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We describe several novel experimental procedures for measuring the "multiple-time" properties
of various quantum-mechanical systems, and an important curiosity in the behavior of those proper-
ties under Lorentz transformations is pointed out.

I. INTRODUCTION

Recent investigations of the measuring process (inves-
tigations motivated by a certain perplexity in the relativis-
tic theory of measurement, of which we will discuss more
later) have suggested that the familiar picture of time evo-
lution is simply too narrow to encompass everything that
can happen to a quantum-mechanical system, and have
brought to light a new and tantalizing species of basic
quantum phenomena. If these phenomena are to be ade-
quately explored, they will require a new species of experi-
ments, and the present work is a first attempt to imagine
what sorts of experiments these might be.

The phenomena in question arise in quantum-
mechanical systems within the time interval between two
measurexnents, and they are purely quantum phenomena:
they have no classical analog whatsoever. In classical
physics, the complete specification of the state of a closed
physical system at any time (to, say) serves to determine
(via the equations of motion) the result of any other mea-
surement on the system, carried out at any time, either be-
fore or after to Measureme. nts carried out on the system
at times other than to are therefore in a certain sense
redundant: since their results can be deduced from the re-
sult of the to experiment, they produce, in principle, no
additional information about the system (either about its
past or about its future).

An essential difference (perhaps the essential one) be-
tween quantum and classical theories lies precisely here;
because every new complete measurement on a quantum-
mechanical system will, in general, augment our informa-
tion about that system. Suppose, for example, that a cer-
tain particle may be located in either of two small impe-
netrable boxes, positioned, respectively, at x& and xz,' and
suppose that the particle is measured at time t; to be in
the state

(Ix~&+ Ix~&) .= I
2

What can be said about the outcome of a measurement
carried out on the system at time t, (t» t;)? Assuming
that the particle is undisturbed in the interval t; & t ~ t~,
we can predict from the outcome of the t; measurement
that, if an observable 2 of which

I
a) is an eigenstate

with eigenvalue a is measured at t &, the result is certain to
be o,. If, on the other hand, the particle's position is mea-
sured at t ~, the result may be either X =x

~ or X =x2.
But now suppose that, in addition to the outcome of the

t; measurement, we are informed of the outcome of a
measurement of the particle's position at time tf
(tf & t~ & t; ), and suppose that the result of the tf mea-
surement is X=x ~. Then we can say, as before, that if A
is measured at t&, the result must with certainty be that
A =a; but now we can also say that if X (rather than A)
is measured at tj, the result must with certainty be
X =x&. Given the result of the measurement at tf, then,
we know more about the particle at t~ than we knew on
the basis of the t; measurement alone.

These considerations can easily be generalized to mea-
surements of arbitrary complete sets of observables on ar-
bitrary systems. If a system is measured at t; to be in the
state

I

A =a ) and at tf to be in the state
I
8 =b ) (where

[A,B]&0), then the probability that a measurement of a
nondegenerate observable C at time t& will yield C=c„
(assuming for simplicity that A, B, and C are all con-
stants of the motion) is given by

P(c„)= I &a Ic. & I'I &c. Ib& I'

X I &a Ic & I'I &c I » I'

where
I

c~ ), . . . , I
c ) comprise a complete basis for the

system's Hilbert space. Notwithstanding that the state of
the system is completely determined by the measurement
of A at t;, then, the measurement of 8 at tf produces ad-
ditional information about the system at t&. This is possi-
ble in quantum mechanics because the results of the mea-
surements at t; and tf do not (as they do in the classical
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theory) determine one another. In a sense (albeit a limited
sense, which we shall describe more carefully below) it is
as if, with each new measurement, we sample another de-
gree of freedom of the system.

To reiterate: more can be said with certainty about a
quantum-mechanical system within the interval between
two complete measurements than can be said of a system
in any single particular quantum state. In what follows
we will describe novel experiment procedures whereby all
of that can be verified. In addition, we will describe situa-
tions in which a new type of observable —a multiple time-
observable —takes on a well-defined value in the interval
between t; and tf, and we will discuss the measurement of
such observables. Finally, we will discuss the implications
of these phenomena for relativistic quantum theory,
where the time ordering of spacelike-separated measure-
ment events (such as simultaneous measurements on parti-
cles placed at xi and x2) is not Lorentz invariant.

II. COMPENSATING MEASUREMENTS
OP NONCOMMUTING OBSERVABLES

A complete description of a quantum-mechanical sys-
tem within the interval between two measurements, then,
ought to take account of the outcome of the measurement
at the end of the interval as well as the outcome of the one
at the beginning. Consider how such a description (that
is, euerything in such a description) might be verified.

Consider a spin-half particle in circumstances in which
the Hamiltonian of the particle is independent of spin.
Suppose that a measurement of the x component of the
particle's spin at a time t; determines that cr„(t;)=+1,
where cr„=—(2/iit')S„ is one of the Pauli matrices. Suppose,
moreover, that a measurement of the z component of the
particle's spin at a later time tf determines that
o', (tf ) = + 1. Then we can predict from the t; measure-
ment that, if a measurement of' o. is carried out at an in-
termediate time t2 ( ti & t2 & tf ), the result is certain to be
o„(t2)=+1. Furthermore, we can retrodict from the tf

measurement that if o.„rather than o.„,is measured at an
intermediate time (say, ti, where t; & ti & tf ), the result is
certain to be o,(t i ') = + 1 (see Fig. 1).

