
PHYSICAL REVIEW' D VOLUME 32, NUMBER 8 15 OCTOBER 1985

Discretized light-cone quantization: Solution to a field theory
in one space and one time dimension

Hans-Christian Pauli and Stanley J. Brodsky
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

{Received 24 June 1985)

In the preceding paper, the field-theoretic bound-state problem in 1+ 1 dimensions was mapped to
the problem of diagonalizing a strictly finite-dimensional Hamiltonian matrix by quantizing at equal
light-cone time. In this paper, we calculate the invariant mass spectrum for the Yukawa theory

The spectrum is shown to be independent of the momentum cutoff in the limit A~ao and
more complex with increasing harmonic resolution K. The results are compared with the recent
work of Brooks and Frautschi, who apply conventional space-time quantization. Because of incom-
patible cutoffs, we reproduce their results only qualitatively, for a rather small value of A. We pro-
pose an explanation for their nonunique mass renormalization. %"e also discuss the straightforward
application of the discretiaed light-cone quantization to non-Abelian field theories in 1+1 dimen-

sions, and the generalization to 3+ 1 dimensions.

I. INTRODUCTION

Consider a Fermi field coupled to a Bose field by the
trilinear form A,f/@ In one. time and one space dimen-
sion, one has three constants of motion: the total energy
E, the total momentum P, and the total charge Q. Here
E and P are components of a Lorentz vector, whose con-
traction is the invariant mass squared I =E —P .
Upon quantization at equal time, E, P, Q, and M2 be-
come operators which commute mutually. Their sirnul-
taneous diagonalization is equivalent to solving the equa-
tions of motion for the operator fields, i.e., the IGein-
Gordon and the Dirac equations. Brooks and Frautschi'
have studied this problem numerically in the "number" or
Fock-space representation. The number of Fock states
with the same P and the same Q has no upper limit, the
dimension of the Hamiltonian matrix is therefore unlimit-
ed as well. By introducing an artificial length L and a
momentum cutoff A, the matrix can be made finite,
though large, and can be diagonalized numerically. One
must then be able to show that physically relevant results
do not depend on either L or A. Because of the difficulty
of the numerical work this has not been done in practice.

The same problem can be treated in a different way by
quantizing the fields at equal light-cone time w=t+x.
Again one has three constants of motion, but they appear
as the total light-cone energy P =E—P, the total light-
cone momentum P+=E+P, and the charge Q. The
operators P and P+ are again components of a Lorentz
vector, whose contraction is the invariant M =P+P
Since Q,P +commute mutua—lly, they can be diagonalized
simultaneously. One can formulate the problem in the
Fock-space representation, introducing again two formal
parameters, a box size I. and an ultraviolet regulator A.
Thus far everything is analogous, if not identical, to the
usual quantization; in fact, if done correctly, one can
switch back and forth between space-time and light-cone
quantization, since the representations are connected by a
unitary transformation. But there is an essential differ-

ence: on the light cone only a finite number of Fock
states can have the same (light-cone) momentum and the
same charge, and therefore the mass matrix has a finite
dimension to begin with. All this was discussed at length
in paper I (Ref. 2), as well as the fact that the operator
M =P+P is strictly independent of the box size L.

The present work has three objectives. (1) We demon-
strate that the physical results, the mass spectra, and the
eigenstates, become independent of the cutoff A in the
limit 1/A —+0. This is discussed in Secs. III and IV. (2)
%'e show that the discretized light-cone quantization
method as developed in the preceding paper is feasible,
and that no difficulties arise obtaining numerical solutions
for the bound-state spectrum and the bound-state wave
functions. In some cases we give exact analytical solu-
tions (see Sec. III). In the same section, we discuss the
question of renormalization. In order not to overload the
paper with numerics, we restrict ourselves to the charge-0
and charge-1 sectors. (3) Last but not least, we convince
ourselves (in Sec. V), that the numerical results obtained
with light-cone quantization are not in conflict with those
of space-time quantization. '

In Sec. VI we summarize the main results, and discuss
discretized light-cone quantization, in particular to which
extent the case of scalars in 1+ 1 dimensions might be
useful for developing methods suitable for the more in-
teresting fields in 3 + 1 dimensions.

II. THE MODEL AND THE NOTATION

The Lagrangian density

(2.1)

specifies the physics of a fermion field g interacting with
a boson field P. In one space and one time dimension, the
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canonical procedure generates three constants of the
motion. In light-cone notation, they are the total (light-
cone) momentum P+, the total (light-cone) energy P
and the total charge Q. If'one expands the fields into
plane waves, and requires them to be periodic operator
functions on the light-cane space interval ( L,L—), then

Q, P+, and P become operators acting in Fock space,
i.e., they can be expressed in terms of creation and de-
struction operators for fermions (i.e., b„and b„), antifer-
mions (i.e., d„and d„), and bosons (i.e., a„and a„), which
obey the usual commutation relations. More specifically,
one writes the fields as

A

g
(4mn)'~~.

M'=—P+P —=EH, (2.5)

and work with the operators K and 0 which do not de-

pend on I..
In the Fock-space representation, two of the three

operators are already diagonal:

Q = g (b„b„—d„d„)

isolate all the dependence on the light-cone box size I.
rather neatly, i.e.,

P+ = K and P = H,2%.

