other hand, when not required by such considerations, in-
sisting on gauge invariance does not allow for the richer
spectrum of solutions as obtained in detail here for the
derivative-coupling model. In general, therefore, one
should retain the flexibi1ity of not specifying a value for

the parameter g even though it may be determined from
other considerations in a particular problem.
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