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Quantum measurements of finite duration
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The interaction of a quantum system with a measuring apparatus is usually considered to be
quasi-instantaneous. In this paper, we discuss several aspects of measurements offinite duration. It
is shown that the observation of a quantity which is not a constant of motion may yield readings dif-
ferent from its eigenvalues. Moreover, the free motion of the measuring apparatus may limit its ac-
curacy.

I. INTRODUCTION

Measurements performed on quantum systems can be
described at various levels of detail. Their simplest
description is the projection postulate: The observation of
a dynamical variable A can yield only one of its eigen-
values ak and, immediately thereafter, the quantum sys-
tem is in the corresponding eigenstate uk. The probability
for this particular outcome, if the quantum system was in
a state f prior to the measurement, is

~
(uk, p)

~

. The
above evolution, which is called the "collapse" of the
wave function, is manifestly nonlinear and therefore can-
not be described by the Schrodinger equation. '

A more sophisticated approach is to give dynamical de-
grees of freedom to the measuring apparatus. The charac-
teristic feature of a reliable apparatus is that it can in-
teract with a physical system in such a way that a proper-
ty of the system is replicated in a property of the ap-
paratus. This is 'true in classical physics too. A measure-
ment can therefore be defined as the correlation of a
dynamical variable of the apparatus with one of the physi-
cal system. ,

In quantum theory, a measurement, as defined above,
must be distinguished from an observation, which is the
selection of a particular value of a dynamical variable (of
the apparatus and/or of the observed system). While a
measurement is a dynamical process which can be
described by the Schrodinger equation, an observation (a
collapse) is not amenable to a dynamical description. The
present work is solely concerned with properties of mea-
surements. Any physical or philosophical issue related to
the observation process, such as the existence of an objec-
tive reality, is beyond the scope of this article.

In order to describe dynamically a measurement, one
writes a Hamiltonian such as

H =H, +II~+H;,

where H, refers to the system being measured, M, to the
measuring apparatus, and H; to their interaction. The
analysis is simplest if the interaction is very brief and is

contrived in such a way that the apparatus evolves from
an initial state po to a set of final states pk, which are ma
croscopically distinguishable and are correlated to the
eigenstates of the dynamical variable being measured

A'o~ g ckukA (2)

g cku»4'»Xo~ g ckukp»1tk

It is then observed by a third apparatus, etc. However,
there can be no Schrodinger dynamical description for the
final stage of this chain of apparatuses, at which a single
result is obtained. This final stage is described by a prob-
ability rule, namely, the projection postulate.

The virtue of Eqs. (2) or (3) is to show the self-
consistency of the projection postulate. ' In the above

where ck =(uk, i)'r). The evolution (2) is unitary and, since
it correlates the final states of the apparatus with those of
the physical system, it fulfills our definition of a measure-
ment. Clearly, it is not an observation because the ap-
paratus is left in a superposition of states. It does not yet
point to a definite result.

If the apparatus is macroscopic and cannot be perfectly
insulated from its environment, the phase coherence in the
right-hand side of (2) is rapidly destroyed and one gets a
mixture rather than a pure state. ' Even then, the ap-
paratus does not point to a particular result. All possibili-
ties are represented, with their probabilities

~
ck

~

. In
this paper, we shall ignore the irreversible evolution which
follows Eq. (2), because it is not essential in the problem
which we consider.

In order to discuss an actual observation, one can as-
sume that the apparatus with states pk is observed by
another apparatus, which is not described dynamically.
In other words, the projection postulate is applied to the
combined system and first apparatus. The final state thus
is one of the products uk/», and this result occurs with
probabihty

I ck
Alternatively, one can assume that the second ap-

paratus is also described dynamically, and has states Xk,
so that
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scenario, it does not matter whether the latter is used
directly for the states of the system, or after the evolution
(2), or after (3), etc. It is therefore important to examine
under what conditions the evolution generated by a Hamil
tonian such as (l) indeed yields correlations such as those
of (2). For example, it is well known that if the choice
of the Hamiltonian is restricted by additive conservation
laws, it may be impossible to generate the evolution (2).
These restrictions, however, have little practical impor-
tance because Eq. (2) may be arbitrarily well approximat-
ed in the limit of large quantum numbers (i.e., for macro-
scopic apparatuses).