L, 2m

thus

(2L ) 1/g n e

(2 2) and

IC= g n (a„a„+b„b„+d„d„).
(2.6)

with discretized single-particle light-cone momenta

k„+= n, n=1,2, . . . , A .+ 2&
n

The single-particle light-cone energies are

(2.3)

The Hamiltonian H is rather complicated, nondiagonal,
and split up according to

(2.7)

Its mass part H~,

Plk„=
k„+

2Ply
and k„=—

k„+
(2.4)

+d„d„(mF ~g y„)j, (2.8)

HM g —[a„——a„(mg2+g a„)+b„b„(mF +g p„)
n

for fermions and bosons, respectively. The spinor u is in-

dependent of n. Qne should note the introduction of two
additional and formal parameters, i.e., the box size L, and
the maximum single-particle momentum, the cutoff A.

As a peculiarity of working on the light cone, one can

depends on the bare fermion and boson masses, and on the
self-induced inertias a, P, and y, defined below. The ver-

tex part II& of the Hamiltonian is linear in the coupling
constant g—:A, /v'4m. ,

H, =g g [(b'b„'+b'b )({k+l
I

— j+{kI+l—
k, l, m

+(dI, d cI +d dI, c~)({k+1
I

—m j+ {k I
+l —m j)

(bI d cI +d b—f c()({k—l
I
+m j+ {k

I

—l+m j)], (2.9)

while the seagull part

Hs ——g g [b~b cI c„({k n
I
l mj+ {k+—l

I

——m nj)—
k, l, m, n

+dI d crc ({k—"Il —m j+{k+l I

—m —n j)+(dI b cfc +b djc ci){l k I"—m j]— (2.10)

and the fork part HF of the Hamiltonian, i.e.,

HF gg [(bj,b——czc„+b bj,c„c(){k+lIn —mj+(df, d c, c„+d d„c„c(){k+lIn —mj
k, l, rn, n

+bI,d cI c, ( {k—n
I
m+l j+{k+l

I
m —n j )+d bI, c,c&({k—n

I
m+l j+{k+l

I
m —n j )], (2.1 1)

are proportional to g . We use the abbreviation c„—:a„/v n. The matrix element {n I
m j conserves the light-cone

momentum and has the values
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0 if n =0 and m =0,
tn ~m)= —5 „ if n&0 and m&0 .

(2.12)

The self-induced inertias depend explicitly on the momentum cutoff A, i.e.,

a„= g ( I n —m
~

m n—I
—

I n +m
~

—m n I
—),

A A

P„= g fn —m
~

m nI and—y„= g In+m
~

—m nI—,
m 1 m m 1m

(2.13)

as opposed to the diagonal element for each Fock state
~
i), i.e.,

D; =(i
)
M'

)
i ) =D; = (i j H )

i )E . (2.15)

Since K is diagonal, H and M have the same eigenstates.
After renormalization, M has only positive eigenvalues.
In line with conventional interpretation, one identifies the
lowest eigenstate of M with the physical particle of
charge Q. The physical boson has charge Q =0 and
physical mass mz, the physical fermion has charge Q =1
and a fixed mass m~. This can be achieved by the free-
dom to choose the mass parameters mz and m~, the bare
masses as they appear in the Lagrangian. The renormali-
zation of the masses, i.e., the finding of the functions

mg mg (mF, m g,——g, IC, A)

and will be discussed in some detail in the next section.
As for the notation, we shall label the eigenvalues of H

or of KH

(2.14)

III. THE SELF-INDUCED INERTIAS
AND THE POCK SPACE

The self-induced, instantaneous inertias arise from nor-
mal ordering the seagull graphs. This murky birth might
be an explanation why they have apparently not been no-
ticed before. Their existence is not specific to a scalar
theory nor to one space dimension; they will appear also
in the three-dimensional treatment of QED and QCD. As
a matter of fact, they play an important role in the renor-
malization of the bare masses and in finding the exact
spectrum. If one analyzes their origin in time-ordered
perturbation theory in the way done by steinberg,

" they
turn out to be closely related to vacuum polarization and
self-energy terms. In a way, they represent a resumma-
tion of certain graphs to all orders.

It is therefore instructive to analyze their dependence
on the momentum cutoff in somewhat greater detail.
VA'th the identity

(3.1)

and

my =my(mp. ,mg~g~X, A)

(2.16) the self-induced inertias, as defined in Eqs. (2.13), become
for the fermions, for example,

is the major problem one faces in the numerical work for
strong coupling. In principle, one should also renormalize
the coupling constant, but this finite renormalization can
be postponed until dealing with a scattering theory.

The structure of the solutions depend to some extent on
the choices of the physical masses. Although we have
done calculations with various parameters, we shall
present results for only two sets. The first one may be
taken as a representative for mz &~ mF, i.e.,

~.= ——+ X — Xn m=1 m m=1 men m —n
(3.2)

X „=X
m = l, m+n m =1

+
m —.n +) m —n

Since I/(m —n) changes sign in the sum, one rewrites
this as

m~ ——6.7 and m~ ——1.0 (2.17)
+

m=zn m

in units of the pion mass, for example, and was used by
Serot, Koonin, and Negele in order to produce reasonable
binding in one-dimensional nuclei. The second one, i.e.,

and notes that the two first terms cancel each other.
Treating a„and y„ in the same way one gets

my =0.3 and mg = 1.0, (2.18)
A A

a„=———g Xn ) m+n p +) m —n

is introduced mostly for the purpose of comparison with
the results of Brooks and Frautschi' and may be taken as
a representative for mz »mz.

