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Scalar field theories in curved space
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We investigate the behavior of scalar fields (P) in curved space which have a potential

V[/]= Vo+(1/2)m P +(1/3!)g(() +(1/4!)AP and a general coupling to gravity z /RAN . The

back-reaction of gravity strongly affects the stability of scalar fields. By examining the scalar field
equations and the Einstein equations, we clarify conditions for the system to have an absolutely
stable ground state in which P is constant and a metric is either Minkowski, or de Sitter, or anti —de
Sitter. We find that (i) cubic interactions cause instability, unless /=0, (ii) Higgs scalar fields in the
standard model must have /&0 or g& 6, (iii) negative quartic interaction couplings (A, &0) can

make sense, and {iv) a free scalar field with a tiny mass can reduce the bare large vacuum energy
density Vo to an extremely small value (-m G 'g '). Based on the last observation, the
vanishing-cosmological-constant problem is viewed not as a problem of how to reduce the bare vacu-
um energy density, but as that of how to get a large gravitational constant (G &&

~

m Vo
~

).

I. INTRODUCTION

It is well known that scalar fields (P) in curved space
have an additional coupling to scalar curvature R of the
form —,'/RAN . The conformal invariance' dictates /= —,

'

and Nambu-Goldstone bosons have a minimal coupling
/=0. However, there is no preferential value of g for
such scalar fields as physical Higgs scalar fields in unified
gauge theories of electroweak and strong interactions.
The —,'/RAN interaction becomes important under those
circumstances where spacetime curvature gets very large
as in the very early universe.

Is the parameter g completely arbitrary? We approach
this question from the viewpoint of classical stability.
Nonvanishing g generally leads to nonvanishing R, which
in turn affects the evolution of P through the —,

'
/RAN in-

teraction. We evaluate the back-reaction of gravity to the
classical stability of scalar fields by solving scalar field
equations and the Einstein equations, simultaneously. %'e
clarify conditions for a scalar field system with a potential

V[4]=Vo+tr0+ 2 rrt'4'+ 0'+
3f 4I

to have an absolutely stable classical ground state. As
corollaries we find that (i) the cubic term must vanish
(ri=O), unless /=0; (ii) Higgs scalar fields in unified
theories must have /&0 or g& —,; (iii) a negative quartic
interaction coupling (A, &0) can make sense in curved
space; and (iv) an almost massless, free scalar field can re-
lax a bare cosmological constant to an extremely small
value. Many of our results are obtained where quantum
gravity effects are negligible.

II. CRITERION FOR STABILITY

I=fd'xv g, ' —R+ ,'gj"a, ya,-y

—V[4]—
2 Ã0'

Equations of motion are

0' k+ V' [41+%0=0
1

RJk ——,gJkR = —87TGTJk,

Tjk =O',J0;k+gik( z0; 4' +—V)

+k[g/t (4'); (4') k (R—k 2g,.kR—)4'].— .

(3)

(4)

(6)P „+U'[P]+ P „P =0, .
'

2

U' [(()]= —
2 [(1—8n.Gg'P ) V' +32nGgPV].

We address the question of whether or not the system (1)
admits an absolutely stable ground state at the classical
level in which (() is constant and Rjk is proportional to gik,
i.e., spacetime is either Minkowski, de Sitter, or anti —de
Sitter spacetime. In curved space the energy density is not
a good criterion for the stability. The classical stability
must be examined by analyzing the combined Eqs. (2) and
(3).

By taking a trace of Eq. (3) and using Eq. (2), one finds

8rrGP,
R = [(1 6g)p kp' 4V+—6g V.

' ], —
f2 p

2

where P, =[8mGg'(1 —6g)] '. Substitution of (5) into
'Eq. (2) yields .

To be precise, we consider a real scalar field P in
Einstein's general relativity:

Note that Eq. (6) is exact. U[P], which plays the role of a
potential in flat-space field theory, may be called a pseu-
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dopotential. Though not having any relation to energy
density, U[P] determines the stability of the scalar field
through Eq. (6). The last term in Eq. (6) might be inter-
preted as a "velocity-dependent" potential.