In order to obtain the evolution (2) it is customary to
assume that H; is of the form

H; =ABf (t),
where A is the dynamical variable being measured, B in-
volves only variables of the apparatus, and f ( t) has a very
large value and a very narrow support near t =to, the "in-
stant" of the measurement. ' In fact, it is assumed that
H, is so large during the brief interaction that H, and H,
can be safely ignored during that period. This drastic
simplification may not always be justified. Coupling con-
stants occurring in nature are finite, and sometimes very
small. " It may therefore be necessary to couple the mea-
sured system and the apparatus during a finite, possibly
long time. The purpose of this paper is to investigate
what happens during such a measurement of finite dura-
tion. Not unexpectedly, it is found that the perfect corre-
lation of Eq. (2) is impaired, just as when the Hamiltonian

- was restricted by additive conservation laws.
In Sec. II, we assume for simplicity that H, =H, =0,

and we follow in detail the evolution leading to (2). If we
assume that the apparatus can be instantaneously ob-
served (by a second, hypothetical apparatus) at any mo-
ment during this evolution, we obtain a kind of "continu-
ous collapse" of the wave function. '

In Secs. III and IV, we consider what happens if H,
and. H„respectively, cannot be neglected during the dura-
tion of the interaction. Finally, Sec. V discusses the inter-
play of H„H„and H;.

Throughout this paper, we use natural units: Pi=1.

II. EXAMPLE OF CONTINUOUS MEASUREMENT

Suppose that we want to measure o, of a spin- —,
' sys-

tem. This can be done by coupling it to a "pointer" which
is simply a free particle (position q, momentum p). We
thus have H, =p /2m. In this section, and the next one,
we shall assume that m is so large that H, can be neglect-
ed.

A suitable interaction Hamiltonian is

H =H;=o, V(t)p,

where V(t) is a given function of time. ' We thus have,
in the Heisenberg representation, q=i [H,q]=o, V, so
that the pointer moves with a velocity + V(t), according
to whether a, =+1.

The initial state of the combined system is

(6)

After a time t, it becomes (we are again using the
Schrodinger representation)

T —&Lp—' JHdte 0=
13, LP 4(q)

aP(q L)'—
PP(q +L)

where L(t)= f V(t)dt. It is convenient to rewrite this as
a density matrix

~

a
~

'p(q L)p'(q' L) —ap*y(q —L)y"(q'+L)—
Pa'(q+L)p'(q' L)

~ p ~

'p—(q+L)y'(q'+L)

From here, the discussion can proceed with various lev-
els of sophistication. We can, if we have enough skill,
keep track of all the correlations between the spin dynam-
ical variables and those of the apparatus. In that case, the
pure state remains pure —it is not replaced by a statistical
mixture. ' ' At the other extreme, we can focus our at-
tention on the spin and completely ignore the pointer.
For example, we may ask what is the expectation value of
a spin variable A (any Hermitian 2 by 2 matrix). It is
given by the standard rule

p(q, q')~ f f p(q, q')5(q q')dq dq' . (1—l)

Consider in particular the case where the pointer is known
to be initially in a finite domain of q; i.e., the initial wave
function P(q) has compact support. Then, when L (t) is
large enough, so that the spin states "up" and '*down"
have become correlated with well-separated positions of
the pointer, the off-diagonal elements in the right-hand
side of (11)vanish and we have

0
( A (t) ) = f f f(t)tA5(q q')g(t)dq dq', —(10) (12)

where 5(q —q') is the unit operator in the q representa-
tion. Formally, this corresponds to tracing out q from the
density matrix:

The pure state has thus been transformed into a mixture.
Equation (12) is sometimes incorrectly called the collapse.
However, as explained above, it cannot describe an indivi-
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dual observation. Rather, it represents the statistical
properties of an ensemble of spin systems when we com-
pletely disregard the properties of the associated appara-
tuses.