2 1 1
&.=-—+ X — Xn m 1m m 2n+I m —n

(3.3)
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TABLE I. Self-induced inertias 0;„=a„—0;& and c7~ ———a~ as function of the cutoff A.

=2048

1

2
3

5
6
7
8

4.4218
1.5429
2.4519
3.1519
3.7750
4.4036
5.1464
6.3518

7.1160
1.5029
2.3410
2.9310
3.3897
3.7670
4.0894
4.3722

9.8661
1.5003
2.3340
2.9178
3.3683
3.7354
4.0457
4.3145

12.6326
1.5005
2.3342
2.9180
3.3685
3.7351
4.0445
4.3112

15.4023
1.5019
2.3371
2.9223
3.3743
3.7422
4.0531
4.3212

A+ 1/2
deal

i —1/2

to obtain in lowest order of n/(A+ —,
'

)

a„-2ln(2n + 1)———2 ln(2A+ 1),1

n

P„-ln(2n + 1)——+2 l1

n
(3.4)

One notes already at this point that logarithmic diver-
gences pile up for a„, while they cancel in P„and y„. To
be more specific, one replaces summation by integration,
i.e., substitutes g",. by

y„-ln(2n + 1)—
A+ —,

'

Obviously, the boson inertias diverge like lnA plus negligi-
ble terms in (1/A), while the divergence cancels in the
fermionic inertias with terms in 1/A surviving. Note that
both the differences a„—a~ and the fermionic inertias p
and y become independent of A in the limit A —+ ac.

The approximation (3.4) reproduces the exact numerical
values, as given in Tables I—III within a few percent. The
numbers show quite nicely the expected convergence with
increasing cutoff, but the convergence is slow. In the nu-
merical work, we use the value A=2048, if not noted oth-
erwise. As we have tested in various calculations, this
value is sufficiently large to erase the dependence on A to
within three significant digits in all numbers quoted
below, in particular in the mass spectra.

In order to solve the spectra, one chooses the Fock-
space representation, and enumerates all possible Fock
states with the same eigenvalues of the momentum X and
the charge Q. As discussed elsewhere, their number is
finite, and we refer to it in short as the Pock space dimen-
sion. A typical Fock state can be written as

Pl-
!

m) m2 NX
nN n1 52 . . . , NN, n 1 ~2 ' ' 'nN

N N
(3.5)

!

It is antisymmetric in the fermionic and symmetric in the
bosonic coordinates, i.e., in the %-occupied momentum
states n;, which by convention carry an overbar for the

antifermion and a tilde for the boson momenta. The con-
stant C; ensures the normalization (i ! i ) = 1 on the inter-
val ( L, +I.). The finding —of all Fock states with the

TABLE II. Self-induced inertias P„as function of the cutoff A.

1

2
3
4
5
6
7
8

—0.8750
0.7679
1.6012
2.2179
2.7679
3.3345
4.0250
5.1857

32

—0.9687
0.5635
1.2635
1.7147
2.0504
2.3207
2.5497
2.7504

—0.9922
0.5157
1.1903
1.6149
1.9230
2.1645
2.3631
2.5321

512

—0.9980
0.5039
1.1725
1.5911
1.8931
2.1284
2.3208
2.4835

2048

—0.9995
0.5009
1.1680
1.5851
1.8855
2.1193
2.3102
2.4713
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TABLE III. Self-induced inertias y„as function of the cutoff A.

0.8889
1.2889
1.5313
1.6980
1.8211
1.9163
1.9925
2.0550

32

0.9697
1.4403
1.7450
1.9673
2.1402
2.2806
2.3978
2.4978

128

0.9922
1.4845
1.8102
2.0527
2.2451
2;4043
2.5398
2.6574

512

0.9980
1.4961
1.8275
2.0755
2.2736
2.4383
2.5792
2.7022

2048

0.9995
1.4989
1.8317
2.0811
2.2806
2.4467
2.5890
2.7135

same E and Q is a nontrivial combinatorial problem,
which can be solved efficiently on a computer. As can be
seen from Table IV, the Fock space dimension increases
rapidly with increasing X for Q fixed, but decreases with
increasing charge Q for a fixed E.

The Fock space vacuum ~0;0;0) = ~0) has no occu-
pied light-cone momentum states at all. It has charge
Q =0, momentum K =0, and because of the latter also an
invariant mass M=O. It is the only state with these
quantum numbers, and therefore is an eigenstate to the
Hamiltonian H: As is well known, in light-cone quanti-
zation the Pock space vacuum is identical with the physi-
cal vacuum, as opposed to space-time quantization.

But so far it has not been noted that other Fock states
are eigenstates of the Hamiltonian as well. In fact, we can
differentiate at least two classes of them.

The first class has Pock space dimension one, similar to
the vacuum state, which we refer to as primitive states.
As one sees from Table IV, every charge sector has at
least one primitive state, the one with total momentum
X=Q(Q+1)/2. This is understood easily. Imagine a
Fock state with no bosons and antifermions, but with Nf
fermions, occupying the lowest possible momentum states,
i.e., ~

1,2, . . . , Nf, 0;0). The state has a total charge
Q =Nf and a total momentum K =Nf(Nf+ 1)/2. It is
impossible to construct any other state with the same
charge and the same momentum: The Pock space dirnen-
sion is one, and the Fock state is thus an eigenstate of H.

