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Stability of self-consistent higher-dimensional cosmological solutions

E. J. Copeland and D. J. Toms
Department of Theoretical Physics, University ofNewcastle upon Tyne, Newcastle upon Tyne NE1 7R U England

(Received 25 February 1985)

The problem of self-consistent solutions in higher-dimensional spacetimes is considered. The im-

portance of quantum effects in this analysis is emphasized. It is shown how the one-loop effective
action for conformally invariant matter fields on a time-dependent Kaluza-Klein background may
be obtained from previously known results on static backgrounds. The field equations are obtained
and solved for self-consistent solutions in cases for which the four-dimensional part of the space is a
Friedmann-Robertson-Walker space. Stability of the solutions to small perturbations is studied. All
solutions, including the product of flat four-dimensional space with a sphere, are shown to be unsta-
ble.

I. INTRODUCTION

One of the possibilities for obtaining a theory that
treats gravity and non-Abelian gauge fields in a similar
manner is the generalization of Kaluza and Klein's'
five-dimensional theory of gravity to higher spacetime di-
mensions. These theories are based on a spacetime of the
form M XD, where M is some four-dimensional
space, and D is a compact X-dimensional space with an
isometry group. Non-Abelian gauge theories are included
in the metric for this higher-dimensional spacetime with
the gauge transformations generated by the isometrics of
D . (For a detailed review see Refs. 4 and 5.)

Since Witten's observation that eleven spacetime di-
mensions is the maximum allowed for supergravity, and
the minimum for a Kaluza-Klein theory with a gauge
group containing SU(3) && SU(2) XU(1), a great deal of ef-
fort has gone into studying various aspects of higher-
dimensional theories. In particular, many authors have
looked at the cosmological implications of higher-
dimensional theories. (See Refs. 7—16, for example. ) By
associating time-dependent radii with the extra compact
spatial dimensions it is possible to generalize the standard
Friedmann-Robertson-Walker cosmological solutions to
Kaluza-Klein theory. At late times the radii of the extra
dimensions must be extremely small in order to explain
why we appear to live in a four-dimensional world. In ad-
dition, the rate of change of the size of the extra dimen-
sions must be sufficiently small so that any time variation
in the Newtonian gravitational constant and the gauge
coupling constants are consistent with observation. '

The simplest models occur when the extra dimensions
are static. Because of the extremely small size of the extra
dimensions, quantum corrections to the classical action
are very important. Not only are large vacuum energies
(which have been considered by many people' ) gen-
erated, but there is also a term in the four-dimensional
gravitational action involving the scalar curvature of M"
which is equally important. Candelas and Wein-
berg were able to find self-consistent static solutions to
the quantum-corrected equations of motion for which M"
was flat Minkowski spacetime, and D was the N-
dimensional sphere S

In order to study the stability of the static self-
consistent solutions, it is necessary to evaluate the low-
curvature limit of the effective action in a varying back-
ground. Previous work on this includes Refs. 33—35. If
the quantum matter fields are conformally invariant in
the higher-dimensional spacetime, then it may be possible
to obtain the result by a simple conformal rescaling of the
known results in the static case. (See Refs. 28—30 for the
one-loop effective action in the static case. ) We discuss
this method below and use the resulting effective action to
find the quantum-corrected field equations. We will then
discuss the stability of the static solutions with respect to
time-dependent perturbations, and also the stability of
nonstatic cosmological solutions.

II. THE TIME-DEPENDENT EFFECTIVE
ACTION

We will adopt the curvature conventions of Ref. 36.
Consider a (4+ N )-dimensional space M &&S with
metric

gp„(x )

0

0
g-(x,y) = (2.1)

ds =0 (x)ds (2.2)

a Q (x)y;J(y)

Here g&„(x) is the metric tensor for M, and y,J.(y)
denotes the standard metric on the unit X-sphere. S is
taken to have a varying radius a A(x ) for constant a. Our
index conventions are that careted greek indices (p, ,v, etc.)

are indices for the higher-dimensional space, with
p, v, . . .indices for M and i,j, . . .indices for S . Local
coordinates on M are denoted by x", and y' gives local
coordinates on the unit N-sphere.