Now suppose that we attempt to check the validity of
our predictive and retrodictive statements by carrying out
both intermediate measurements, that is, by measuring
both o.,(ti) and cr„(t2). Then the two measurements will
disrupt one another, and we will not be certain to find ei-
ther that cr„(t2)=o„(t;)=.+1 or that cr, (ti ) =o,(tf )

=+1. Yet it is not impossible to perform two measure-
ments in the interval between t; and tf in such a way as to
verify both that a measurement of cr, at ti (if conducted
alone) would yield + 1 and that a measurement of o.„at
tz (if conducted alone) would yield + 1. We can do this
as follows.

Suppose that we have two measuring devices which in-
teract impulsively with the particle at times t~ and t2 via
a Hamiltonian of the form

Hi~t =g (t —t 1 }q1 cr~

+g (t t2 )qq(o cos—2q i +or sin2q i ) .

(See Fig. 2.) In this expression, the variables qi and q2
are internal coordinates associated with the first and
second measuring devices, respectively. The function

g (t —t~ ) is a coupling which is large and nonzero only
during the short time interval about t& during which the
first measuring device is switched on. Similarly, g (t —t2)
is large and nonzero only during a short time interval
about t2 (an interval which does not overlap with the
short interval about ti). We can assume for simplicity
that g(t ti ) and g(t —t—z) are 5 functions in time, that
is, that g(t —ti)=G5(t ti) and g(t —t, )=G5(t t2), — —
where G is a constant of unit magnitude with the dimen-
sions of momentum.

Using the Heisenberg formalism to obtain the equations
of motion for the observables cr„cr„, qi, qz, IIi, and II2
(where IIJ is the momentum canonically conjugate to the
measuring device coordinate qj ), we find that

dqi/dt =do, /dt =0,
dII, /dt = —5(t t, )cr, , —

do.„/dt = 25(t ti )qicrr, — —
(4)

t2
a =+1

Z

H. = 5(t-t )q (a cos2q +a sin2q )

0: 7
Z

H. = 5(t-t )qla

FIG. 1. A measurement of o., or o.„ is carried out in the in-
terval between t; and tf. A measurement of o; at t& is certain
to yield o.,(t&)=+1; a measurement of o.„at t2 is certain to
yield o.„(t2)=+1.

a =+1
X

FIG. 2. Compensating measurements of o., and o.„are car-
ried out at t~ and t2, with the result that AH~ ———o,{tf) and
AH2 ———o„(t;).
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and

der~/dt =25(t t—
~ )q~o.„

during the interval in which the first measuring device is
switched on, and that

dqz/dt =dq&/dt =0,
dIIz/dt = —5(t —tz)(o„cos2q&+o~ sin2q&),

d II&/dt = 25—(t —tz)qz( —o„sin2q ~ +o~ cos2q~ ),
do, /dt =25(t —tz)qz( —o„sin2q~+oz cos2q&) = dII~—/dt,

do„/dt =25(t —tz)qzo, sin2q&,

der„/d& = —25(r tz)qzo—, cos2q&

during the interval in which the second device is switched
on. The equations for q~ and qz can be integrated im-
mediately to give q ~ (t) =constant = q &

and qz(t)
=constant =q2.

Notice that Eqs. (4) indicate that the measurement of
o., at t

&
rotates the particle's spin in the xy plane, so that

o~(ti +e)=o'~(ti e) co—s2q( —o'y(ti e) s&—I12q i,
and

o ( r
& +e)= err ( t

& e) cos2—q & +o„(t ~ e) sin—2q &
.

(6a)

(6b)

II )( r ) +e) —II y ( t y
—e )—=b II ~ ( t ] )= —o' ( t ] ),

II)(tz+e) —II,(tz —e)

—:EII$(tz) = [cog(tz+e) —erg(tz —e)], —

Combining the two equations that involve II~, we see that
the total change in II ~ is given by AH ~

=XII~(t~)+XII~(tz) = cr, (tf ), since o,(tz——e) =0.' (t] )

and cr,(t + z)=eo, (tf ) Thus Eqs.. (7) can be rewritten as

b,II)—— o,(tf ), —.

b, llz —— o„(t;) . —

Also notice that, during the second measurement, the
quantity (o„cos2q, +o.„sin2q & ) is constant:

o „(tz ) cos2q, +o'y(tz ) sin2q (

=o„(tz—e) cos2q~+crr(tz —e) sin2q&

=o„(t&+e)cos2q&+o„(t&+e) sin2q& .

This is significant because, as can be seen from the time-
reversed version of Eq. (6), the quantity
[cT~ (i) +e) cos2q ( +0'y ( r ) +e ) sin2q

& ] is equal to
o~(t& —e), which is just the initial value of o„. Thus the
second term in the interaction Hamiltonian couples qz to
o„(&;).