The second class of states we shall refer to as angel

states: By definition they have no finite off-diagonal ele-
ments with any state. They have the structure

~
0;0;1 ).

As they do not interact, they are pure, like angels. Angels
contain neither fermions nor antifermions, and therefore
have charge Q =0. As a condensate of momentum-1 bo-
sons they have total momentum E. Let us study how the
Hamiltonian acts on these states. All terms with destruc-
tion operators b„and d~ vanish, because the condensate
is a vacuum with respect to fermions or antifermions.
The only nonvanishing contributions of Hi. must have the
operator structure dkbI a~, but the corresponding matrix
element Ik+l

~

—lI vanishes for any positive k or l. A
similar result holds for H~. The only nonvanishing terms
must have the structure dkbi a ~a i, but the corresponding
matrix element f k —1

~

1 —l I vanishes for k =1=1.
Thus, angels are eigenstates of H with an invariant mass
squared

Mg ——K (mg +g ai) . (3.6)

IV. THE MASS SPECTRUM AS FUNCTION
OF HARMONIC RESOLUTION

The Fock space dimension not only is finite, it can be
as small as 1. Since a 2&&2 matrix can be trivially diago-
nalized, a number of cases can be treated analytically. In
the following, we shall increase the resolution stepwise in
order to see how the invariant mass spectrum gains corn-
plexity as a function of the harmonic resolution K.

Momentum
K

TABLE IV. The number of Pock states for given momentum K and charge Q.

Charge Q
2

1

2
3

5
6
7
8
9

10
11
12
13
14
15

1

3
6

12
21
38
63

106
170
272
422
653
986

1480
2185

1

2

8
15
27
47
79

130
209
329
509
777

1169
1739

1

2
5

9
18
31
54
88

145
229
362
556
850

1

2

8
16
29
52
87

143
228

1

2

7
13
25
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A. Harmonic resolution E =1

According to Table IV, one has only primitive states
for E =1. Their Fock representation and diagonal ele-
ments D are explicitly

the angel mass will intersect the boson mass. For even
larger values, one is in conflict with convention, since the
lowest eigenvalue is not m~. One maintains the conven-
tional interpretation by switching over to angel renormali-
zation:

and

~
b) =

~

0;0;1') with Ds =ms'+a, g'

~ f ) =
~
1;0;0) with DI m~——+pig

(4.1)

mji =
4 ms —g ai foi' g )gq(2) .

For arbitrary EC the angel renormalization is given by
2

(4.7)

It is natural to identify the single Fock state in the
charge-0 sector with the physical boson state

~
b), and

the single Pock state in the charge-1 sector with the physi-
cal fermion

~
f). Renormalization is easy in this case,

i.e.,
2 ~ 2 2 2——2 2mF =mF —Pig and mii ——ms —a ig

—g ai for g )g, (E), (4.&)

1/2

according to Eq. (3.6). Now, the angel becomes the physi-
cal boson with invariant mass Mbb ——m~, while the "bo-
son" becomes an excited state with invariant mass

The mass spectrum is reduced to the identity, M~ ——m~
and Mb ——mz. At the lowest level of resolution, one has
thus a tautology.

mg +g'(az-ai) for g )g, (2) .

(4.9)

B. Harmonic resolution X =2

Increasing the resolution by one unit, one has already
three Pock states for Q =0, i.e.,

~1)= ~0;0;2') wltll Di=ms +g a2,

~
2) =

~
1;1;0) with D2 ——4m+ +2g (pi+yi),

~

3)= ~0,0;1 ) with Di ——4m~ +4g ai . (4.3)

2 ——2 2
mg =my —g A'2 . (4.4)

By substitution, one obtains the invariant mass of the
angel state

~
bb)

Myb =4m' —4g (az —ai) ~ (4.&)

All off-diagonal elements vanish: The Fock state
~

3) is
an angel state, which cannot interact with any other state.
The interaction (1

~

H
~
2) is zero, because the vertex part

has a vanishing matrix element for equal fermion and an-
tifermion momenta. Thus, all three Fock states in the
charge-0 sector are exact eigenstates of the Hamiltonian,
with invariant masses M; =D;, provided one has renor-
malized the bare masses.

Boson and angel renormalization How d. oes one have
to interpret the states, Eq. (4.3)? One of them must be
taken as the fermion-antifermion, the quasipion state; i.e.,

~ ff ) =
~

2). But which one of the two remaining states
is the better boson state

~

b )? One cannot label the states
according to the boson number a„a„, since it does not
commute with the Hamiltonian. For a sma11 coupling
constant, Di is less than D3, and therefore one has to
identify

~
b) =

~
1) in line with convention. This choice

fixes the bare mass in boson renormalization:

Its mass is always larger than ms/2.
Iermion renormalization. The invariant mass of the

quasipion state can be given only when the bare mass mF
is expressed in terms of the physical masses, which shall
be done next. According to Table IV, one can construct
two Fock states for charge Q = 1, ie.