It is known that a local, but not global minimum of
V[/] (or of U[P] in general cases) can be stable because
of the vanishing tunneling probability. Coleman and de
Luccia showed, for instance, that the transition probabili-
ty from a Minkowski spacetime to an anti —de Sitter space
vanishes under certain conditions. Furthermore, Breiten-
lohner and Freedmann, and Gibbons et al. , showed that
anti —de Sitter spaces with a scalar field at the top of a po-
tential can be stable in gauged supergravity theories, pro-
vided that a boundary condition is imposed at spatial in-
finity such that a total "energy" in anti —de Sitter spaces
is finite. The positive-energy theorem in asymptotically
anti —de Sitter spaces has been proved. Since anti —de
Sitter spaces have zero energies and all other configura-
tions have positive energies, anti —de Sitter spaces are
stable. The boundary condition at spatial infinity is cru-
cial in this argument. It has been argued that it is natural
to impose such conditions to define a quantum field
theory, or in other words a Hilbert space, in asymptotical-
ly anti —de Sitter spaces.

In this paper we examine the stability problem without
imposing such boundary conditions for various reasons.
In the cosmological context the real issue is not the stabil-
ity of "exact" anti —de Sitter spaces. In the standard big-
bang theory the universe is very hot at the very early stage
of its evolution, energy-momentum tensors being dom-
inated by finite-temperature ( T&0) effects. Suppose that
the Lagrangian of particle-physics theory contains con-
stant negative energy density Vo. Then, the question is
what happens when the universe, as it expands and. T
drops (T"«

~
Vo

~
), enters an approximately anti —de

Sitter space'? Boundary conditions at spatial infinity must
be imposed such that they can be applied at all times
without any inconsistency. When energy-momentum ten-
sors are dominated by finite-temperature effects, it seems
quite unnatural to impose boundary conditions at spatial
infinity which are special to anti —de Sitter spaces. In a
spatially open universe, finite temperature, and so finite
energy density, would mean an infinite total energy be-
cause of infinite total spatial volume. In such cir-
cumstances it is perfectly legitimate to ask about the sta-
bility of scalar fields P without requiring P to approach
some $0 (one of the minima of U[P]) at spatial infinity.

We encounter a similar problem when the universe
enters an anti —de Sitter phase through tunneling from a
de Sitter or Minkowski space. As was shown in Ref. 4,
just after materialization of a "bubble" of the anti —de
Sitter space a scalar field is not at the bottom (Po) of a po-
tential, but at some P, close to the bottom. In this context
boundary conditions are not at our disposal, but are
chosen by dynamics.

Furthermore, it has been recently argued that quantum
field theory in anti —de Sitter space, constructed by impos-
ing the boundary conditions at spatial infinity as in Ref.
5, would suffer serious diseases at the one--loop level.
Sakai and Tanii showed in a two-dimensional model that
(i) nonrenormalizable divergences appear, (ii) the flat-

Inclusion of a linear term does not change the results very
much. Curiously, the most dominant term in U' at
P ~ oo comes from the cubic interaction term:

as P ~Do. The stability condition (A) can be satisfied,
only if g'i? =0. That is, a cubic interaction term induces
instability in curved space, unless /=0.

Now we restrict ourselves to g=o. Applying the cri-
terion, we find the following conditions for the classical
stability:

(a) G & 0, g & 0, or g' & —,',

+ 12$'Gm & 0
4m

or

= —12$Gm, m +32m Gg Vo & 0;4~
(10)

spacetime limit does not reproduce quantum field theory
in Minkowski spacetime, and (iii) the one-loop effective
action for constant scalar field configurations is not pro-
portional to the spatial volume of anti —de Sitter space.
All these diseases are expected to persist in four dimen-
sions. General interacting quantum field theories in
anti —de Sitter space have not been satisfactorily defined
at the one-loop level.

We investigate the behavior of P without imposing any
boundary conditions at spatial infinity. In this paper we
are concerned with the stability of constant scalar field
configurations against arbitrary fluctuations, and require
that U[P] defined in (7) have an absolute minimum. In a
sense our condition for the stability is sufficient, but not
necessary. There is no contradiction between our results
and those in Ref 5. The difference lies in the boundary
conditions at spatial infinity. We believe that our way of
raising the question of stability is more appropriate in the
cosmological context.