Let us now integrate the equations of motion for the
measuring devices' momenta. We obtain

Notice that Eqs. (8) do not imply either that
a, (t~)=o, (tf) or that o„(tz)=ca„(t;). In contrast to an
interaction Hamiltonian of the form Hd;„„
= g (t t) )q(—cr, +g (t —tz)qzo„, the interaction Hamil-
tonian of Eq. (3) does not provide for direct, nondemoli-
tion measurements of o.,(t, ) and o„(tz); that is, it does
not lead to a proportional relationship between AH~ and
the value of o, at t& or between Allz and the value of o„
at t2. Instead, the present Hamiltonian couples hH~ to
the value of cr, at tf, which is the value that o, (t& ) would
haue had, if no measurement of o.„had occurred between
t, and tf Similar. ly, it couples Ellz to the value of o„at
t;, which is the value that o„(tz) would haue had, if no
measurement of o, had occurred between t; and tz. Thus
the two measurements dictated by Eq. (3) constitute a pair
of compensating measurements: the measurement at tz,
which involves o.„,compensates for the disturbance of o„
caused by the measurement of o, at t„and vice versa.

It is interesting to note that it is possible to carry out
compensating measurements of the x and z components
of a particle s spin in a sequence different from that dic-
tated by the interaction Hamiltonian of Eq. (3). The
Hamiltonian defined by Eq. (9), for example, also gen-
erates the relations AII& —— o,(tf)—and b, llz —— o„(t;), —
even though it entails the measurement of a rotated quan-
tity before (rather than after) a direct measurement of one
of the particle's spin components:

H „,=5(t t~)q~(cr, cos2qz+ cd—sin2qz)+5(& tz)qzo„. —
(9)

It is also interesting to note that repeated pairs of com-
pensating measurements of o, and cr„carried out on a
spin-half particle can reveal the presence of an external
magnetic field of arbitrary orientation. In contrast, ordi-
nary spin measurements of o, or cr„(or o~ ) carried out re-
peatedly on a spin-half particle reveal the presence of an
external field only if the field has a component perpendic-
ular to the direction of the spin component being mea-
sured.

Let us show explicitly that compensating measurements
carried out on a particle at times t~, t2, t3, and t4 provide
a means of detecting an external field switched on in the
interval between the first pair of measurements and the
second (that is, between tz and t3). Suppose that a parti-
cle is made to interact with four measuring devices at
times t~ t4 in such a way th—at the Hamiltonian of the
system during the measurements is given by
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FI „',=5(t —t, )qio, +5(t —tz)qz(o„cos2qi +a„sin2qi )+5(t t3—)q3lT,

+5(t t4)—q4[o„cos(2q3+2qi )+cd sin(2q3+2qi)], (10)

as illustrated in Fig. 3. Then it can easily be shown via calculations in the Heisenberg representation that the total
changes in the moinenta of the four measuring devices, after all four measurements have been completed, will be

hlli =bIIi(t )+&II (&z)+&II/(& ) = o,—(&z+E)+,(t e) —~,(tf—),
b II,= ~—„(r;)= [cr—„(rz+e) cos2q, +o~(rz+e) sm2qi],

6II3 =6II3( t 3 )+6II3( r4 ) = cr, (—ty )

5114— [(Tx(r3 e) cos2qi +a~(t3 —e) sin2q]

Now consider the possibility that an external magnetic
field is switched on in the interval between tz and t3 If.
no magnetic field is switched on in this interval, then,
after all measurements have been completed, it will with
certainty be found that b.IIi ——b, 113—— o', (ty) an—d that
b, IIz ——b, II4—— cr„(t;)—, since in that case, all three spin
components will have the same value at t3 —e as at tz+e.
On the other hand, if it is found after all measurements
have been completed either that b IIi&6,113 or that
EIIz&6114, then it will be known with certainty that
there ~as a magnetic field switched on between t2 and t3
which rotated one or more of the particle's spin com-
ponents. Thus the procedure dictated by the measurement
Hamiltonian of Eq. (10) does, indeed, provide a means of
detecting an external magnetic field. Notice that no exter-
nal field (switched on for an arbitrary length of time) can
escape detection by this method, since there is no orienta-
tion of an external field that will leave all three com-
ponents of the particle's spin unaffected.

o =+1
z

H t 6{t-t )q [o cos{2q +2q )+o sin{2q3+2q )j

It is possible to extend the procedures that have been
developed in this section to a system of two spin-half par-
ticles. Consider two such particles (in circumstances in
which the particles' Hamiltonian is effectively zero) for
which it is known that the state of the system at t; is a
spin singlet and that the state of the system at t~ is some
eigenstate of single-particle spin operators. Specifically,
consider two particles whose initial state is

I g(ti ) &
=

I
J=0;J,=O& (where J is the total spin angu-

lar momentum of the two particles and J, is the z com-
ponent of J), and whose final state is

I P(&y) & =
I
~.=+I& i I

~ = —1 &z.

What can be said about the result of a single-particle
spin measurement carried out on the system in the inter-
val between t; and t~? Suppose that either 0., ' or cr„'" is
measured at some intermediate time. If o,' ' is measured
at ti (where t; &ti &t~), then, since the particles' spins are
correlated at r; and since cr,"'(t~)=+1, the result of the tz

measurement must be that o", '(ti)= —1. If o„"', rather
than o,', is measured at an intermediate time (tz, say),
then, since cr„' '(ty) = —1, the result of the tz measurement

must be that o„"'(tz)=+l. (See Fig. 4.) In other words,
if a measuring device is coupled directly to o,' ' at ti, then
there must be a change in the momentum of the device
given by

t — 6(t-t3)q3a

Magnetic field on?