In order to obtain the field equations for a time-varying
radius, it is first necessary to calculate the one-loop effec-
tive action in the background spacetime (2.1). One
method of doing this is to use our knowledge of the effec-
tive action in cases where the extra dimensions are static,
and then by making the appropriate conformal transfor-
mation obtain the required action. (See also Ref. 33.)

It may be noted immediately from Eq. (2.1) that the
line element may be written as
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where

ds =g„„(x)dx~dx "+a y;J(y)dy'dyj

with

(2.3)

I~ ————, f d x f d y( g—)' (g""BQB P+-m P

+gRP') . (2.5)

Perform the conformal transformation g -=Q~(x )g- in
|M V PV

Eq. (2.5), where g- is the metric corresponding to the
line element ds in Eq. (2.3). The fields P may be
transformed by P=Q ~

P If w. e take m =0, and
the constant g to be given by its conformal value of g=g,
where'

1 %+2
4 %+3

(2.6)

then the transformed action becomes

g„(x)=Q (x)g& (x) . (2.4)

—2 4
ds is seen to be the line element yn a space M &&S for
which g„„(x) is the metric on M (which is conformally
related to M ), with the radius of S constant and given
by a.

Consider the action for a real scalar field on M &S
defined by

we specialize to the case where Q is a function of time
only, then the neglect of these terms corresponds to a
higher-dimensional generalization of the adiabatic expan-
sion method of Parker and Fulling. (See also Ref. 33.)
Terms that are of higher order in the adiabatic expansion
will be negligible if the radius of the extra dimensions is
slowly varying. It would be possible to extend the result
in Eq. (2.9) to higher order by a straightforward extension
of the methods presented in Refs. 26, 28, and 30.

The action for a massless Dirac spinor field g is

I =fdxfdy( g)' —QWQ (2.10)

where 7 is computed using the appropriate higher-
dimensional spin connection. This action is invariant
under g-~Q g- and g—+Q ' + '~ g. Therefore the
result obtained in Eq. (2.9) also holds for the massless
Dirac spinor (although of course the constants A and B
will differ from the scalar case).

The complete form for the one-loop effective action is

(2.11)

where

IG=(16+Go) ' f d xd y( —g)' (R —2AO) (2.12)

is the Einstein-Hilbert action. Here Go and Ao are con-
stants. We have set the background matter fields to zero.
Substitution of the metric given in Eq. (2.1) leads to

I&= ——, f d x f d y( g)'~(g~ a—ya-,y+g, RP),
(2.7)

R =R +N(N 1)a Q ——2NQ ' Q

—N(N —1)Q 8"QB„Q, (2.13)

+. . ] (2.9)

The terms dropped in Eq. (2.9) are of two types. First,
there will be higher-order terms in the four-dimensional
curvature which will be negligible in comparison with R,
provided that ~R

~
&&a . The second type of term

dropped in Eq. (2.9) involves higher derivatives of Q. If

with R the transformed scalar curvature.
The. important point is tipt I is now the action for a

scalar field on the space M XS for which the radius of
the extra dimensions is constant. Furthermore, for odd-
dimensional spheres, the conformal transformations
described above may be done with impunity as there is no
conformal anomaly. ' The one-loop effective action
takes the general form

I "'= f d"x( —g)'~ (Aa +Ba R+. . . ), (2.8)

where A, B are calculable numbers, g = det(g& ), and R is
the scalar curvature for g& (x). Terms of order R and
higher have been dropped in Eq. (2.8).

In order to calculate the one-loop effective action in
terms of the original four-dimensional metric g& it is

simply necessary to use the relation given in Eq. (2.4).
This leads to

r"'= f d'x( —g)'"[aa -'Q-'

+Ba (Q R+6Q g""BpQB,Q)

where is the four-dimensional d'Alembertian operator.
The effective action then becomes

I =(16mGo) ' f dv„Q [R+N(N 1)a Q ——2AO

+N(N —1)Q 8"QB~Q]

+ f du. [Wa-'Q-'

+Ba (Q R+6Q B~QBpQ)], (2.14)

where du„= ( —g )
~ d x is the four-dimensional invariant

volume element, and

Go =Go&+ (2.15)

Here Vz 2'' + "~ a /I ——((N+1)/2) is the volume of
the static X-sphere with radius a.