What actually happens in observations is intermediate
between these two extreme cases: We do observe the final
positions of the pointer, but not its other dynamical vari-
ables. In particular, we do not correlate the latter with
variables of the spin system. The statistical outcome of a
large number of measurements then is neither a pure spin
state, nor a mixture of spin states, but what may be called
a "compound. "' We ask pairs of questions such as:
"What is the probability of finding the pointer in some
given range q & & q & qz and, in that case, what are the
properties of the spin'?" We then have, instead of (11),

p(q, q')~R = f p(q, q)dq . (13)

Here R is a 2&2 matrix which is analogous to a density
matrix. However, it is not normalized to unit trace.
Rather, its trace is the probability of finding the pointer
in the designated domain. The expectation value of any
spin variable A when the pointer is found between qt and
qz is thus

Eq. (8) at intermediate times, as the pointer moves from
its initial position to the final one. The physical meaning
of this mathematical procedure is this: a second ap-
paratus may suddenly measure the first one, before the
first one has fully accomplished its task, that is, before the
pointer wave functions corresponding to up and down
have been displaced enough to be nonoverlapping. What
is then the state of the "partially measured" spin?

A numerical example is the best way to illustrate the re-
sult. Assume for simplicity that Vis a constant and that
the initial state of the pointer is given by

P(q)=(2a) '~ for —a &q &a, (17)

1+b 1 b—
4 1 —b 1 —b (18)

and (t)(q)=0 elsewhere. The measurement will then be
completed ~hen L = Vt )a. %'e are interested in the situ-
ation when L &a. For example, we ask: "What is the
probability of finding q & 0, and in that case, what are the
properties of the spin?"

Suppose that the spin was initially in a state with
o„=1, i.e., a=p=2 ' . We obtain, from Eqs. (9) and
(13),

( 2 (t) ) =Tr(AR)/TrR . (14)

Let us again consider two extreme cases. If t =0, so
that L =0, we get

where b =J-/a & 1. Any such R can be written as'

R =w~P~+wzPz, (19)

R= f (15)
where w~ and wz are non-negative numbers, and P~ and
Pz are projection operators onto orthogonal states. In the
present case, we have

This is indeed the expected result: In the right-hand side
of (15), the integral is the probability of finding the
pointer initially between q &

and qz, and the matrix
represents the initial pure spin state (p).

At the other extreme, make t large enough —i.e., L(t)
large enough —so that P(q+L) =0 for q&&0. Then, if, for

example, we take 0& q & oo (that is, we look to see if the
pointer is to the right of the origin), we have

1 0'00 (16)

The probability of finding the pointer with q &0 is
~

a
~

and then the spin state is o.,= + 1. Likewise, had we test-
ed —oo &q &0, we would have had a probability

~
p ~

of
finding the pointer there and the spin state would have
been cr, = —1.

The latter results thus represent the outcomes of obser-
vations The R m.atrix supplies both the probability of
finding the pointer in a given range and the corresponding
spin state. The non-Schrodinger part of the evolution is
Eq. (13), which represents the collapse of the original den-
sity matrix (9) into a new density matrix. We emphasize
that Eq. (13) is not a dynamical process "ontrary to Eq.
(2) which could be generated by a Hamiltonian. Equation
(13) only formalizes the (arbitrary) selection, by an exter-
nal agent, of a given range of pointer positions.

In this paper, we investigate the time dependence of Eq.
(13), for fixed q& and q2. To do this, we have to consider

wi = —,
' [1+(1 2b+2b )'~—~],

and the corresponding orthogonal eigenstates are

b+(1—2b+2b')'"
1 —b

(20)

(21)

up to a normalization factor. These states represent spins
polarized in opposite directions in the xz plane. A
straightforward calculation gives

y
(~) 1 b o —Vt' (22)

which could also be obtained directly from (18).
The result is shown in Fig. 1, where the two spin states

are represented by vectors of lengths proportional to w~
and wz, pointing in opposite directions. (Notice that
w ~ +wz ———,, in the special case under consideration,
where a=p. In general, this will not be a constant. ) As
expected, we have (o„)=1 at r =0 (the beginning of the
measurement) and (o, ) =1 at the end of the measure-
ment.

