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Quantum mechanics of the scalar field in the new inflationary universe

Alan H. Guth
Center for Theoretical Physics, Laboratory for nuclear Science and Department ofPhysics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02I39
and Harvard Sm-ithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02I38

So-Young Pi
Department of Physics, Boston University, Boston, Massachusetts 022I5

(Received 8 April 1985)

An attempt is made to clarify the quantum theory of the "slow-rollover" phase transition which
characterizes the new inflationary universe model. We discuss the theory of the upside-down har-
monic oscillator as a toy model, with particular emphasis on the fact that the system can be
described at late times by a classical probability distribution. An approximate but exactly soluble
model for the scalar field is then constructed, based on three principal assumptions: (1) exact de Sit-
ter expansion for all time; {2) a quadratic potential function which changes from stable to unstable
as a function of time; and (3) an initial state which is thermal in the asymptotic past. It is proposed
that this model would be the proper starting point for a perturbative calculation in more realistic
models. The scalar field can also be described at late times by a classical probability distribution,
and numerical calculations are carried out to illustrate how this distribution depends on the parame-
ters of the model. For a suitable choice of these parameters, a sufficient period of inflation can be
easily obtained. Density fluctuations can be calculated exactly in this model, and the results agree
very well with those previously obtained using approximate methods.

I. INTRODUCTION

The new inflationary universe model' seems to pro-
vide a highly attractive picture for the early evolution of
our inverse. By hypothesizing a significant modification
of the standard hot big-bang model at a time scale of
about 10 sec, the model offers a possible explanation
for a number of the most salient properties of the ob-
served universe. It explains the large-scale homogeneity
and isotropy of the universe, and it also explains why the
quantity Q (the ratio of the actual mass density to the
critical mass density) lies so close to the unstable value of
unity. In the context of grand unified theories, the infla-
tionary model also provides a natural mechanism for
avoiding the tremendous overproduction of magnetic
monopoles which occurs when standard cosmology is ex-
trapolated back to the grand-unified-theory epoch. In ad-
dition, the model provides a framework for predicting the
spectrum of primordial density fluctuations responsible
for the origin of galactic structure. And finally, if the
model is correct, it ~ould mean that we understand the
production mechanism for essentially all the matter, ener-

gy, and entropy in the observed universe.
The key feature of the new inflationary model is a

phase transition of a special type, often called a "slow-
rollover" transition. This type of transition was intro-
duced by Linde, and independently by Albrecht and
Steinhardt, to overcome some crucial problems which
had been discovered in the original version' of the model.
The name slow rollover arises because the transition in-
volves a scalar field which evolves slowly down a gentle
hill in its potential-energy diagram. The purpose of this

paper is to present a new and more detailed treatment of
the quantum behavior of this scalar field, particularly
during the earliest stages of the slow rollover. These
quantum effects are very important for several reasons.
First, they control the length of time for which the scalar
field remains near the top of the hill in the potential-
energy diagram, and hence they determine the duration of
the inflationary era. In addition, quantum fluctuations
provide the source of mass-density fluctuations which are
the likely seeds for the origin of galactic structure. Our
research in this area is continuing, but so far we have con-
structed and solved an approximate model which will be
described in this paper.

To discuss the motivation for this new treatment, we
begin by summarizing what can be regarded as the stan-
dard picture for the behavior of the scalar field. The gen-
eric behavior of the finite-temperature effective potential
is shown qualitatively in Fig. 1. The curves have been
shifted vertically so that they all coincide at /=0. At
zero temperature the potential is extremely flat near /=0,
and V(P =0)=pc', V(P) has a minimum at P =P, . At ex-
tremely high temperatures ( T && critical temperature T, )

the effective potential has a unique minimum at /=0. As
the universe cools the scalar field P gets caught at /=0,
in a state which is called a false vacuum. The equation
of state for this. false vacuum causes the universe to rapid-
ly evolve into a de Sitter space, ' which can be described
by the metric

ds =g dx"dx = —dt +e 'dx

where the expansion rate 7 is related to the energy density
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FIG. 1. The generic behavior of the finite-temperature effec-
tive potential for the scalar field in the new-inflationary-
universe model.

where

e 2«tV—2y
a

(1.2)

p2 (1.3)

The inflationary era occurs during this slow rollover. The
homogeneous solution to the classical equations of motion
will be called / =$0(t).