)o = +1& Ia = -1&
z 1 x 2

t2 i„t = 5(t-t2)q2{o'coszqy+G sin2q )1 y

H";„t = 6{t-t~)q~o

(2)
Z

FIG. 3. Two pairs of compensating measurements of o., and
o.„are conducted at tI, t2, t3, and t4. If no magnetic field is
switched on between t2 and t3, then after a11 measurements are

complete it will be found that AH& ——AII3 ———o.,(ty) and that
4IIq ——4II4———o„(t;). If, on the other hand, it is found either
that EIII~AII3 or that EII2~6II4, then it will be known with
certainty that a magnetic field was switched on in the interval
between t2 and t3.

)J = 0; J = 0&

FIG. 4. A measurement of o-,' ' or o.„'" is carried out in the in-

terval between t; and ty. A rh.easurement of o.,' ' at t~ is certain
to yield o.,' '(t&) = —1; a measurement of o„"' at t2 is certain to
yield o-„"'(t,)=+1.
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EII,= —o,"'(ti)=o,' '(tf) . (11)

If, instead, a measuring device is coupled directly to o.„"'
at t2, then there must be a change in the momentum of
the second device given by

(12)

10 '930 II10+II30

Then the Heisenberg formalism can be used to show that,
after the measurements at ti and tz, the measuring device
variables II1, II2, and II3 will have changed in such a way
that

o,' '(t, ) = —o,' '(t;)—=cr.,"'(t;),
KII3 ——hog"(t2) =o,'"(t2+e) o,'"(t2 e)— —

=o,'"(tf)—cr,"'(t;)

(13a)

(13b)

Now suppose that we couple two measuring devices to
the system in an attempt to measure both o,' '(ti) and
o~'(t2) Then the two measurements will disrupt one
another (even if the measurement events are spacelike-
separated), since the first measurement will destroy the
correlation between the particles' spins and the second
measurement will change the value of o,"'. As a result,
we will not necessarily find either that EII,=a,"'(tf) or
that b, II~——o„' '(tf). Yet it is possible to carry out two
measurements on the system at i1 and t2 in such a way
that each measurement compensates for the disruptive ef-
fect of the other, as follows: Let three measuring devices
interact with the particles via the Hamiltonian

Hi ——5(t ti)qio,—(2)

+5(t —tz)q2(o„"'cos2q3 —o~ 'sin2q3),

where q1, qz, and q3 are internal variables associated with
the three measuring devices. (See Fig. 5.) Furthermore,
let the initial conditions on the first and third measuring
devices be '

Notice that, since o„''(t2)=cr„'"(t;)= —o„''(t;) and
oz"(t2)=o&"(t;)= c—rr '(t;), the right-hand side of Eq.
(13c) represents the value of o„' ' after its rotation by the
measurement of o, at ti, i.e., Eq. (13c) can be rewritten(2)

as

2
.o—„—' '(t;) cos2q3 o—~ '(t;) sin2q3

(2)(t ) (14)

Furthermore, although 51Ii and b.II3 are not separately
well defined because of the initial conditions on the first
and third measuring devices, their sum is well defined and
is given by

an, +an, =o,'"(tf) .

A comparison of Eqs. (14) and (15) with Eqs. (12) and
(11), respectively, reveals that the present scheme allows
us to learn from the second measuring device (that is,
from the value of b, II2) what the result of a direct mea-
surement of o„"' at t2 would have been, if no measurement
involving cr,' ' had been carried out at t1. Similarly, it al-
lows us to learn from the other measuring devices (from
the value of b,IIi+6.II3) what the result of a direct mea-
surement of o,' ' at ti would have been, if no measurement
involving o„'" had been performed at t~ Thus . Hi pro-
vides (as was intended) a means of carrying out compen-
sating measurements of o,' ' and o„"'.

Finally, we note that it is possible to combine compen-
sating measurements of the sort that have been described
in such a way as to relate the results of measurements car-
ried out on a two-particle system at ti and t2 to the final
state of the system and results of measurements carried
out on the system at t3 and t4 (where

(ti(tp(t3(t4(tf) to the initial state of the system.
The sequence of measurements illustrated in Fig. 6, for
example, is designed to couple measuring device variables
to the particles' spins in such a way that, after all mea-
surements have been completed, it will be found that
EIIi+EII3 o,"'(tf), t——hat. EIIz ——o„' '(tf), and that

bII2= —[ox (4) cos2qi —oy '(tp) sin2q3] . (13c)
+j& ia = -1&

z 1 x 2

ia = +1& ia = -1&
z 1 x 2

4 H2
= "(t-t4)q&(a cos2q& + a s1n2q&)(&) (&)

4 5 y 1 x

H =&(t-t )q (a cos2q — a s1n2q )(2) (2)
3 4 y 2 z

H =&Ct-t„)q (o cos2q3-a s1n2q3C&) C&)
2 2 x 3

H = 6(t t )q (a cos2q — a s1n2q )(&) (&)
2 2 x 3

H2
= 6(t-t&)q&a (2)

H&
= 6(t-t )q a (2)

(J = 0; J = 0&

FIG. 5. Compensating measurements are carried out on two
spin-correlated particles at ti and t2 ~ After the measurements
have been completed, it will be found that AII2 ——a„' '(tf) = —1
and that EIIi+b II3——o,"'(tf )=+1.

iJ = 0; J = 0&

FICx. 6. Compensating measurements are performed on a
two-particle system in such a way as to relate (EII~+AII3) and
EII~ to the final state of the system and (AII4+EII5) to its
initial state. The initial conditions on 'the measuring devices
are that qip —q3p=IIIp+II3p=q4p —q5p

——II4p+II~p ——0. After
all measurements have been completed, it will be found
that XII&+EII3——o.,"'(tf)=+1, EII2——o.„' '(tf) = —1, and
EII4+ AII5 ——0.
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6114+bII5= [cr—r '(t;)+a~ '(t;)] cos2qi cos2qz

—[o„'"(t;)+o„' '(t;)] sin2qi cos2qz

+ [o,'"(t; )+o,' '(t;)] sin2qz —0,
assuming that the initial state of the particles is a spin
singlet. More complex combinations of compensating
measurements can also be imagined.