It is clear that the time dependence given in Eq. (22) or,
implicitly, in Eq. (18), does not represent a kind of evolu-
tion that one could hope to follow, moment by moment,
on a single spin- —, particle in the laboratory. In order to
observe the time dependence, one would prepare a number
of identical ensembles of spin- —, particles, and let each en-

semble evolve for a different amount of time before ob-
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H =coo„+V(t)pcr, . (23)

We are here attempting to measure o., of the spin- —,
' parti-

cle, while the latter also "wants" to precess with angular
velocity co around the x axis. Assume for simplicity that
V(t)+0 only for 0 & t & T, and is constant during that in-
terval. Also assume that at t =0 we have

&a,&

(24)

&x& 1.0

FIG. 1. The initial, final, and intermediate states of the spin,
as its density matrix continuously evolves from (o;)= 1 to
(o„)= l. The dots represent 20 intermediate equidistant steps.
At intermediate times, we have a mixture of orthogonal spin
states, as shown by the opposite arrows. The length of each ar-
row is equal to the statistical weight of the corresponding spin
state.

—i fHdt i(coT—cr„+VTpcr }Up=e =e (25)

where P(q) is peaked around q =0. (An initial state
which is not an eigenstate of cr„would lead to slightly
more complicated calculations, but not to any qualitative-
ly new features. ) The question which we address is the
same as in the preceding section, namely: "What is the
probability of finding q &0 at time t = T, and if so, what
is the state of the spin?" (For t & T, that state will then
precess around the x axis with angular velocity co. This is
a trivial evolution which does not concern us. )

The evolution for 0& t & T is given by the unitary
operator

serving the pointer's position. For each ensemble, the
state of those particles for which the pointer's position
was found to be positive is correctly described by Eqs.
(18)—(22). The dependence of this state on the waiting
time can be thought of as a kind of evolution. Indeed, it
is no more or less genuine an evolution than that
described by a solution of the Schrodinger equation. In
both cases, one needs to prepare a number of identical en-
sembles in order to observe the time dependence. The
difference, of course, is that in our example one would not
be able to assign an evolution to a subensemble of parti-
cles until the observation "right-vs-left" had been made
on the pointer.

III. MEASUREMENT
OF TIME-DEPENDENT VARIABLES

In this section we consider what happens if we attempt
to measure, in a way which is not instantaneous, a dynam-
ical variable that is not a constant of lnotion. This prob-
lem is not specific to quantum theory. It may arise in
everyday life, e.g., when a photographer takes a snapshot
of a moving object. However, quantum theory introduces
some novel features, because a measurement is not only a
passive observation, but also the preparation of a new
state. In particular, the result of the measurement is not,
in general, the tilne average of the observed quantity dur-
ing the measurement.

In order to disentangle this problem from the one dis-
cussed in the preceding section, we consider here only
measurements which have been brought to completion.
As an example to illustrate the situation, let H, =coo.„,so
that

U(p)=cos(8 +L p )'

sin(82+1 2p 2)1/2
x+ P z 2 2 21/2(&+L p )

where O=coT and I.= VT. This U is a nonlocal operator
(in q space), acting on go. To evaluate the result, we write

P(q) =(2m. ) ' f exp[ip(q q')]P(q')dq'dp, —
and define a kernel

K(q —q')= f U(p)e'P's ~ 'dp
2m

(27)

=/I (q q')+o„B(q q')+o C(q q—') . (28)— —

The initial. state (24) thus evolves into

As p is constant, this is simply a precession with constant
angular velocity Q=(co,0, Vp). Notice, however, that p is
not sharp, because P(q) is a narrow wave packet, so that
different components of the state vector precess with dif-
ferent angular velocities. In fact, the narrower the wave
packet, the larger the values of p which are involved. In
particular, if 5q « V/co, most of the wave function has
V

~ p ~

&&co so that Q is nearly aligned with the z axis. In
that case, as shown in detail in the calculation below, the
free precession generated by H, =cocr„ is nearly stopped
(even if T is long and in particular coT & 2m). The calcu-
lation below also shows that if we write the initial wave
function as the sum of two components having definite
o„ these components retain nearly constant amplitudes.
This phenomenon is analogous to the quantum Xeno para-
dox.

Explicitly, we have, from (25),
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A (q —q') +B(q q—') +C(q —q')
A (q —q')+B(q q')—C(—q —q')

XP(q')dq' .