III. THE FIELD EQUATIONS

The field equations are obtained by varying the effec-
tive action (2.14) with respect to the higher-dimensional
metric and then setting the variation equal to zero. The
variation with respect to the metric on S must be pro-
portional to the metric because S is a maximally sym-
metric space. This is easily seen to give only one indepen-
dent equation which may be obtained by varying the scale
factor Q(x) for the radius of the sphere. The resulting
equation is
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O=N[R —2A +(N —1)(N —2)Q a ] N—(N 1—)(N —2)Q B&QB„Q—2N(N —1)Q ' Q

—(16mG )(4Aa Q +28a Q R 24—8a Q 8"QB Q+128a Q UQ)

The equations obtained by setting the variation with respect to the four-dimensional metric g„„(x) equal to zero are

O=R& , [—R—2A—p+N(N l)—a Q ]g„,+ ,'N(—N 1)Q— B QBqQgz, +NQ ' Qg„„
—NQ '7 V' Q+(16mG )[Ba Q R ——'(Aa Q +Ba Q R)

28a 2Q 3 +/Qg +28a Q 3 +P P Q+ 38a 2Q +
4$~QggQ]

(3.1)

(3.2)

Here V& denotes the usual covariant derivative and
0=V"Vp.

We will assume that the four-dimensional line element
ds4 has the usual Friedmann-Robertson-Walker form

dsq dt +s———(t)[dX +f (X)(d8 + sin Odg )],
(3.3)

A=O,

2N(N —1) 8
(N+4) A

(3.8)

(3.9)

where
(N+4)a = 8 — A (16nG) . (3.10)

sing, 0&7 &2m, k =+1
f(X)= .X, 0&X& oo, k=O

sinhX, 0&X& oo, k= —1 .
(3.4) This case is just the one considered by Candelas and Wein-

berg. For self-consistent solutions we require

In addition, we will only consider the case when 0 is a
function of time. The explicit field equations are given in

Eqs. (3.16)—(3.18) below.

A. Flat four-dimensional solutions

This case may be obtained by taking k =0 and s(t) = 1

in Eqs. (3.3) and (3.4). Solving Eqs. (3.1) and (3.2) for Q
leads to

0=Q[(32~G )Ba -'Q-'-" —NQ-'], (3.5)

(16m.G) '=(16mGp) '+Ba (3.6)

This follows simply by associating the overall coefficient
of R in the effective action with (16rtG) '. Equation
(3.6) shows that the higher-dimensional gravitational con-
stant Go is not simply related to the four-dimensional one
as in classical Kaluza-Klein theory. In addition, the
physical cosmological constant A is found from Eq. (2.14)
to be given by

—2(16m G ) 'A

=(16mGp) '[N(N —1)a —2Ap]+Aa (3.7)

Substitution of (3.6) and (3.7) into Eqs. (3.1) and (3.2)
shows that we must have (N&1)

where Q=dQ jdt. The two solutions to (3.5) correspond
either to a static sphere (i.e., Q= const), or else a sphere
with the radius growing linearly with time. The latter
case we reject as unphysical. Without loss of generality
we may set Q= 1 in Eqs. (3.1) and (3.2) and obtain an
equation for the radius a of the static sphere.

We may identify the physical value for Newton's gravi-
tational constant G from Eq. (2.14) to be given by

8) 'N+"
A

2N (N —1)
(3.1 1)

This shows the importance of the induced gravity term in-
volving B since if it is ignored we find only the condition
A &0.

The results for the coefficients A and 8 are given in
Table I for both conformally coupled scalars and for
Inassless Dirac spinors. We have considered cases where
the extra dimensions are odd-dimensional spheres with di-
mension less than ox' equal to seven. It is easily seen that
the consistency condition in Eq. (3.11) is only satisfied for
S and S in both cases. The self-consistent radius may
be found from Eq. (3.10).