~

1)= ~2;0;0) with Di ——mF +g p2,

~
2)

~
1 0 1 ) with D2 2mF +2m/

+2g'(pi+ai)+g'

(4.10)

Di+Dz
mF

2

r 2
D) —D2

+(3mFg),

i l/2

(4.1 1)

while the second eigenvalue shall be identified with an ex-
cited fermion I fb ) with invariant mass MIb, i.e.,

1/2r t

D) —D2
+(3mFg)

Di +D2
iV~b2 ——

2 +,
(4.12)

Equation (4.11) must be inverted. It is a second-order
equation in mF, which one can write rather transparently
(m~ —A)(2mF —B)—9m~ g =0, where A and B are re-
lated to the diagonal elements by 3 =m+ +mF —D& and
8 =2m~ +mF —D2 or explicitly

Note that the seagull part gives the contribution g in D2,
while the vertex part of the Hamiltonian generates the in-

teraction (1
~

M
~
2) =3mFg. Of the two eigenvalues,

Mi and Mi, the lower one is to be identified with the
physical fermion mass, i.e.,

According to Table I, u2 —o.
&

is positive; eventually,
beyond the critical value of the coupling constant and

A =mq —g pz

(4.13)

3
g, (IC =2)=mii

4(az —ai)

1/2

(4.6)
B= rn~ 2mii —2gz(pi+—ai) —g2 .

The solution is
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l
m~ = —, t 22+B+9g'+ [(2A B—)'+ 18g'(2A +B 20

+ (9g2)2]1/2
I (4.14)

K=4

(4.15)

has to be insert ed into the expression for m E .
which yields the three h

'
I bree p ysical boson masses

Mb ——mg,

mg
Mbb ——

2
3 g
4 g

(4.16)

Mfy =2mF,

as well as the two hp ysical fermion masses M =
Mfb. Use was made of P + =0e o I+yi ——0, which holds for large

ig precision (see tables). The ex 1' '

fo M ' f s is rather complicat-erms o mz and m
imi ar y, in angel renormalization hn, one as to use

B=my — m —2 P2
8 g 1 g (4.17)

in order to obtain the physical boson masses
2 1/2

mg
Mb —— 1+3

2 gc

(4.18)
Mbb ——ms, M~@ 2mF . ——

The physical fermion masses h
above.

asses ave the same form as

Independence of cutoff A. Gne should note

ce o
'

pp 'n t-e combinationce oson inertias a ear in
erences m a„, as well as the fermion i

~ ~

The sign in front of the square root has
d o h

'
h

trix element, i.e., m =A.
e e rig t value for vanishin ffg o -diagonal ma-

pends on m~ only through B.
, i.e., mF ——A. One should note that ma mF de-

The mass spectrum. Havin caving constructed exphcit-
e wo unctions ms (m m

( K=2 A)I-b--"-.- 1'" - ~-F, ~, , ——, , one can calculate the s
iza ion, i.e., or g &g„ the expression

B=mF —2m' +2g (a —a —p

0
0 I 2 3

I

0 I

I I

2 3 0
I I I

I 2 3 4

FIG. 1.. 1. The mass spectrum for char e 0 v
pling constant A, . The

or c arge 0 versus the bare cou-
e masses are m =6.

the cutoff is A=2048 . Note the increasin
creasing K.

easing complexity with in-

9.0

B.O

purpose of demonstrating how the
acts likei e a measure of complexit .
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FIG. 3. The bare boson mass m~ versus the bare coupang
constant A, . The masses are mF ——6.7 and m~ ——1.0, and the cut-
off is A =2048. Note the weak dependence on X.

violet cutoff (i.e., A =2048), where the numbers do not de-
pend on A within three significant figures.

The lowest invariant mass, the boson mass m~ appears
first for K =1, and repeats itself in any subsequent value
of the harmonic resolution. This, of course, occurs by
construction, but one should note that the corresponding
eigenstates gain considerable structure in terms of Fock
space components, in particular when the coupling con-
stant becomes large. The repetition of these states with K
are manifestations of the same physical particle, viewed
however with increasing resolution.

The same mechanism is observed for the "excited"
physical bosons, for example, for the first excited state.
For EC =2 it is the angel state, as defined and discussed
above. The same eigenvalue can be observed for X =4
and X =6, albeit with a different eigenfunction (the ange
state proper turns out to have always the largest mass
within the lower cluster). The aspect of repetition in-
cludes even the bunching of the states around the critical
coupling constant g„as defined by Eq. (4.6).

The repetition of states occurs not only for the boson
cluster, but appears also for the upper, the quasipion clus-
ter. Every state which appears for E =2 appears also or
X=3 (not shown) and for IC =4 with almost the same in-
variant mass as manifestation of the same physical parti-
cle; every state of X =4 reappears for X =5 and EC =6,
and so on. Qn the other hand, every physical particle has
a threshold value of X, for which it appears first, a prop-
erty which is amazingly similar to the charge, as seen
from Table IV.

V. COMPARISON WITH SPACE-TIME
QUANTIZATION

The rather extensive discussion of the spectra as a func-
tion of increasing harmonic resolution Eallo'ws also for
the following conclusion: As long as one is interested
only in the invariant mass of a certain physical particle, as
a function of the coupling constant, one can restrict to the
case of its first appearance T.hus, the most important as-
pects of the quasipion

~
ff) are given already by the

analytically soluble case of IC =2, see Sec. IV B. Its in-
variant mass as a function of the coupling constant is
plotted in Fig. 4 once for the cutoff A=2048 and once for
A=8. They were calculated from the analytical expres-
sions as given in Sec. IV B for the parameter set q.t E . (2.18)
and are an example for m~/m~))1. The plot gives also
all other physical states, in the above notation.