Explicitly (see Appendix)

A (x)+B(x)+C(x)=5(x+1,)+Z, (x),
where

1/2

(5(L 2 2)i/2)E+(x)=——L+x
2 I.+~

(29)

(30)

pointer was found in that range). This is, in general, a
mixture of states with opposite spins. Only when q=+L
does the 5 function contribute, and it is, of course, the
main contribution. In that case, the mixture is a nearly
pure state, with spins aligned in the +z direction. For in-
termediate positions of the pointer, the mixture involves
other orientations. In particular, if we are using this im-
perfect apparatus to select two beams with opposite polar-
izations, we may be tempted to use a large domain of q in
order to increase the intensity of these beams. The result
is that the beams will be contaminated with particles of
the wrong polarization.

The amount of contamination crucially depends on the
width of P(q). Consider, for example, P(q} given by (17),
which, for a «L, is a kind of square root of the 5 func-
tion. We then have

=0 if (x~)L. (32)
++ q q q q 2a ~ /2++ (34)

Here, 5 =0/L =a~/V. Figure 2 is a plot of the real and
imaginary parts of A +B+C for 5 =L =1.

When this result is substituted in (29), we thus obtain

P(q L)—
f(q) =2

E+ (q —q')
+ ~ t q~ dq (33)

A+B+C'
8(x-I)

The first term in (33) is identical to (8), with
a=P=2 ' . It thus corresponds to a well-done mea-
surement, uncluttered by motion of the observed object.
This motion seems to have been frozen. ' '

The effect of the nonlocal part of the kernel (31) can be
interpreted as follows: The pointer ought to move to the
right or left, depending on whether o, =+1 or —1. But
cr, is not constant. A wave function with cr, = + 1 will ac-
quire o.,= —1 components, because of H, =cocr„Ther'e-.
fore, the pointer zigzags and its final possible positions
are not concentrated at q =+I., but spread continuously
between —L and +I..

For a given final position of the pointer, what is the
state of the spin? Ideally, we would want cr, =+1 if
q&0, and cr, = —1 if q&0. Actually, the spin state is
given by Eq. (13), where the reduced density matrix corre-
sponding to (33) is integrated from q to q+dq (if the

IV. FREE MOTION OF APPARATUS

In this section, we assume H, =O and consider the mu-
tual influence of H, and H;. The pointer now has a finite
mass m so that

H =(p /2m)+ Vpa, . (35)

Because of the free motion of the pointer (the spreading of
its wave packet} the measurement cannot be as perfect as
for infinite m. The correlation in Eq. (2) deteriorates as
time passes and is completely lost if we wait too long to
observe it.

For example, let the initial wave function be a Gaussian

which can be made arbitrarily small as a~0. The mea-
surement is, therefore, nearly perfect, as predicted in our
qualitative discussion of (Eq. (25): A very narrow P(q)
implies very large values of p so that, in the Hamiltonian
(21), the free part coo'„ is overwhelmed by the interaction
Vpo, It does not matter whether the measurement is in-
stantaneous or extends over a finite time. In any case, the-
components of the initial state along the eigenvectors of
the measured variable are constant. ' '

These results are radically different from what could be
expected on purely classical grounds, where an apparatus
sensitive to o, would simply give the time average of o,
from t =0 to t =T. In the quantum model, such a time
average cannot be measured with the simple apparatus
described above, with constant V(t). A "back-action
evasion" method" might be possible, but is beyond the
scope of this paper.

-li
I

t

I

I

0.5-

x

f(q, 0) =(2ira ) '~ exp( —q'/4a~) .

A free pointer (i.e., with H, only) would evolve into'9
' —I /2

f(q, t) =(2n. )
'~ a+

2ma

&exp —q 4 a+2 it
2'

(36)

(37)

FIG. 2. The real part (solid curve) and imaginary part (bro-
ken curve) of the kernel (30) for b =co/V = 1 and L = VT = 1.

Since H, and H; commute, the final wave function is
thus (for a=P=2 '~, as before)
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@(q—L, t)
g(q+L, t) (38)

mental limits on our ability to measure some dynamical
variables, even if these variables are mathematically well
defined.