III. MEASUREMENTS INVOLVING
TWO- TIME OBSERVABLES

The multiple time -properties of quantum-mechanical
systems (properties such as are described in detail in Ref.
1) refer, rather than to the value of any given observable
at any given time, to correiations between the value of one
observable at one time and the value of another (one
which does not, in general, commute with the first) at
another time. If, for example, the initial and final states
of a spin-half particle (in circumstances in which its
Hamiltonian is independent of spin) are

g(t') &
I
o + 1 & and

I J(tf ) & =
I
o = + 1 &, and if a

measurement of the two-time observable
cr, (ti )+o„(t4):o~(t„t~—) is carried out on the particle at
t, and t4 with the result that o (ti, t4) =0, then it can be
said with certainty that a measurement of the two-time
observable o„(tz ) —o.,(t3)—:o„,(t zt )zcarried out on the
particle at tz and t3 (where t; &ti &tz &t3 &t4&tf) will
show that cr„,(tz, t3)=0. The two-time measurement
carried out at t~ and t4, given that its result is zero,
creates a correlation between the x and z components of
the particle s spin at different times, and this correlation
is such that a measurement of cr„,(t, t') "nested inside"
the (ti/t4) measurement must give zero. It is as if the
process of measuring o ( t i, t4 ) and finding that
cr~(ti, t4) =0 places the particle in a two time state th-at is
an eigenstate (with eigenvalue zero) of the two-time opera-
tors cr (t",t"') and cr„,(t, t').

In the discussion that follows, we will show that it is
possible to carry out two-time measurements an a system
of two particIes in such a way as to create correlations be-
tween the values of observables associated with one parti-
cle at one time and the values of observables associated
with the second particle at a different time. (Using the
language of two-time states, we will show that it is possi-
ble for a system of two particles to be in an eigenstate of
various two-particle, two-time operators. ) These interpar-
ticle correlations can be used to "predict" (that is, to make
definite statements about) the results of two-time experi-
ments carried out at intermediate times if the initial and
6nal states of the particles are known. Conversely, the
correlations can be used to predict the final state of a
two-particle system from a knowledge of its initial state
and the results of intermediate two-time measurements.
The second application is the one we wish to develop here.

Let us consider first a system of two spin-half particles
(in circuinstances in which the Hamiltonian of the system
is independent of spin) whose initial state is given by
IX«, ) &, IX(t, ) &,= I

o„=~1&,
I
o„=—1&,. S~ppo~~

that "crossed" measurements of the two-particle, two-
time observables cr„(ti,tz) —=cr„'"(ti )+o„' '(tz) and

Particle 1 Particle 2

I (r~ =+)'&

)~, =~i) )e; =-I)
/

FICr. 7. Crossed measurements of u„(t~, tz) and o.~(t&, t&) on a
system whose initial state is

I
o„=+1)~ I

crr = —1)z.

or(tz ti ):err—(tz)+or '(ti ) are carried out on the system
at times tq and I;2, where t; ~t] &tz &tf, using the pro-
cedure described in Ref. 5. [We refer to these measure-
ments as crossed measurements, since a line connecting
the measurement of o„'"(ti) with the measurement of
a„' '(tz) on a spacetime diagram crosses the line connect-
in~ the measur'ement of or (tz) with the measurement of
o~ '(ti). ] If the result of this pair of two-time measure-
ments is that cr„(ti,tz) =err(tz, ti ) =0, then, clearly, the fi-
nal state of the particles must be
IX(tf)&i IX(tf)&z ——

I
o =+1&i

I
o„=—1&z, since the

state of particle 1 must satisfy the relation
or"(t~)= or '(t; )—and the final state of particle 2 must
satisfy o(z)(tf ) = —o(1)(t;).

This result, illustrate in Fig. 7, suggests a more general
one: that crossed two-time measurements of o„(ti,tz ) and
oY(tz, ti ) carried out on a two-particle system in an arbi
trary initial state function as a spin-flip operator in the xy
plane if the result of each measurement is zero. In other
words, the effect of crossed measurements of o„(t,, tz)
and crr(tz, t, ) [given that o„(ti,tz)=or(tz, t, )=0] is to
"exchange and Aip" the x and y components of the parti-
cles' spins in such a way that the final spin of particle 1 is
correlated to the initial spin of particle 2, and vice versa.

The validity of the more general rule can easily be
shown. Let the initial state of particle 1 be some arbitrary
spin state

I
X(t; ) & i, represented as a linear combination of

the eigenstates of o.„"':

l&(t)&)=ailo =+1&i+bi lo = —1&i.