The scalar field is of course not entirely classical, so
quantum fluctuati. ons about the classical solution must be
taken into account. These quantum fluctuations produce
inhomogeneities in the scalar field

P(x, t) =P,(t)+5/(x, t), (1,4)

which in turn give rise eventually to inhomogeneities in
the mass density of the universe. Assuming that

~
5$

~
&&Po, the perturbation can be treated as a free

quantum field obeying the linearized equation

5$+3X5$—e «'V 5P= — (Po)5$ . (1.5)

Using these ideas, it is then possible to calculate the re-
sulting spectrum of mass-density perturbations. (For
more details, see Sec. VII.)

This standard picture relies on a number of assump-
tions, and various questions have been raised about its va-
lidity.

(1) Is the picture of a classical slow rollover valid? It
has been pointed out by Mazenko, Unruh, and Wald"
that at high temperatures, when one says that /=0, one
really means that the spatial or time average of P is about
equal to zero the field itself is undergoing large fluctua-
tions. As the system cools, they argue, it is possible that
these fluctuations, which extend initially out to P=+P,
or more, will cause the scalar field to settle quickly into
small regions with P=+P, in each of these regions.
When one looks at the spatial average one might see what
appears to be a rolling motion, but the actual local

po of the false vacuum. The scalar field hovers for a while
at /=0, and then eventually begins to roll down the hill
of the potential-energy diagram, obeying the classical de
Sitter-space equation of motion

dynamics could be quite different. In particular, these au-
thors claim that the picture of a classical slow rollover is
invalid for Coleman-Weinberg models' ' ' with g =1,
and also for all models in which the scalar field which
drives the inflation interacts only with itself. We find,
however, that self-interacting scalar field models appear
perfectly acceptable provided that the coupling constant is
sufficiently small. Presumably a similar statement could
be made for the Coleman-Weinberg case, although we do
not study the case in this paper. On the other hand, our
results agree with Mazenko, Unruh, and Wald for cases
with couplings of order unity.

(2) What is the physical significance of the classical
function $0(t)? Hawking and Moss' point out that the
system begins in a thermal ensemble which possesses an
exact symmetry: P~ —P. The dynamics is also con-
sistent with this symmetry, and it therefore follows that
(P(x, t)) remains zero for all time —the field presumably
does roll down the hill, but since it is equally likely to roll
in any direction, the expectation value remains zero.
Hawking and Moss developed an alternative method of
calculation in which only the operator P (x, t) appears.
Using this method, they calculated' a value for the fluc-
tuation amplitude which was in significant disagreement
with calculations done using the standard picture. These
authors have since retracted their calculation, ' but the
question which they raise still requires an answer. In our
method of calculation, $0(t) will be given a very explicit
meaning.

(3) The standard picture described above gives no pre-
diction for how long the scalar field will hover about / =0
before it begins rolling down the hill of the effective po-
tential. This question is of course crucial, since it deter-
mines whether or not sufficient inflation is obtained. The
question has been studied by Linde' and by Vilenkin and
Ford, ' who calculated the behavior of (P (t)). This
operator is infinite and requires a subtraction, and it was
never completely clear to us how this expectation value is
related to the behavior of P itself. Our methods will ad-
dress this question in what we feel is a more precise way,
but we should say at the beginning that our results are in
qualitative agreement with the results of these previous
authors.

(4) It is well known' that the effective potential shown
in Fig. 1 is actually ill defined. In particular, the behavior
shown for the zero-temperature potential at
violates rigorous convexity theorems. The shape of the
true effective potential depends on choices made in its
definition. One choice leads to a Maxwell construction:
V(P) =0 for

~ P ~
& P, . Another choice, based on analytic

continuation in the parameters of the theory, leads to an
effective potential which is complex when

~ P ~
&P, . In

light of these statements, it is not clear that the standard
picture is reliable. The problem is essentially that the
standard picture attempts to describe a time-dependent
situation using the effective potential, which is a quantity
defined to describe static, equilibrium situations. Our
method will avoid this question, since it will involve a
dynamical calculation which makes no use of the effective
potential.