(39)

where

Here, L =Vt if t & Tand L =VTif t & T.
The discussion can now proceed as in Sec. II. If we

again ask what is the probability of finding the pointer
with q &0, and if so, what are the properties of the spin,
we find a reduced density matrix similar to (18):

X+ Y
R =[2m(a .+t /4m a )]'
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X+ ———, I exp[ —(q+L)2/(2a2+t2/2m a )]dq,

and

(40)

APPENDIX

00 (q L)—
Y = —, exp

0 4(a +it!2m)
(q+L)'

4(a ' it /2—m )

(41)

Here we explicitly evaluate the three functions A, B,
and C which appear in the kernel defined by Eq. (27).
From Eqs. (26)—(28) we obtain immediately the following
e'xpressions for these functions:

If L » tlma we have in (39) X+ »
~

F
~
&&X, i.e., a

nearly pure spin state. Notice that this is possible only if
V»1/ma. The velocity V, which plays the role of a
coupling constant, must have a minimum value to allow a
reliable measurement.

Then, as T is finite and t is unbounded, the result of the
measurement will finally be washed out. It becomes use-
less for t & maVT/fi, where we have restored fi, for clari-
ty.

V. SYNOPSIS

We finally consider the full Hamiltonian (I), with inter-
play of H„H„and H;. A complete calculation as above
is quite difficult, but the following semiquantitative argu-
ment will give the flavor of the problem.

We have found in Sec. III that a good measurement can
be performed if the width of the pointer wave packet is
small. We need Ace « Vp (for typical p), therefore
a « V/co. On the other hand, the results of Sec. IV im-
ply that a should not be too small. A good observation
requires a »A'/m V.

Comparing these results, .we obtain V»(fico/m)'/ .
This is, in the model which we considered, the minimum
value of the coupling constant allowing a reliable inea-
surement. If co is too large, or if m is too small, the re-
quired value of V (which also is the velocity of the pointer
during the measurement) may not be attainable. For ex-
ample, the required V may be larger than the velocity of
light, which is, of course, impossible. In fact, it should
not even approach the velocity of sound in the material
from which the pointer is made, because the latter would
not behave as a rigid body. Its motion would be very
complex and could not be approximated by a single
(center-of-mass) coordinate q.

It is obvious that the condition we found,
V»(irtc0/m)', is specific to the model we investigated.
Other more realistic models may be subject to different
limitations. It seems, however, that if one puts realistic
limits on coupling constants, masses, etc., there are funda-

A(x)= —I cos[L(b +k )' ]coskx dk, (A 1)

4

B(x)= ——J0(b(L —x )' ) if
~

x
i

&L
2
ib if /x /=L
4

(A4)

(AS)

=0 if ~x
~

&L. (A6)

We are free to change the value of B(x) at the special
points x =+2 without changing the distribution it de-
fines. For simplicity we will from now on let
B(+L)= ib/2 so that —Eq. (AS) can be absorbed into
Eq. (A4).

C(x) can be obtained from B(x) by differentiating with
respect to x:

C(x)= —. = —,[5(x —L)—5(x +L)]+C(x),1 dB
ib dx

where

(A7)

C(x)= —— J, (b(L x)'/ ) if ~x i
&—L

(L 2 x 2)1/2

(A8)

=0 if ~x~&L. (A9)

A(x) can be obtained from B(x) by integrating over
the parameter b:

i bsin[L(b +k )'/ ] k dk )0 (b2+k2)1/2

1 ~ k sin[L (b +k )'/ ] k dk (A3)
(b 2+k 2)1/2

Here b =8/L.
Of these three integrals, only the one for B(x) defines a

genuine function rather than a more general distribution.
B(x) turns out to be
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b
Ab(x)=As p(x)+ —J Bb(x)db'

l
(A 10)

Finally, we add together the three functions to obtain

where

= —,
' [5(x L)—+5(x +L)]+A (x),

A (x)+8(x)+C(x)=5(x+L)+It, (x),
All

where

1/2

g (b(L 2 x2)1/2)

(A14)

A(x)= ——,J~(b(L x)'—~ ) if ~x
~

&L

(A12) Jp(b(L x)'~—) if ~x
~

&L
2

(A15)

=0 if ~x~)L. (A13) =0 if ~x~)L. (A16)
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