Similarly, let the initial state of particle 2 be some arbi-
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trary state IX(t;))z, re~resented as a linear combination
of the eigenstates of oy:

I&(t;) &2 az I oy +1&2+bz
I oy ——1&z ~

Then the initial state of the two-particle system can be
written as

If(t )&=aiaz Io =+1&zloy=+1&z
+a»z I

cr =+ I) i I o, = —l)z
+ b iaz I

o = —1&1
I cry ——+1),

+ b
& bz I o.= —1 &, I cry = —1 &, . (16}

[Notice that
I f(t; ) ) need not be expressible as a product

of single-Particle eigenstates: if a 1a z = —b ~ b z= —( b ~ a z
)' = ( b z a ~ )

' = ( 1+i )/2, for example, the initial
state of the system is a spin singlet. ] Now if crossed mea-
surements of o (t~, tz) and cry(tz, t~ ) are performed on the
system, and if the result of each measurement is zero,
then the final state of the system can be constructed
term-by-term from

I
P(t;)) by exchanging and flipping

the x and y components of the two particles' spins in each
term:

I @(ts)&=aiaz
I oy —1&i

I
o = —1&2+a1bz

I
oy=+I)) lo = —1)z

+b~az
I
oy= —»i I

o =+1&2+blbz
I oy =+1)]

I
o„=+1)z

(az
I
oy= —»i+bz

I oy +1) )(ag
I
o„=—1) +b,

I
cr„=+1)z) . (17)

Par tic1e 1 Particle 2

j~ =-I), j a-, =.i)

t2

) ~)'= ~),

FIG. 8. Crossed measurements of o.„(t~, t2) and o.„(t2,t ~ ) on a
system whose initial state is

I cry = —1) ~ I
cr„=+1&z.

Two cases of special interest emerge from this more
general analysis. Consider first the case in which
a~ ——az ——(1—i)/2 and b~ ——bz ——(1+i)/2, that is, the case
in which

I P(t;)) =
I
o'y= —1)~

I
cr„=+1)z. If crossed

measurements are carried out at t& and t2 in this case,
with the result that o„(t&,tz ) =cr„(tz, t& )=0, then the final
state of the system [as given by Eq. (17)] will be

I Q(tf ) ) =
I
o„=—1 ) ~ I

o„=+ 1 )z. This result, illustrat-
ed in Fig. 8, shows that the order of crossed measure-
ments of cr„(t,t') and cry(t', t) is immaterial, as long as the
results of both measurements are zero. The state of the
system after measurements of o„(t&,tz) and oy(tz, t~ )
yield zero is the state that would have resulted if measure-

I

ments of oy(t „tz ) and o„(tz,t, ) had been performed (with
results of zero), instead —namely, the state which satisfies
the relations cr„'"(tf)= o„' '(—t; ) and cry '(tf )= oy '(t; ).—

A second noteworthy result emerges when the initial
state of the particles is taken to be

I P(t; ) ) =
I
o, =+ I ) ~ I o, = —1&z, corresponding to the

choice of constants a& b~ ——&1/——2, az bz ——( —i——)v'1/2
in Eq. (16). When crossed measurements of o„(t~,tz) and
cry(tz, t, } are performed in this case, we find from Eq. (17)
that the final state of the particles is

Q(tf)) =
I
o, = —1 )~ I o, =+ 1)z. Notice that, as far as

the z component of the particles' spins is concerned, the
effect of the measurements is to "exchange, but not to
flip" the spins, in agreement with our earlier statement
that the crossed measurements act as a spin-flip operator
in the xy plane.

It can be shown that this property of the crossed mea-
surements is a necessary consequence of the uncertainty
principle. Suppose that it were possible to carry out
crossed measurements on a two-particle system in such a
way as to anticorrelate all three components of the final
spin of particle 2 to the corresponding components of the
initial spin of particle 1, and vice versa; that is, suppose
that it were possible for J' '(t&)+J"'(t;) to equal zero and
for J"'(tf}+J' '(t;) to equal zero. Then a specification of
any of the individual components J"' or J' ' at t; or tf
would be inconsistent with the uncertainty principle; we
could not, for example, claim that the initial state of the
system was

I o, =+1)~ I o, = —1)z.
Neither could we claim that the initial state of the par-

ticles was a spin singlet or a spin triplet. As illustrated in
Fig. 9, a statement that the initial state of the particles
was a singlet and that J" '(tf )+J' '"(t; )=0 is equivalent
to a statement that the measurements of a„and o~ car-
ried out in the interval between t; and tf had exactly the
same effect on both particles. But this cannot be the case,
since the order of the measurements differed for the two
particles. (A similar argument can be given for the case
of an initial triplet state. ). We conclude, then, that it is
not possible for crossed measurements of cr„(t&,tz) and
oy(tz, t& ) to correlate all three components of the particles'
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3(1)(t ) 3(2)(t ) 3(1)(t )f 1 1
3(2)(t ) = -3 « . ) = 3(,2)(t. )f 1 1

t2

t. j(I)«) (t-) = -~ ' (t. )1 1 1

FIG. 9. If crossed measurements of o„(t&,t&) and o-~(t&, t&)

conducted on particles initially in the singlet state could yield
the results J' '(t~)+ J"'(t; )=0 and J'"(ty)+ J' '(t;) =0, then the
measurements though performed in reverse order, would have
the same effect on both particles, returning each to its initial
state.

spins in such a way that J" '(t~) = —J' "(t;).
As alluded to earlier, one possible interpretation of the

interparticle correlations introduced by a pair of crossed
two-time measurements is that the measurements place