It is worth noting that if the extra dimensions are not
static, then there is another possible interpretation for the
four-dimensional theory arising from a different
parametrization of the higher-dimensional metric. It is
observed from (2.14) that the coefficient of R in the part
of the effective action coming from the Einstein-Hilbert
action IG in the higher-dimensional space is multiplied by
Q . Ignoring for a moment the quantum contribution,

A

B
A

B
A

Scalar

—7.1X10-'
2.7X 10
7.9X 10-'

—7.4X10-'
—7.0X 10-'

7.3 X10-'

Spinor

—1.9X 10
5.6X 10
1.1 X 10

—2.6X 10
—7.2X10-'

1.8X 10-4

TABLE I. The values of the constants A and B that enter
the one-loop part of the effective action in Eq. {2.8). Results are
given for conforrnally coupled scalar fields and massless Dirac
spinor fields on S, S, and S .
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this may be interpreted as a time-dependent gravitational
constant if 0 is a function of time. This suggests that in
order to obtain a constant coefficient multiplying R, the
original parametrization of the higher-dimensional metric
should be

Q (x )gp, (x )

g —(x,y) =
pv 0

0

a Q (x )y;~ (y )
(3.12)

This leads to the effective action being given by

(16~G, )
—jd"x( )' '[R 2A,Q —N+N(N —1)Q '— a '——N(N+2)Q &"Q~ Q]

+ I d4x( g)1&21/a
—4Q —4 —N+ga —[Q

——NR + —'(N+2)Q NB"QapQ] I . (3.13)

[The result in (3.13) is most easily obtained by performing
a conformal transformation of the four-dimensional part
of the metric in (2.14).] Note that the coefficient of R in
the quantum contribution to I involves 0 which still
means that the effective gravitational constant is time
dependent. It is not possible to find a parametrization of
the higher-dimensional metric which makes both coeffi-
cients of R constant.

Proceding as before, we are led to field equations which
in the case gz ——g&, give

Q= ——,'N[Q +' —(16mG )Ba Q ']Q . (3.14)

This equation does not lead to any solutions for which
Q(t) approaches a constant at late times. The only physi-
cally interesting case is when Q is a constant for all time.

In this situation it does not matter whether the parametri-
zation in Eq. (3.12) or Eq. (2.1) is chosen.

B. Four-dimensional Friedmann-Robertson-Walker
solutions

Solutions to the equations given in (3.1)—(3.4) are not
easy to obtain for nonconstant s(t) or k&0. However, 'it

is possible to find late-time solutions assuming that

lim Q(t)=Qo, (3.15)t~ oo

where Qo is a constant. This guarantees that the effective
gravitational constant really does become constant at late
times. Without loss of generality we will normalize the
radius of the extra dimensions so that Qo= 1.

The field equations are

O=N[6(s 's+s s +ks ) —2Ao]+N(N —1)(N —2)a Q +N(N —1)(N —2)Q Q

+2N(N —1)Q '(Q+3s 'sQ) —4CQ —12DQ =
(s 'i'+s s +ks )

24DQ-' NQ +1—2DQ-'-"-(Q+3s —'sQ),

0 3(
—ls'+s —2 ' +ks —2) A + 1 N(N 1 )a

—2Q —2+ 3NQ —1 —1 'Q ~ 1 CQ 4 N——

—2 N(s —ls'+s —2s—+ks —2)+3DQ —2 NQ 3s —ls 2DQ ——3—N(Q+3s —lsQ)

(3.16)

+2D.Q Q —3DQ s 's+ —(N —1)Q Q
2

—2 2 —2 1
'

2 2 1 2 2 &.. 2.20= —3(s 's+s s +ks )+All —, N(N 1)a 2Q——,—N(N 1)Q Q—+s—'i'+2s s

+2ks —NQ '(Q+3s 'sQ)+Ns 'sQQ ' — CQ 3D—Q (s '—i'+s s +ks )

—3DQ Q +(2s s +s 'i +2ks )DQ +2Q D(Q+3s 'sQ) —2s 'sDQ Q

(3.17)

(3.18)

where

D = ( 161rGo )Ba

C = ( 16m.Go )Aa

(3.19)

(3.20)

If we now look at sufficiently late times such that (3.15) is
satisfied, then from Eqs. (3.17) and (3.18) we obtain

ss =k+s (3.21)

assuming that D&1. This result may be substituted back
into Eq. (3.17) to obtain

where

co = —,
' (1+D) '[2A0 —C —N(N —1)a ] . (3.23)

Different classes of solutions to (3.22) exist depending
on the sign of co and the value of k. A complete list is
given in Table II. It is found that physically acceptable
solutions exist for the cases A)0 (k=O, +1), A=O
(k = —1,0), or A (0 (k = —. 1).