Let us for the moment neglect the last term in Eq. (6)
and investigate the classical stability from the pseudopo-
tential U[P]. Consider first a positive G. For g'&0 or
g&. —,', U[P], which is regular everywhere, must be such
that (A) PU'[P]&0 as P ~oo. For 0&/& —,', P, &0
and U' [P] has poles at P =+/, . The stability requires, in
addition to (A), that (B) the residue of U' [P] at P=+P,
be negative or zero. Though U[P] has an infinitely high
barrier at P=+P, under the condition (8), the condition
(A) also must be imposed to have an absolutely stable
ground state. This is because if P(t) is sufficiently large,
the last term in Eq. (6), which has a positive residue at
P=+P„dominates over U'[P] near P=+P, so that the
total effective potential becomes attractive. Indeed, we
will see below that there are classical configurations
which connect the P &P, region with the P &P, re-
gion.

More explicitly, we consider a potential
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/+a f b=0,— (13)

where 2$U' [P]-aP (a &0) as P —+ac and b = ——,P, .
The last term in Eq. (13) with b &0 can destabilize the
theory, if it dominates over atb as /~ac. However,
it is impossible, since f-bP /g means that
=c exp( b/f) so that —bP /P & a/ as g—+ ac. For spa-
tially inhomogeneous fluctuations the issue is more subtle
and further investigation is necessary.

III. APPLICATIONS

Let us apply our results to special cases.
(i) Higgs scalar fields: V=(A, /4!)(P —u ) . We require

V[/ =u] =0 to have a Minkowski spacetime solution. In
the standard unified theory of electroweak and strong in-
teractions u «G '. (G ' is renormalized to G,b,=6 ' —Svrgu, whose correction is negligible for
moderate g.) The conditions (10) and (11) lead to

(a) /&0 or g& —,',

(b) G&0, 0&C& —,,

—24/[(1 —3g )Gm 2+ 16~$( 1 —6$)6 Vo]

4m
& —12/6m

The condition (11) can be met only if m +32m Gg'Vo & 0.
If 6 & 0, we have the condition (10) for 0 & g & —,

' and (11)
for /&0 or g'& —,'.

To find the behavior of P near the poles of U' [P], we
consider a spatially homogeneous but time-dependent con-
figuration P=P, +X(t) ( ~X/Q, i

&&1). To the leading
order Eq. (6) reads

X——+ =0,
- K x'

(12)
X 2X

where K is a positive constant under the condition (B).
Solutions are X(t)=+@'2Kt and -constXe(t)

i
t

~

which establishes the statement that there can be classical
transitions from the P &((), region to the P &P, region.
If ~P ~

at P=+P, is larger than V'2K, the velocity-
dependent potential in Eq. (6) overwhelms U' [P] so that
the effective potential becomes attractive.

The last term in Eq. (6) is harmless for spatially homo-
geneous large fluctuations [P(t) +Do], too. T—o the lead-
ing order Eq. (6) may be written in terms of f—:P(t) as

'2

For u «G,b, ', (14b) or (14b') cannot be satisfied. We
conclude that /&0 or g& —,

' for standard Higgs scalar
fields.

(ii) Semistable de Sitter space: V= —,
' m P

+(X/4!)P (m &0). P is an additional scalar field which
might be relevant to cause primodial inflation in the very
early universe. /=0 corresponds to a stable Minkowski
space with G,b, ——G) 0.

The conditions (10) and (11) read
(a) /&0 or g'& —,',

y = —& —12(,
1

4n Gm 2

(b) 0&g& —,',
—24/(1 —3g) &y & —12$.