The goal of the present work is to provide answers to
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these questions. In order to do this we have constructed
an approximate model for the behavior of the scalar field
in the new inflationary universe. The virtue of this ap-
proximate model is that it is a free field theory, and there-
fore exactly soluble. It is of course unrealistic, but we
claim that the model qualitatively describes the correct
physics. Furthermore, we believe that it will serve as a
valid zero-order approximation to a more complicated
calculation in which interactions are taken into account
perturbatively.

The organization of the paper is as follows. In Sec. II
we describe the behavior of an upside-down harmonic os-
cillator, which we use as a toy problem which exemplifies
the quantum-mechanical behavior of an unstable system.
In particular, we explain why the behavior of such a sys-
tem at late times can be treated classically, although it is
not described by a single classical trajectory —rather, it
must be described by a classical probability distribution.
Section III contains the core of this paper. Here we define
the approximate model of the phase transition, attempting
to explain clearly the assumptions on which it rests. This
section also includes the mathematical solution of the
model. In the following section we demonstrate that the
analogy with the upside-down harmonic oscillator holds
true, in that the behavior does become classical at late
times. In Sec. V we introduce a "smeared" scalar field
operator, defined by averaging the value of the true scalar
field operator over a small region of space. This averag-
ing is necessary in order to obtain ap operator which in
principle could be measured —a quantum field at a point
is rendered unmeasurable by infinite fluctuations. Nu-
merical results which describe the smeared scalar field are
presented in Sec. VI. This section also contains a brief,
intuitive explanation of why the root-mean-square value
of the smeared scalar field acquires a very small value.
The calculation of mass-density fluctuations is described
in Sec. VII, and a summary of the conclusions is present-
ed in Sec. VIII.

As this work was nearing completion, we learned that
similar work was being carried out by Brandenberger, '

Bardeen, ' and Hill. In addition, Albrecht and Branden-
berger ' have written a paper which is somewhat comple-
mentary to this one, showing that the free-field approxi-
mation holds for a sufficiently long time if the couplings
are small enough. Mazenko has recently studied a
model in which he finds inflation but no slow rollover,
but he does not examine the regime of extremely weak
couplings where the slow rollover is expected. Other
closely related recent papers include those of Semenoff
and Weiss, Evans and McCarthy, Banks, Fischler, and
Susskind, and Fischler, Ratra, and Susskind.

II. QUANTUM MECHANICS
OF AN UPSIDE-DO%'N HARMONIC OSCILLATOR

In this section we examine a problem in one-
dimensional quantum mechanics which has many similar-
ities to the quantum-field-theory problem which we will
discuss later. We consider a particle moving in the poten-
tial

At t =0 the particle is described by a wave function
which is.centered and peaked at x =0. For simplicity, we
choose this wave function to be a Gaussian.

The evolution is then governed by the Schrodinger
equation

c)g i'' c)2$

cit 2m
(2.2)

This equation is satisfied by a wave function of the form

P(x, t) =A (t)exp[ —8 (t)x j,
provided that

(2.3)

i%A =Pi AB/m (2.4a)

and

i fiB = —,
' k+2iri282/m, (2.4b)

1 sin2$ —i sinh2cot
2a2 cos2$+cosh2cot

(2.6)

where P is a real constant of integration which is related
to the width of the wave packet at t =0. The differential
equation is satisfied for complex values of P, but we
choose to absorb the imaginary part of P into a redefini-
tion of the origin of t. The wave packet is then at its
minimum width when t =0. For a properly normalized
wave function one finds

A =(2n. ) '~ [b cos(P —icot) j
where

b =a(sin2$)

(2.7)

(2.8)

We are particularly interested in the behavior of g(x, t)
for large t, which is given by

g(x, t) — (2/m)'~ b '~ exp[ —,' (cot+iP)j—
X lX

+exp —e +b~ 2g~
(2.9)

The probability distribution for x is then Gaussian, with

( x2) & b2e2mt (2.10)

where a dot above a symbol denotes differentiation with
respect to t. In solving these equations it is useful to in-
troduce the parameters

a =R/v'mk,
(2.5)

co:—k/m .