A second equation for co may be obtained by substitut-
ing Eq. (3.21) into (3.16)

co = —,', (N —2D) '[2NAo —N(N —1)(N —2)a +.4C] .

'= 22S =Q) S (3.22) (3.24)
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3co =A

&0

=0

(0

1

0
—1

1

0
—1

s{t)
1

(~ @of+e —cgf
)2'+fg)f

1
( e a)f +e —alf

)
26)

No solution
Constant
t+q
No solution
No solution
+ fcof 'sin((cubit)

TABLE II. The different types of solutions for M &S in
Sec. III B. m is defined in Eq. (3.23).

IV. STABILITY ANALYSIS OF SOLUTIONS

Q(t ) = 1+5Q(t ),
s(t)=s, (t)+5s(t) .

(4.1)

(4.2)

Perturbing the field equations (3.1) and (3.2) to linear or-
der in M(t) and 5s(t) gives for the case M &&S (where
sp ——1, A=O)

Having obtained solutions (3.10), (3.21), and (3.26) to
the higher-dimensional field equations, we now want to
see how stable they are to small variations in s(t) and
Q(t)

Consider the perturbations

Using Eqs. (3.6), (3.7), and (3.23) leads to

CO =3A.1

O=a5s'+ p50+y5Q,
O=p6s'+cz6Q .

Here
(3.25

(4.3)

(4.4)

Equating Eq. (3.24) with Eq. (3.25) gives the following
quadratic equation for a

(16m G)[(N+4)A 2N(N —1)B]a—

a =1V—2D,

P=2D+ —,N(N —1),

y = —,(N+4)C —, N(N 1—)(N—2—)a

p=2(1+D) .

(4.5a)

(4.5b)

(4.5c)

(4.5d)
+ [2N(N 1)+64~—G(N+ 2)AB]a —2NA =0 .

(3.26)

i
A

i
G (10-'" . (3.27)

Using the results from Table I is seen to lead to two real
values for a for both scalars and spinors on S, S, and
S . If we use the present experimental bounds on the di-
mensionless quantity

i
A

i G, we have

(4.6)

(4.7)

From Eqs. (4.3) and (4.4) we find

0=(pp —a )50+py5Q . (4.8)

Using results from Eqs. (3.6), (3.19), and (3.20), we obtain

2N (N —1)B
(N+4)A

C=- 2N (N —1)
(N+4)a

TABLE III. The radius of the extra dimensions in terms of
the Planck length Lp in cases where self-consistent solutions ex-
ist.

a for scalars

1.85 &( 10 Lp
2.03~ 10 Lp

a for spinors

9.16&& 10 Lp
0.117Lp

This gives one of the roots for a in Eq. (3.26) corre-
sponding to macroscopic dimensions, and hence may be
rejected as unphysical. The remaining solution for a is
identical to (3.10) as expected for A=O. The condition for
self-consistent solutions for scalars and spinors are possi-
ble only on S and S . Table III shows the value for the
static radius a in these cases, where we have used
G =Lp . (I p is the Planck length. )

It is worth remarking that the inclusion of n extra
fields simply rescales the values of A and B from the sin-
gle field result by a factor of n In order. to obtain a on
the order of the Planck length, we require about 10 scalar
fields on S, although 100 spinor fields on S would suf-
fice. We have investigated the effects of looking at quan-
tized antisymmetric tensor fields- in order to try and
reduce the number of fields that are needed. '

Using the results in Tables I and III, the constants
a,p, y,p may be found. It is seen that the physically ac-
ceptable solutions for scalars and spinors on S and S all
lead to exponentially expanding solutions for 50 and 5s.
This indicates that the static solutions are unstable.