(15a)

(15b)

Note that (15b) is satisfied only for negative A..
The behavior of the pseudopotential U [P] for 0 & g & —,

'

is depicted in Fig. 1(a). There are two types of local mini-
ma, P =0 and yP =go where

2= 3
2m 6 (y + 12$)

P =go corresponds to a de Sitter space with

R = — &0.12m
(17)y+12g'

One also finds that

(18)
Zm (y+12$)

y +24/(1 —3g)

Though Po ——O(6 '), both of two important energy
scales, R and U "[+go], are of order m . The de Sitter
space (P =go ) is expected to be only semistable, decaying
into the Minkowski spacetime (/=0). The reasons are (a)
U[+Po] & U [/ =0], (b) there is a bounce solution to Eqs.
(2) and (3) in the Euclidean signature with a finite Eu-
clidean action which describes seniiclassical tunneling
from the de sitter space to the Minkowski spacetime, and
(c) the effective gravitational constant in the de Sitter
space,

(1—SmGgu ) &0,
4m

(b) 0&g& —,
'

(1—SmGgu ) &0,
4m

(14a)

(14b)

&c &o

(b)

SrrGg(1 —g )

Equation (14b) is equivalent to

4m
&0, u (14b')

Fl&. l. (a) U[p] in the semistable de Sitter-space model
(Q&g& —). (h) V[/] and U[pj in the vanishing-cosmological-
constant model (case I). In both cases U[p] is normalized by
U [0]= Vo. In the shaded region in (a), quantum gravity effects
are expected to be important.
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2

32rrG, b,g
&0

or case II: 6 &0, g&g, = —0.60, m &0,
2

32m.G,»g'
g, is given by ln6

I g, I

= 1 —(6$, ) '. In both cases

(20a)

(20b)

foalR=— (21a)

2= 1

16irG,b, g

2VpI (21b)

G.b,

32m Vo

6 (21c)

GDs ——G —Sirgpo ——6 (y +24$)(y + 12$)

is negative so that the space is unstable at the quantum
level. The model with 0&/& —, is interesting in that it
admits a semi-stable de Sitter space and a negative A, as-
sures the asymptotic freedom in the Minkowski space-
time.

At the very early stage of the universe (at a Planck time
scale) large quantum fluctuations might put the universe
in the P =$0 state. ' If it so happens, the universe un-
dergoes an exponential expansion for a while, eventually

making a transition to the Minkowski spacetime to settle
down.

(iii) Vanishing cosmological constant: V= Vo+ —,
'

m P .
Consider a scalar field which interacts with only gravity.
Bare vacuum energy density Vo, which arises from all
other particle interactions (electroweak and strong interac-
tions), could give rise to an unacceptably large cosmologi-
cal constant (Ao ——SirGVO), if 6=Mi . We propose to
investigate the problem by starting with an extremely tiny
bare gravitational constant G. Indeed, one will find that
under certain conditions nonvanishing expectation value
of the scalar field P (—:Po) reduces the vacuum energy
density to an extremely tiny value and increases 6 to the
observed value G,b =Mp, simultaneously. The key ob-
servation is that Eq. (2)

p'kk+(m'+JR)/ =0
guarantees that in a nontrivial solution (P =$0
=const&0), if it exists, R = m lg reg—ardless of Vo.

To see how it works, we require that (a) the stability
conditions (10) or (11) be satisfied, (b) there be a nontrivial
stable solution P =P, &0, and (c) G,b,

' ——6
—Sirggo ——Mi &0. All the conditions are satisfied, if ei-
ther case I: 6&0, g& —,', m &0

R [ IR
I

&10 (eV) ], I
m g'I must be tiny. The re-

quired inequality for Vo is, in practice, equivalent to
Vo & 0 ( Vo & 0) in case I (II).

Recently many models have been proposed to dynami-
cally relax the cosmological constant to an extremly small
value regardless of its initial value. Banks' has proposed
a model containing third-rank antisymmetric tensor gauge
fields with a nonlocal mass term A. bbott' has proposed,
instead, a model which involves both a scalar field and
non-Abelian gauge fields. Our approach is similar to that
of Dolgov, ' in which the P R interaction plays a crucial
role. In our scenario the effective cosmological constant
is automatically reduced, regardless of the initial, large
Vo, to an extremely tiny value (-m /g). Unfortunately,

in view of the naturalness stressed by Abbott, our scenario
does not provide a solution to the problem. Equation
(21c) implies that 6 ' must be fine-tuned to cancel
16mVO/R. In our view the cosmological constant problem
is not a problem of how to reduce the effective vacuum
energy density, but rather that of how to get a large effec-
tive gravitational constant (G,b, &) I

R/Vo
I
). Also note

that though the resultant theory at P =go contains an al-
most massless scalar field [U "($0)=O(

I
m

I )], it is
quite different from the Bran-Dicke scalar field theory.
Its observational implications have yet to be investigated.