The parameter a describes a natural quantum-mechanical
length scale, analogous to the Bohr radius of the hydrogen
atom. We will see that the system will appear classical
when it is probed at length scales large compared to a. In
terms of these parameters, one finds

18 = tan(P —icot)
2Q

V(x )= ——,
' kx, k & 0 . (2.1)

Note that the P dependence of (x ) is easily understood.
As P is varied, b is minimized when P=~/4, with b =a.
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pg= g+O(e "')

=v'mkxg+O(e '), (2.11)

where V'mkx is in fact the momentum which would be
attained by a classical particle which rolled from rest at
the peak of the potential to the point x. Let us now ex-
amine the noncommutivity of x and p:

1

xpg= V mkx2$+O(e 2"'), (2.12a)

pxg=&mkx2$ i RQ+O—(e 2"') . (2.12b)

The commutator contribution —ifig will be insignificant
compared to the other term if R « v'mkx, or equivalent-
ly if a «x . Thus at large times, in the region x »a,
the commutator [x,p] becomes negligible and thereby
poses no barrier to a classical description of the system.
The general rule is that whenever the distance over which
the phase of the wave function changes by 2m. (i.e., the de
Broglie wavelength) is much shorter than any other
relevant length, then classical physics applies. Alterna-
tively, one can say that classical physics applies whenever
it is possible to ignore uncertainties b,x and bp satisfying
Mhp =A'.

Note, however, that the wave function is definitely not
sharply peaked about one particular classical trajectory.
Thus, the large-t behavior of the system must be described
not by a classical trajectory, but instead by a classical
probability distribution:

f(x,p, t)= ~
P(x, t)

~

25(p —v'mkx)

(2/~)1/25 —le a)t—
Xexp( —2e "'x /b )5(p —v'mkx) . (2.13)

To see that f(x,p, r) provides an accurate classical
description of the system at late times, one must verify
the following two statements.

(a) f(x,p, t) describes classical physics —that is, it obeys
the classical equations of motion:

For P&m/4, the initial probability distribution for x is
broad, and it therefore spreads quickly. For P & m'/4, the
initial wave function is narrowly peaked in x, and hence
the spread at momentum is large; this spread of momen-
tum results in-a rapid spreading of the x distribution.

Our main point in introducing this model is to show
that the quantum-mechanical wave function at large times
is accurately described by classical physics. I.et us first
consider the commutator of the operators x and p, where
p= —iR(B/Bx). Note that

The verification of (2.14) is straightforward and will not
be shown. To verify (2.15), imagine evaluating & Q )& for
the special case in which Q is a product of x's and p's, in
any order. When the derivative associated with any factor
of p is carried out, three types of terms will arise: the
derivative can act on either a subsequent x in the product,
or it can operate on either the real or imaginary terms in
the exponent of the wave function (2.9). In the first type
of term the power of x is reduced by one, and in the
second type the power is increased by one at the cost of an
explicit factor of e '. For the third type the power is
increased by one and no suppression factor is obtained.
After all the derivatives are carried out, each power of x
results in a factor of e ' when the expectation value is
evaluated —thus, the terms of the third type dominate
over the others by a factor of e "'. Furthermore, these
terms of the third type reproduce precisely the calculation
of & Q )f. Finally, one notes that the most general
quantum-mechanical operator Q can be written as a sum
of operators of the form considered above.

The probability distribution f(x,p, t) describes classical
trajectories which roll from rest, starting at the peak of
the potential. These classical trajectories can be
parametrized by

x(t) =Ce"', (2.16)

where the parametrization ensures the constraint between

p and x which is implied by the 5 function in the proba-
bility distribution (2.13). The probability distribution for
the constant C can then be determined from that for x:

P(C) =P(x)
1/2

b
(2.17)

x(t) =+b e"" (2.18)

The parameter ~ clearly represents a time delay in the
classical solution. The probability distribution for ~ is
given by

0.6

0.4-

Thus, at large times x (t) is determined up to a random
multiplicative constant which obeys a Gaussian probabili-
ty distribution.