The difference in the two quasipion curves M&J ls strik-
ing, in particular for. coupling constants . (3 A, & 1.7.
For A=8 no quasipion state is possible in this region.
The analysis on the solutions of Eq. (4.14) is.somewhat
lengthy. Suffice it to say that depending on the ratio
mg p1zy e a/ th absence of M is caused by a delicate cance-f
lation in Eq. (4.14), such that m~ may even become nega-
tive. This is reflected also in Fig. 5, where the renormal-
ized fermion and boson masses are plotted versus the cou-
pling constant. This cancellation has almost no effect on
h ther h sical masses; they are quantitatively but not

f A. (M hasqualitatively different for the two values o . fb as
actually been calculated with the negative value of mF
for A =8.) For large A such difficulties do not occur.

The parameter set marlins ——0.3 was chosen with the
purpose of comparing the above results to the recent work
of Brooks and Frautschi' in space-time quantization.
Their final result for the invariant mass spectrum looks
more like the right than like the left part of Fig. 4. In
pa icu ar,rt' 1 their quasipion intersects the vacuum state
above a certain value of the coupling constant, „, u
their value is about twice as large as ours. Brooks and
Frautschi express concern about this intersection. They

2.0

l.5

1.0

0.5

FKx. 4. The E =2 mass spectrum for charges 0 and 1 versus
the bare coupling constant A, . The masses are mF ——0.3 and
mg ——1.0. The left part of the figure is independent of the cut-
off (A=2048). In the right part the cutoff is A=8, far away
from the A-independent regime; cf. also Tables I—III.
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eracies like this one in another representation, in particu-
lar if the space is not large enough. In general, the sharp
structures are washed out; instead of a crossing one will
observe smoothly repelling curves. Brooks and Frautschi
observe a nonunique mass renormalization. The numeri-
cal value of the branch point (A, -2.4, as read off from
their figure), agrees well with our I, Although perhaps
accidental, this gives a hint for the conclusion that their
observation is a reminder of the underlying structure, the
boson and angel renormalizations as discussed in Sec.
IV B.

VI. CONCLUSIONS AND OUTLOOK

FIG. 5. The bare fermion and. boson masses, m~ and m~,
respectively, versus the bare coupling constant X. The masses
are m~ ——0.3 and m~ ——1.0. The cutoff has two values, i.e.,
A=2048 (solid line) and A=8 (dashed line). See discussion in
the text.

mention an increase of A,„with increasing cutoff in the
(space-time) momentum, and surmise that A,„ tends to in-
finity for large cutoff. Also in the light-cone results, the
intersection A,„ tends to larger values, for example, in-
creasing the cutoff from A=8 to A=10. But this ceases
to be true for larger cutoffs. At A-27 already, no inter-
section occurs at all, at any value of the coupling con-
stant. For even larger values of A, the quasipion mass ap-
proaches gradually the asymptotic value plotted in the left
part of the figure. In space-time quantization, one has to
introduce an additional cutoff in the boson number. This,
and the lack of information on the momentum cutoff, or
at least on the dimensions of the matrices actually diago-
nalized, makes a more quantitative comparison rather dif-
ficult. We conclude in view of the qualitative agreement
with the A=8 case that the cutoffs in space-time quanti-
zation have been taken too small, despite the fact, that the
matrix dimensions were most likely at the edge of numeri-
cal feasibility.

The too-small cutoffs can explain also why the sharp
kink of the boson-angel system at

' 1/2
3m' =2.4715

CX2 —CX )

is not observed in space-time quantization. This kink
represents a crossing of states; at k =A,, the two states are
degenerate. In practice, it is difficult to reproduce degen-

In the preceding and in this paper we have investigated
the bound-state problem of fermions interacting with sca-
lar bosons in one space and one time dimension. Using
discretized light-cone quantization this model is strictly
soluble at almost any level of refinement. The level of re-
finement is governed by the value of the quantum number
K. This quantity has two aspects. On the one hand, it is
closely related to the total light-cone momentum I'+; i.e.,
X =LP+/2m, where L i.s the length of the periodic inter-
val in the light-cone distance x . The introduction of
this dimensional parameter is necessary to denumerate the
momentum states. On the other hand, K can be viewed as
the integral ratio between this box size and the Compton
wavelength of a physical particle (state) with mass M, i.e.,
K =L/A, c with A,c——2M/Mc. For fixed mass, the larger
I., the closer one is to the continuum limit, the more corn-
plex becomes the spectrum of physical particles with mass
close to M and the more complex becomes its eigenfunc-
tion in terms of free Fock states.

Both the eigenvalue of the invariant mass operator and
its eigenfunctions are independent of the two formal pa-
rameters of the theory, the box size L and (at large A) the
(light-cone) momentum cutoff A.

Our numerical results are not in conflict with the recent
numerical work in space-time quantization by Brooks and
Frautschi, but it appears as if the calculated spectrum is
still sensitive to the cutoff shown for the (space-time)
momentum. It must be noted, that the space-time ap-
proach is less economical by orders of magnitude than the
present light cone approach.