I

the system in a two-time state that is an eigenvalue-zero
eigenstate of the two-particle, two-time operators
cr„(t1,t2) and oz(t2, t1 )~ Such an interpretation is appeal-
ing because it suggests that it is possible to extend the for-
malism used to describe the results of ordinary, "un-
crossed" two-particle measurements [such as measure-
ments of o'„"'(t)+cr„' '(t) and cr,'"(t')+o

Y
'(t')] to the case

of crossed two-time measurements.
Let us briefly review a familiar example of the former

type of measurement. Consider two spin-half particles,
each in an arbitrary initial spin state. Suppose we are told
that the x component of the total spin of the system is
measured at a time t, that the y component of the total
spin of the system is measured at a later time t', and that
the result of each measurement is zero. Then we can state
with certainty that the final state of the two-particle sys-
tem is a spin singlet, regardless of the identity of the ini-
tial states of the particles. In other words, we can state
that the final state of the particles is that state whose pro-
jection on the eigenvalue-zero eigenstate of J„—:o„'"+o„' '

and Jz ——oz +o.
z is one.(2) 2) ~

Now let us return to the case of two crossed measure-
ments of cr„(t1,t2) and o~(t2, t1) ~ By analogy with the
preceding example, we expect that the final state of two
particles for which crossed measurements of o„(t1,t2) and
o~(t2, t1 ) yield zero will be that state which, together with
the initial state of the particles, forms a two-time state
whose projection on the eigenvalue-zero two-time eigen-
state of a.„(t1,t2) and o~(t2, t1 ) is one.

Let us define the eigenvalue-zero eigenstate of these
two-particle operators (to within an overall constant) as

I @o(t2)&&No(t2) I @o(t1)&&00(t1) I
=

I
~y=+ &&l os=+1&2' ' &Ox= —1

I
1&~y=

+ l~&= —»1lo'. =+»2 . &0'. = —1 f1&~&=+1 I2

+ f~ =+1&Ilo = —1&2 &o' =+1 l1&~ = —1l2

+
I ~, = —1&1Io. 1&2 &o.=+ I l1&~, =+112

where the ellipses dots in each te™~present the scalar product of the ket and bra in that term. [Notice that the four
terms in

I
0(t2)) . &bio(t1)l correspond to the four ways in which the conditions o„'"(t1)+o„''(t2)=0 and.

cr,'"(t2)+o,' (t1)=0 may be satisfied. ] We require, then, that the final and initial states of the two particles together
form a two-time state such that

&4(~y) I [ I
40(t2) & (40(ti)

I ] I
Wt )) =1.

In other words,
I P(ty) ) must be given by

(ty)&= I@0(t2)& ' ' &@0(t,) I@(t;)& . (18)

As may easily be verified, Eq. (18) correctly predicts that
I p(ty) ) =

I a, =+1)1Ia„=—1)2 when

I p(t;)) =
I
o„=+1&1Icr, = —1)2, as was shown earlier. Furthermore, since

I
$0(t2)) &$0(t1)

I
can be reexpressed

as

I~x=+1&11~&=+1&2'' ' &~y= 1 I1&~ = 1 I2+ lo =+1&1l~y= 1&2' ' &~y=+1 l1&~

+
I
~~= —1&1I ~&=+1&2 &~&= —1 I1&~ =+1

I 2+ I
o~= —1&

I
o&= —1&2 &~&=+1 I1&~ =+ 1 I2
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X2

FIG. 10. Observer A's measurements of a„'"+a„' ' and
o„'"+o~ ', as seen in observer B's frame of reference.

Eq. (18) correctly predicts the form of
~
P(tf)) when the

initial state of the system is
~
cr„=—1)i

~

cr„=+1)z or
~
c», =+1)i

~
c», = —1)z.

IV. RELATIVISTIC CONSIDERATIGNS

In Sec. III, an analogy was drawn between the tradi-
tional formalism used to describe the results of single-time
measurements on a two-particle system (such as measure-
ments of J and J») and a formalism of two-time eigen-

states (or, more generally, multiple-time eigenstates) that
can be used to describe the results of two-time measure-
ments. Let us now investigate more closely the relation-
ship between single-time and multiple-time information
pertaining to a given quantum system by analyzing the
descriptions of the system given by two or more Lorentz
observers.

Consider first a case in which one Lorentz observer-
say, A decides to carry out single-time measurements of
J„and J» on two spin-half particles which are at rest in
his frame of reference, in order to determine whether or
not the particles' spins are anticorrelated. To accomplish
this, A arranges for four measuring devices to interact
with the particles at t~ and t2 in such a way as to record
the values of (»„"'(ti ) +(»„' '(t i )—:(2/4') J„(t,) and
cr»"(t2)+cr» '(t2)—= (2/fi)J»(tz). If the result of A's mea-
surements is that J„(t,)=J»(t2)=0, then A will conclude
that, irrespective of the initial state of the particles, the fi-
nal state of the particles is a spin singlet. He therefore
will be able to state with certainty that any single-time
measurements of J„,J», or J, carried out on the particles
at a time t &t2 will yield zero.

Consider next the description of A's measurements
given by a second Lorentz observer B, with respect to
whom A moves with a uniform velocity in the +x direc-
tion. According to 8, A's measurements of (»„'" and cr„'
occur at two different times (say, t'i and t4), as do A' s
measurements of (T»" and cr»

' (at times tz and t'5, say).
8's representation of A's measurements on a spacetime
diagram therefore has the appearance of Fig. 10.