The physical interpretation of C can be clarified by
writing it as C:—+b exp( cur), so—

Bf+x Bf+paf =0
dt Bx 5p

(2.14)

& Q)f =&Q)&[1+O(e '"')) . (2.15)

(b) For any dynamical variable [i.e., any function
Q (x,p, r)], the expectation value of Q can be computed by
using either the quantum-mechanical wave function 1( or
the classical probability distribution f. More precisely, it
can be shown that FIG. 2. At late times the particle moves along a classical tra-

jectory x(t)=+6 e"" ', where ~ is a random variable with a
probability density P(~) shown in the graph above.
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a3

(b3

FIG. 3. Graph (a) shows the potential-energy function V(x)
for a one-dimensional quantum-mechanical tunneling problem,
and graph (b) shows the form of the probability density
for the steady-state solution. As in the case of the upside-down
harmonic oscillator, the wave function at large x describes a
state which is accurately approximated by a probability distribu-
tion of classical trajectories.

quantum-field-theory model which approximates the
behavior of the scalar field in the new inflationary
universe scenario. The model is a free-field theory, and is
therefore exactly soluble. It is of course not totally realis-
tic, but we believe that it qualitatively describes the
correct physics. Furthermore, we hope that it will serve
as a valid zero-order approximation to a more complicat-
ed calculational scheme in which the interactions are tak-
en into account perturbatively.

The idealized model is based on three assumptions,
which we will discuss one at a time.

Assumption 1. We assume that the space-time is
described exactly by the de Sitter metric:

d'g 2 d~2+ e 2Xtdx2 (3.1)

8m
Gpp (3.2)

where the expansion rate 7 is related to the mass density
pp of the false vacuum by

I /2

' 1/2

P(r)=2P(C) =2 — toe "exp( —2e 2~ ), (2.19)
dC 2
d'r rr

where the factor of 2 is inserted because there are two
values of C (C and —C) corresponding to each value of ~.
A graph of this probability distribution is shown in Fig. 2.
Thus, at late times the particle obeys a classical trajectory,
but the time at which it begins to roll down the potential-
energy hill is determined by quantum processes, and is
described by a classical probability distribution.

The approximation of a quantum wave function by a
classical probability distribution is not often discussed,
but it is well known in the context of the standard theory
of quantum tunneling. Consider a particle moving in one
dimension, with a potential of the shape shown in Fig.
3(a). In the standard description, a particle placed at
point A will tunnel to point B; it will then roll along a
classical trajectory in the positive x direction. Since the
time of the tunneling is described by a probability distri-
bution, the final state is described by a probability distri-
bution of classical trajectories. Note that in the fully
quantum-mechanical treatment of the tunneling problem,
the particle can be described by an idealized unnormaliz-
able wave function of the form shown in Fig. 3(b). This
wave function decays exponentially in time, and describes
a probability flux which extends to infinity. The probabil-
ity density

~ f ~

has a peak near A, drops sharply be-
tween A and B, and then behaves relatively smoothly to
the right of B. Just as in our discussion of the upside-
down harmonic oscillator, this wave function (to the right
of 8) is accurately approximated by a probability distribu-
tion of classical trajectories.

III. THE SCALAR FIELD
IN THE INFLATIONARY UNIVERSE

In Sec. II we described the behavior of an upside-down
harmonic oscillator, a problem which has many important
features in common with the problem which really con-
cerns us. In this section we will describe an idealized

where the potential V(P) is given by

(3.3)

(3.4)

For pedagogical purposes we are setting c and k
(Boltzmann constant) equal to one, but in Secs. III—V we
will keep factors of fi. It is then necessary to specify, for
example, whether p denotes a mass or an inverse length.
We make this choice according to the usua1 prescription
that S should represent the action of a cia'ssical field
theory, and the quantity A should not appear until the
classical theory is quantized. S must therefore have the
units of mass Xlength, from which it follows that p has
units of (mass)'~ X(length) '~, p has units (length)
and A, has units of (mass) 'X(length) '. Note that trtA, is
then dimensionless.