In addition to the practical advantages of discretized
light-cone quantization for obtaining bound-state spectra
and wave functions, there are also a number of conceptual
advantages:

Unlike equal-time formalism, a consistent Fock state
representation exists at equal x+. The basis is orthonor-
mal with positive-norm components summing to unit
probability.

There is a precise theory of observables in terms of
light-cone Pock state wave functions. In particular, ma-
trix element of currents and form factors can be directly
expressed as a convolution of light-cone wave functions in
momentum space. Structure functions for inclusive reac-
tions and distribution amplitudes for exclusive reactions
also have an immediate representation in this basis.

Quantization of non-Abelian gauge theory at equal x+
is reviewed in Refs. 5 and 6. By choosing the light-cone
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gauge A+ ——0, dependent degrees of freedom are eliminat-
ed through the equation of motion as in paper I. In this
gauge there are no ghosts or negative-metric propagating
vector or scalar fields.

Unlike lattice gauge theory with the standard nearest-
neighbor approximation to the derivative of the fermion
field, the discretized light-cone quantization approach
does not lead to doubling of the fermion states. This
derivative is represented as the factor 1/n in the massive
part of the Hamiltonian HM in momentum space.

Unlike path integral forinulations, fermions and bosons
are treated on an equal basis in the light-cone Hamiltoni-
an formulation.

The ease of generating exact solutions to a simple
field-theoretic problem creates opportunities for further
development and investigation.

It appears possible to treat higher particle systems (nu-
clei) with reasonable numerical effort in 1 + 1 dimensions.
In fact, the major part of the numerical work is taken up
by the renormalization of the masses, since the Hamiltoni-
an has the largest dimensions in the charge-0 and the
charge-1 sectors.

The essential and surprising feature of the discretized
light-cone approach is the appearance of finite dimension-
al Hamiltonians. Usually such a property is related to a
discrete group and a compact Lie algebra. We have no
idea to which group the present approach is isomorphous.
Its discovery could be of great help in finding the most
economic approach to 3 + 1 dimensions.

The ultimate goal is to obtain nonperturbative solutions
in 3+ 1 dimensions. If one introduces light-cone vari-
ables in a preferred direction z+t and parametrizes the
perpendicular directions with variables I., and transverse
momenta ki one at least reduces the dimensionality of
the problem significantly compared to space-time quanti-
zation.
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APPENDIX A: THE NUMERICAL PROCEDURE

For minimal storage requirements in the computer, it is
convenient to use an indirect addressing scheme. The
Pock-space information can be generated efficiently by
first calculating the boson space A, i.e., all boson states

I
& &a= I%(ml) 1l2(m2) ~ ~ ~ PiN (772N ))

i =1, . . . ,Ng,
which have total light-cone momentum Kz g——„na„a„
&K „,where K,„ is equal to the value of K under con-
sideration. In the same way one calculates the Fermi
space W

I Q n $ I ] pPg2 PPl2 y ~ ~ ~ p Plpf Pl+

i 1 p ~ ~ ~

with the occupation numbers m; =1 and E~ &K,„. The
same information can be used for calculating the Dirac
space &, i.e., all. antifermion n states with KD (K,„.
The Fock space is obtained by taking all possible com-
binations

)i ) =
f j)F f

k)D
/
l)ii

for which hold

K=K~+.Kli+K~ and Q =N~ N~ . —

One needs to store only a mnemonic number representing
all the quantum numbers of the state. If one stores for
each state

~ j )F or
~
1)z the partial momentum (i.e., Kii),

the number of occupied states (i.e., N~), the single-particle
momenta nI, and their occupation number mI, one has to
meet the Pock space storage requirements as compiled in

TABLE V. Storage requirements for the fermion and boson spaces.

Maximum
momentum

E
Storage of

occupied states

Fermions
Number of states

with KF &K,„

Bosons
Number of states Storage of

with K& (K,„occupied states

1

2
3

5
6
7
8
9

10
11
12
13
14
15

2
3
4

11
15
19
45
58
74
92

201
251
312
380
460

10
15
20
67
93

119
341
446
576
724

1865
2353
2952
3624
4418

2
4
7

12
19
30
45
67
97

139
195
272
373
508
684

10
20
37
66

ill
182
287
443
667
987

1433
2054
2901
4052
5596
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Tables IV and V.
In a second step one calculates the diagonal element D;

for each Fock state. Provision was made for removing all
states whose diagonal element exceeds a given cutoff D,„,.
In this way one can cut down efficiently the large dimen-
sions in matrix diagonalization problems, without losing
too much. accuracy. The method seems particularly suited
for determination of the renormalized masses. In this pa-
per, however, this option has not been used, since restric-
tion was made to K (6.

In a third step, the Hamiltonian matrix K{j
f
H fi)

was calculated. The Hamiltonian has nonvanishing ma-
trix elements only if the two states in question are at the
most, relative two-particle —two-hole states. If these selec-
tion rules are satisfied simultaneously in the boson, the
fermion and the antifermion sectors (which can all be
done in rather fast fixed-point arithmetic) then the matrix
element is computed (it involves one single square root
operation). The setup of the Hamiltonian matrix con-
sumes a time negligible compared to the pock space com-
binatorics, diagonalization, and renormalization.

In a fourth step, the matrix is diagonalized numerically.

Standard numerical procedures are used, as provided by
the Eispack package at SLAC.