So far our discussions have been mostly at the classical
level. Quantum gravity effects are expected to get impor-
tant in those regions where Riemann tensors R;~~~ are
comparable with or larger than 6 ' (or G,b, '). A
rough estimate may be obtained from R in Eq. (5), or its
approximation

Sm 6(4V —6gg V' )

1 —Sn.Gg(1 —6g)P
(22)

There are potentially two regions where R gets very large:
P ~oo and P -P, if P, &0. Quantum gravity effects
affect transitions from the de Sitter space to the Min-
kowski spacetime in the semistable de Sitter model (ii),
which involve the passage through the P -P, region.
But many of our results are obtained in those regions
where quantum gravity effects are expected to be negligi-
ble. In particular, in the vanishing cosmological constant
model (iii), case I, the quantity (22) is always small for
any P, provided that

I Vo
I
« Gob. and 0 & 6 ~

If there are more than one-scalar fields, general analysis
of classical stability becomes extremely difficult. In gen-
eral pseudopotential U[gk] cannot be defined for such
systems. However, it is not difficult to construct a model
which contains several scalar fields and has a stable
ground state. For instance, one may consider a system
consisting of a Higgs scalar field P and an almost mass-
less free scalar field P with a potential

41:
32 6

R
obs

(21d) V [g,P]= Vo+ —,(P' —v')'+ —,
' m'P2.

and U[+yo] & U[II)=0].
What is happening in case I is depicted in Fig. 1(b). In

spite of positive m the /=0 state is unstable, since
U "[P=0] & 0. The true minimum of U is at P = +go,
where Eq. (17) guarantees (21a).' In case II /=0 is a lo-
cal minimum, but is not absolu'tely stable. To have tiny

It can be shown by analyzing equations of motion that if
6 )0, gp) —,', g'p&0, A, &0, m )0, and S~Ggpv &1, the
model has a stable ground state. Furthermore, if

Vo/m & (32irG,» )
' »u »m, the model has a

nontrivial minimum at f -u and P -Po in Eq. (18b),
where R = —m /g~.
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IV. SUMMARY AND DISCUSSIONS

In this paper we have examined the classical stability of
constant .scalar field configurations in curved space
against arbitrary (time-dependent) fluctuations, to find
that the back-reaction of gravity greatly modifies the
behavior of scalar fields. As by-products we found that
the parameter g is not arbitrary, that cubic interactions
cause instability, that negative quartic interactions can
make sense, and that the cosmological constant can be re-
duced to an extremely small value regardless of an initial
value, provided that there exists a free scalar field with a
tiny mass. Our analysis is mostly at the classical level. If
quantum corrections are included, the parameter g, for in-
stance, is not constant, but becomes a running coupling
constant, which might give rise to new kinds of phase
transitions by failing to satisfy the stability conditions
above or below a critical energy scale. Furthermore, the
criterion for the stability of quantum field theories in
curved space, particularly in the time-dependent cosmo-
logical context, is far froin obvious. It depends on boun-
dary conditions at spatial infinity. In the cosmological
context boundary conditions at spatial infinity cannot be
arbitrarily imposed, but must be consistent with an initial
state which the universe starts with. Also it might be
mentioned that a "flat" spacetime at finite temperature is
not absolutely stable against formation of black holes,

though its rate is totally negligible in realistic situations. '

We have mainly discussed the behavior of a scalar field

P by restricting P to be spatially homogeneous, but allow-
ing it to be time-dependent. The spatially homogeneous
mode P,i(t) may be viewed as a classical part of P(x, t) in a
spatially homogeneous universe. In quantum theory, only
deviations of P(x, t) from P,&(t) are to be quantized,
though P,&(t) itself is subjcet to quantum corrections. A
Hilbert space for (()(x,t) depends on P,i(t).

We have addressed the question if there is an absolutely
stable ground state in which RJk ~gjk and /=const. In
the cosmological context Rjk need not be exactly propor-
tional to gjk and P need not be time independent. There
can be other kinds of cosmologically stable configura-
tions.

Certainly, we need better understanding of field theories
in curved space.
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