A plot of this potential is shown as Fig. 4. The poten-
tial has a minimum at

where 6 denotes Newton's constant.
Thus, we are paying no attention to the approach to de

Sitter space, but simply assuming that the space is de Sit-
ter for all time. For comoving wavelengths which are
short compared to the Hubble length before the onset of
inflation, this inaccuracy in the treatment of the metric
should have very little effect—wavelengths which are very
short compared to the Hubble length evolve in any case as
if they were in Minkowski space. However, we must
remember that the longest wavelengths —those which are
comparable to, or larger than the Hubble length at the on-
set of inflation —are not being treated accurately.

By using Assumption 1, we are also ignoring the fluc-
tuations of the metric which result from the fluctuations
of the matter fields.

We will consider a single scalar field evolving in this
idealized de Sitter space. Such a field can be described by
an action
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FICr. 4. A plot of the potential-energy function V(P) given in
Eq. (3.4).

ture, however, one must be careful in choosing the proper
free-field theory to use as a zero-order approximation.
Consider what happens, for example, if the quantum field
theory of Eqs. (3.3) and (3.4) is formulated in flat space at
nonzero temperature. If one develops a perturbation ex-
pansion which begins with the free-field theory obtained
by simply neglecting A, , then one finds that loop integra-
tions give rise to terms proportional to RA, T /(Rp) .
Thus, naive perturbation theory becomes invalid when
T)Ap/v RA, . However, Weinberg has shown that the
vahdity of perturbation theory for this range of tempera-
tures can be restored by modifying the mass term of the
zero-order potential to give

A, T2
o(p) =—— (3.12)

p
C

The false vacuum energy density is given by

ppo= 4~

leading to a de Sitter expansion rate
1/2

2+6X=
~ p

(3.5)

(3.6)

(3.7)

Gf course one cannot change the actual mass, so the
mass-correction term A, T P /8' must be compensated by
the introduction of a new counterterm A, T P /—8A.
Terms proportional to this counterterm then appear in
higher orders of perturbation theory, and they serve to
precisely cancel the leading thermal corrections which
arise at high temperature. In this approximation the
model will undergo a phase transition when the sign of
the effective-mass term changes at a critical temperature:

1
'2

1
4

e3Xt & j & 2Xt(py)2+—& 2y2 & gy4 i2

(3.8b)

The equations of motion are then

4+»0 e"'~'4=i —'4 (3.9)

To quantize this system, we will use standard canonical
techniques, which are totally equivalent to the path-
integral techniques which might otherwise be employed.
(Note that the dynamics of quantized fields in curved
space is straightforward. The subtleties, which we will
confront later, involve such questions as the nature of the
"vacuum" state. ) Thus we introduce a canonical momen-
tum density

m(x)= . =e xP,3Xt
'

BP(x)
(3.10)

and impose the canonical equal-time commutation rela-
tions

[P( tx), ~(y, t)]=i%5 (x y) . — (3.11)

The theory we have so far constructed is an interacting
quantum field theory, which is certainly not exactly solu-
ble. Assuming that A, is sufficiently small, however, one
would expect that the interacting theory can be accurately
described by perturbation theory. At nonzero tempera-

Using the metric (3.1), the action can be written out
more explicitly as

s= fe'xw, (3.8a)

where the Lagrangian density is given by

T, =2pv'iri/A, . (3.13)

[In the language of other authors, the extra term in Eq.
(3.12) is the leading term in the finite-temperature effec-
tive potential. For our present purposes, however, the log-
ic used by Weinberg seems the most useful. ] Note that
thermal effects are enhanced as Pi~0, reflecting the diver-
gences that exist in the classical statistical mechanics of
field theories (Rayleigh- Jeans theory).

In the high-temperature regime (T &&fiX), the compli-
cations of de Sitter space corrections are insignificant and
the analysis of Weinberg applies. In this regime it is also
true that RT=const, which leads us to our next assump-
tion.

Assumption 2. The potential-energy function will be
taken as expression (3.12), where

T= Toe (3.14)

Note that the value of Tp has no physical significance —it
is simply the value of the temperature' at the arbitrary
time t =0.