Last, one must renormalize the boson and fermion
masses numerically. The following procedure was chosen.
(1) Take as a guess value the boson renormalization
mz ——m~ —a2g, as obtained analytically for K =2. Ex-
perience shows that this value is close to the final result,
see Fig. 2. (2) With mz fixed, search for mz in the
charge-1 sector by a combination of bisection and
Newtonian interpolation. (3) With the so determined
starting values of mz and m~, iterate simultaneously by a
four-point interpolation in two dimensions, until the
lowest eigenvalues in the charge-0 and the charge-1 sec-
tors agrees within 10 with the given values m~ and
mF . (4) Last, if the angel mass drops below mz, i.e., if
E (m~ +aig ) (mz, repeat step (2) in angel renormali-
zation. By large-scale variation and tracing in two dimen-
sions, it was made sure that the so-obtained values are
QPllqge.

The routines are written in standard FoR+RANrv and
were tested by comparing the numerical results with the
analytical expressions for K (4, as given in Appendix B.

APPENDIX 8: THE POCK SPACE AND THE HAMILTONIAN FOR X =3 AND K =4
The Pock space without the angel state for K = 3 and Q =0 has five components:

f
1)= f0;0;3') with Di ——mz +g lx3,

0'0'1,2') with D2 ———m, +3g ai+
2 2

f
3) =

f
1;1;1') with D3=3m~ +6m„+3g (yi+pi+ui)+g

f
4) =

f
2;1;0) with D4 ———', mp- +3g y)+

r

f
5) =

f
1;2;0) with D5= —2m'. +3g +Pi

and correspondingly, a 5& 5 invariant mass matrix M =HA
f
1) f2) f3) f4) f5)

Di

(4f

0

v3
2

v3+ lC

D2

0

3 2

D3

D9
2 4

2—~g ~IC

with the abbreviations g—:A, IV 4m and v=mFg. The charge-1 sector for K =3 has the Fock space

f
1)=

f

1;0;2') with Di ———', mii +3m+ +3g +Pi —g2

f
2) =

f
1;0;1 ) with D2 6m' +3——m~ +3g (2a +Pi)+i3g

f
3)=

f
2;0;1') with D3 ——3m~ + , m~ +3g ai+—+4g

f
4) =

f 3;0;0) with D4 mp +g P3, ——
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Il) Iz)
D1

0 D2

vz
g —,v2~ D,

I3& I4&

and the invariant mass matrix M

Zv 2~ —'Vzg' —a- D4

For It =4, Q =Q, the pock space without the angel state has 1 1 components:

I
1)=

I
0;0;4') with D, =mg +g ~4,

I
2) =

I
Q, Q, 1,3 ) with D~ ———,m~ +4g ai+

3

I
3& =

I
o o 2'& wit" Ds =4'ms'+g'~~'

I
4) =

I
0;0;1,2 ') with D4 ——10m~ +3g zai+

I
5) =

I
1;1;2 ) with Dq zmz——+8mF +4g +pi+1'i —ig2

I6)= I 1;1;1 ) with D6 ——smg +4m/ +4g (zo'i+p$+y])+sg

I7)= I2;1;1') with D7 ——4m~ +6m~'+4g' ~i+ +pi + 6 g2

I
8)=

I
3;1;0) with Ds ———", mp +4g

3
+F1

I9)=
I 1,2;1') with D9 4mB +6mF +4g ~1+pl+ + 6 82

I
10)=

I 2;2;0& with Dio =4mr +zg lp2+'Y&l ~

I
11)=

I 1;3;0) with Dii —— mF +4g pi+
3 3

and the invariant mass matrix is correspondingly large, i.e.,

14&

(sI

(10
I

(11
I

D1
0
0
0
0
0

4
K3

+ —,g

0

D2
0
0
0
0
2

2 2

2+ ~tc
0
2 2

D3
0
0
0

zv Zg'

0

0

0

4g 2

0

B$
0

zvz

svz
3

Zvz

0
svz

K
3

B6

6v 2~

2V Zg'

0

zv Zg'

10
K

0

0

0

0

D1o

0
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Finally, one gets a Fock space for K =4, Q = 1:

I 1)=
I

1,0, 3 ') with D~ ———,m~ +4m~'+4g +p~ ——,g',

I
2) =

I
1;0;1',2') with Dz 6——ma +4mF +4g at+

2 +pl + 3g

I
3)=

I
1;0;1 ) with D3 ——12m& +4m+ +4g (3a&+p&)+6g

I
4) =

I
2;0;2') with Dq ——2m~ +2mF +2g (aq+pz)+ —,g

~'

I
5)=

I
2;0;1 & with D5 Smz——+2m~~. +4g 2a&+ +—"g~,

2 3

I6&= I3'o'I'& with D6=4mB + 3mE +4g a1+
3

+3g'

I
7) =

I
4,0,0) with D7 =mF +g p4,

I
8) =

I
1,2;1;0) with Ds ——10m~ +4g~ p, + +y,2

The invariant mass matrix M is

I6) I7) I8)

&4I

D)
0
0

(
3 )1/2g2

0

v3
5+ ~K
2

D2
0

6K

3R

—,'vz~

~2g 2

—2v 2g'

D3
0

6v 3~

2v 6g'

0

0

D4
0

5 2

3

0

—", v 2~

—', vugg'

0

7
K

3

0 0
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