Now observer B, in contrast to observer A, is unable to
make definite statements about the single-time state of the
two-particle system in the interval between t'& and t5. He
cannot say, for example, that the spins of the particles are
anticorrelated at t'=t3, where t& &tz ~t'3 (t4 (t5 B
can state, however, that there is a correlation between the

t' Oe

"x

--. W rc)

4C

(7
x

(j
Y

a
io = +1&

x 1 [o = -1&
2

)o = +1&
x 1 ja = -1&

2
I

x

FIG. 11. Observers A and C conduct measurements of J„
and J„.in their respective frames of reference, each finding that
J„=J~=O. A and C will agree on the state of particle 1 at
points c and e and on the state of particle 2 at points d and f.

FIG. 12. Observer B's analysis of the single-time measure-
ments performed by observers A and C in Fig. 11, 8 will agree
with A and C on the state of particle 1 at points c and e and an
the state of particle 2 at points d and f.
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value of certain two-time observables associated with par-
ticle 1 and the values of certain two-time observables asso-
ciated with particle 2. In this particular case, for exam-
ple, 8 can say that

~.'"(t' )+cy„"'(r' )= —[~."(t; )+~,"'(r; )],
since A 's experiments (as seen by 8) show that
cr~ '(t~ )+cr„' '(t4 ) =cry"(tz )+cyy '(t5 )=0. We conclude,
therefore, that there are two equivalent descriptions of the
system which are related to one another by a Lorentz
transformation: one description in which the single-time
states of the particles are correlated to one another, and
one description in which the two-time states of the parti-
cles are correlated to one another.

The equivalence between the varying (i.e., single-time
versus two-time) descriptions of a quantum system given
by two or more Lorentz observers can be illustrated by
means of the following example. Consider a case in
which observers A (who moves with uniform velocity in
the +x direction with respect to 8) and C (who moves
with uniform velocity in the —x direction with respect to
8) conduct a "singlet test" (i.e., single-time measurements
of J» and Jy ) in their respective frame of reference, with
positive results. %'hat description will A, 8, and C give
of particles 1 and 2 at the spacetime points c, d, e, and f
shown in Fig. 11?

Let us assume that the initial state of the two-particle
system —that is, the state of the system in the common
past of all three observers —is

~
o„=+1)&j oy= —1)z

(although the argument that follows is completely gen-
eral). Let us also assume that all three observers are
aware that the outcome of A's and C's measurements is
that J„=Jy——0. Then observers A and C will retrodict
from the outcome of A's singlet test that the state of par-
ticle 2 at point d must be

~

o„=—1)~, since that state
must satisfy the relation cr„' '(d) = —o.„"(a) (where a is a
point in the observers' common past). In a similar
fashion, they will retrodict from C's singlet test that the
state of particle 1 at point c is

~
cry =+1)&. A and C will

then predict from the outcome of A's and C's measure-
ments, respectively, that the final state of particle 2 (that
is, its state at point f) is

~
cry = —1)z and that the final

state of particle 1 is
~
o„=+1)~. A and C will agree,

then, that the net effect of their four measurements is to
change each particle's spin twice, in such a way as to re-
turn each particle to its initia& state.

What will be S's description of the two-particle system
subjected to 3's and C's measurements? First, we note
that 8 sees the following two-time measurements carried
out on the particles:

a„'"(t~ )+o„''(t3)—0 p cyy (rz)+op (tg)=0,

(Ty (r3 )+oy '(tI )=0, o'„'"(t4 )+o„' '(iz ) =0

Next, we note that, from 8's viewpoint, the two consecu-
tive measurements of oy" at tz and t'3 must yield the
same results [i.e., oy"(tz ) =ay '(t3 )), as must the two con-
secutive measurements of o„' ' at tz and t3
[o„(tz ) =o„(t'3 )]. Accordingly, 8 can restate the out-
come of the four measurements as

~„'"( ',r)+~„'"( ;r)=0, ~,'"(r;)+~,"'(t;)=0,
oy' '(&3)+cyy"(i;)=0, o„"'(r4)+~„"'(r3)=0.

8 therefore sees two consecutive sets of crossed measure-
ments of o„(tj,tk )'and oy(tk, tj ) carried out on the two-
particle system. (The fact that the order of the measure-
ments differs in the two pairs of measurements is unim-
portant, as was shown earlier. ) Based on this analysis
(which is illustrated in Fig. 12), 8 will conclude that the
state of the two particles at points c and d (which are at
equal times in his frame) is

~
cry =+1)~ ~

o„=—1)z and
that the final state of the system (its state at points e and
f) is

~
o„=+1)

& ~ oy = —1)z. 8's multiple time or-
many time desc-ription of the two-particle system will
therefore be completely equivalent to the single-time
descriptions of the system given by A and C.

Lorentz transformations, then, can generate many-time
properties out of single-time properties; what amounts, in
some particular frame, to the measurement of a single-
time property, amounts to the measurement of a many-
time property in another frame. Many-time descriptions
of nonrelativistic systems might be considered luxuries—
after all, we can covariantly avoid such descriptions; we
can, if we wish, covariantly prohibit all but single-time ex-
periments). Such descriptions of relativistic systems, on
the other hand, simply cannot be done wit'hout.
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