We expect Assumption 2 to be accurate for the high-
temperature regime. When T becomes comparable to fiX,
however, the interparticle spacing becomes comparable to
the de Sitter horizon distance ' 7 ', and the notion of
thermal equilibrium ceases to make sense. Fortunately, at
this point the thermal correction in Eq. (3.12) is no longer
large enough to be significant, so it does not matter if it is
calculated accurately or not. Thus, we consider the as-
sumption valid for its intended purpose.

Assumption 2 excludes the possibility that the zero-
temperature effective potential contains significant quan-
tum corrections, and it therefore excludes potentials of the
Coleman-Weinberg' type. However, by studying the case
p =0 in our model one can at least learn about the initial
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behavior of fluctuations in Coleman-Weinberg models.
We hope that in the future we will be able to treat this
case in more detail.

The dynamics of our model system has now been com-
pletely defined, and our one remaining assumption will
specify the nature of the initial state. It is here that ques-
tions about the nature of the de Sitter space vacuum will
arise. However, before we can describe this last assump-
tion, it is necessary to develop the description of the
dynamics in more detail.

Since the problem has been reduced to a free-field
l

theory, we can use a Fourier decomposition in order to
obtain decoupled degrees of freedom. In order to keep the
analogy with the upside-down harmonic oscillator of Sec.
II as close as possible, we will expand in sine and cosine
functions rather than in complex exponentials, so that the
expansion coefficients will be real. Furthermore, we will
begin by imagining that our system is confined to a cubic
box with periodic boundary conditions, with the coordi-
nate length of each side fixed at a value b—the Fourier
decomposition is then a discrete sum. The limit b —+oo
can be taken at the end. Thus we write

P(x, t) = 1

(2m )

3

~2cr(0, t) + [o+(k. , t)cosk x+o(k. , t)sink x].
k =(2m/b )n

n integer
n+0

(3.15)

where

o+( —k, t)—:cr+(k, t)

and

o ( —k, t) = —o (k, t) .

ian of Eq. (3.8), one obtains
3

e3xt+I [
' 2+[p2 e 2Ãt(k 2+—y2)] 2]

where

(3.16)

Note that the zero-momentum mode lacks the k~ —k
redundancy exhibited by all other modes, and it therefore
requires special treatment. The normalization used for
the zero-momentum mode has been chosen to simplify the
subsequent equations.

It can be seen already that the expansion in sines and
cosines is both unfamiliar and a bit awkward. We will
proceed with it nonetheless, because we think that the
analogy with the upside-down harmonic oscillator is con-
ceptually very important. However, in Appendix A we
will translate our results into the language of the usual ex-
pansion in complex exponen 'als.

To simplify our notation, we denote the mode variables
cr(O, t) and o+(k, t) generically by cr (t). Whenever a is
summed, we adopt the convention that the sum includes
the zero-momentum mode, and also one entry of cr+ and
one entry of cr for each pair (k, —k).

Since we have reduced the. problem to a free-field
theory, the mode variables o~(t) will completely decouple
from each other, Thus we can study the quantum
mechanics of these mode variables one at a time, and each
variable o.~ will be treated in a manner which is analogous
to the treatment of the variable x of the upside-down har-
monic oscillator. However, although the underlying phys-
ics in the two problems is very similar, the problem of the
o. 's is somewhat more difficult —the time dependence is
more complicated, and in this case we wiH want to extend
our understanding to include thermal ensembles of states.
It will therefore be useful to use a formalism based on
creation and annihilation operators, very similar to those
used in the conventional treatment of the ordinary har-
monic oscillator. A discussion completely parallel to the
one-dimensional quantum-mechanical case is given in Ap-
pendix 8, using the functional-Schrodinger picture of
field theory.

When the expansion (3.15) is inserted into the Lagrang-

A TQ
V (3.17)

The equation of motion for each mode variable is then
given by

[p2 e —2xr(] 2+ y2) ]a (3.18)

The two linearly independent solutions to this second-
order equation are found to be

where

J~(z)
t) w e( 3/2)X

Np (z), (3.19)

' 1/2
9 pP= —+ "2 (3.20)

(k 2+ 2)1/2
e —Xf

x (3.21)

3

e 3Xf
Oa ~ (3.22)

The Hamiltonian is then given by

and Jz(z) and Nz(z) denote the Bessel functions of the
first and second kind, respectively. Some useful proper-
ties of these functions are tabulated in Appendix C.