For the Friedmann-Robertson-Walker —type solutions,
the perturbed field equations are given in the Appendix.
The late-time solutions s(t) for the case A )0 are given in
Table II and are of the form

lim s(t) 0:e"',
t~ oo

(4.9)

p =2N(N 1)(1+D)[N 2(N—+3)D]—(4.11)

Self-consistent solutions exist for the cases of scalars and
spinors on S and S . These results yield [again using
(3.27)]

lim, 50(t ) ~ e '~ '

t~ oo
(4.12)

with co =A/3. When this is substituted into Eqs.
(A1)—(A3), and Eq. (3.27) is used, we obtain

0=5Q+ 3e)50+pa

as the equation governing the behavior of 50 at late
times. Here p is a constant given by
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lim 5s(t) ~e'"+ ~~ ~

t~ao
(4.13)

The late-time behavior of the perturbations again indi-
cates that the solutions are unstable.

When A=0, Table II shows that a solution of the form 5Q(t) =mt ' Y
& (ipt)+ nt 'J

& (ipt), (4.15)

exists for some constant q wheri k= —1. Substitution of
(4.14) into Eqs. (Al) —(A3) leads to a solution for 5Q(t)
of the form

s(t)=t+q (4 14) where m, n are constants, and

p = —, N(—N 1)(—N+2)(1+D)a [(N 2D) ———,
' (1+D)[6D+N(N —1)]I (4.16)

(Using the values in Table I shows that p & 0. ) The
large-t expansion of (4.15) shows that 5Q(t) again
diverges exponentially.

A similar situation arises for the final physically ac-
ceptable scenario A &0 and k = —I. This time the solu-
tion for 5Q(t) may be given in terms of a hypergeometric
function, whose late-time behavior leads to exponential
growth.

V. DISCUSSION AND CONCLUSIONS

%'e have obtained solutions to the higher-dimensional
field equations using the one-loop effective action of a
quantum field in a time-dependent Kaluza-Klein back-
ground. The stability of these solutions to small perturba-
tions was then analyzed. In general, the solutions, includ-
ing those of the Candelas-Weinberg type, have proved
unstable. This seems to be rather an unsatisfactory
feature of the self-consistent solutions that we have exam-
ined. However, it was shown in Ref. 35 that combina-
tions of minimally coupled scalar fields and massless spi-
nor fields could lead to stable perturbations. It would be
interesting to repeat this analysis for antisymmetric tensor
fields ' which are also not conformally invariant. This
merits further attention.

The importance of the induced'gravity term, both for
obtaining self-consistent solutions as well as for the stabil-
ity analysis is apparent. In another study, ' only the in-

duced A term was used, and self-consistent solutions were
obtained by the introduction of a radiation term into the
stress-energy tensor. It is questionable whether this is
physically meaningful since the universe is matter dom-
inated at late times. However, one possible reason for in-
cluding such a term is if gravitons or other heavy particles
created in the early universe interact, creating radiation
that goods the universe.

Finally, we wish to point out that there will be a further
condition for self-consistent solutions if a true Kaluza-
Klein ansatz (which includes gauge fields) is adopted.
This comes about because there will be two terms in the
Yang-Mills action —one arising from the classical
Einstein-Hilbert action in the higher-dimensional space,
and one induced from quantum corrections. ' ' The
overall sign of the total Yang-Mills action must be
correct, which places a further constraint on the theory.
Using the general result in Ref. 30, it may be shown that
the wrong sign is obtained for the conformal scalars on g3
and S, so that although the gravitational part of the ac-
tion comes out correctly, the Yang-Mills part does not.
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APPENDIX

In this appendix we write down the general perturbed field equations for an M )&S manifold where the line element
for M is given by Eq. (3.3):

0=6(N —2D ) [5s —3ss '5s +2s 's 5s ]—[2N(N —1)(N —2)a 4(N+4) C 24(—N+ 2)Ds's '—]s5Q

+2[5Q+ 3ss '5Q][N(N 1)+6D ]s, —
0=6(1+D )(ss '5s —ss '5s ) +3s (N 2D )5Q —[3(N+—2)Dss '+N(N —1)a + —,(N+4) C]s5Q,

0=2(1+D)5s+2(1+D)s 's5s+2(1+.D)(s 's —A)5s+(N —2D)(5Qs+2s5Q)

—[N(N —1)a + ,' (N+4)C+ 3(N+—2)Ds 's']s5Q .
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