The Lagrangian (3.16) is quantized canonically. One
introduces a canonical momentum conjugate to each
mode variable o.~:
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II=pm o'a l.—

1 b

4 2m

3

e —3Xt 2
a

oa(t) = 1 b

2 2m

where

3/2

[a g(k, t)+a )Ijt*(k,t)], (3.27)

e 3xt[e 2x—t(k 2+y2) 2] 2 (3.28)

[o,~ ]=i%'5 (3.24)

In order to describe our initial-state assumption, it is
necessary to first describe the behavior of this quantum
system for early times. The mode variable tr (t) describes
a perturbation of physical wavelength (2m/ka)e ', and
thus for sufficiently early times the wavelength is very
small compared to the de Sitter horizon distance 7 '. At
such short distance scales, however, de Sitter space is in
distinguishable from Minkowski space. In fact, one could
imagine that our universe has a small positive cosmologi-
cal constant, and that today it is just beginning a de Sitter
phase. The de Sitter horizon distance would then be on
the order of 10' light years. While such a cosmological
situation would have important implications for the ulti-
mate fate of the universe, it would have absolutely no
detectable effect on particle physics experiments done at
Fermilab, because those experiments are sensitive only to
wavelengths much shorter than the de Sitter horizon dis-
tance.

The flat-space behavior of short wavelengths in de Sit-
ter space can be seen in Eqs. (3.16), (3.18), or (3.23), which
indicate that at early times each mode function o.

behaves like a harmonic oscillator, with frequency

( t) e
—xt(k +@2)1/2 (3.25)

Although the frequency varies on the time scale of X
for early times co »X and thus the change in frequency is

adiabatic. Thus, one expects that the solutions to the dif-
ferential equation (3.18) should behave sinusoidally for
very early times, except that the frequency will slowly

shift. If the Bessel functions in Eq. (3.19) are taken in the
linear combination of the Hankel functions [see Eq. (Cl)],
then these sinusoids become complex exponentials. The
behavior of the Hankel functions for asymptotically large
z is given by Eq. (C2). Then if z(t) is expanded for t=tp
for some early value of tp ["early" is defined by
z(tp) »1], one has

(3.26)

where the expansion for z(t) is valid provided that
iX(t —tp) i

((1.
Motivated by the above arguments about fiat-space

behavior at early times, we rewrite the mode variables
oa(t) in terms of mode functions P(ka, t) These mode.
functions are exact solutions to the equation of motion
(3.18), and at asymptotically early times they approach
the same complex exponential functions that one would
use in the analogous flat-space calculation. Thus one
writes

(3.23)

One then imposes the canonical commutation relations

and the aa are operators defined by Eq. (3.27). The rela-
tionship can then be inverted by using the identity (C4),
from which it follows that

a@*
at

Carrying out the inversion gives
3/2

3Xt

(3.29)

(3.30)

The canonical commutation relations (3.24) can then be
used to show that

[aa~aa'] ~a', a ~

[a,a ]=0.
(3.31)

Thus, at early times one can think of the operators a
and aa as creation and annihilation operators for one-
particle (standing-wave) states with properties which are
indistinguishable from the usual properties of
Minkowski-space quantum field theory. [Of course the
commutation relations (3.31) hold at late times as well,
but the one-particle interpretation has to be abandoned be-
cause the time dependence of the mode functions becomes
more complicated. ]

We then specify the initial state of the system by the
following assumption.

Assumption 3. At asymptotically early times, when
each mode behaves like a simple harmonic oscillator, we
assume that the system can be described by a density ma-
trix corresponding to thermal equilibrium at the back-
ground temperature T= Toe

Note that although the temperature T is changing with
time, it is not necessary to pick any particular time at
which to fix our initial thermal ensemble. According to
Eq. (3.25), .the oscillator frequency tt)(t) is also falling as
e x', so the ratio co/T behaves as a constant at asymptoti-
cally early times. Since the thermal-equilibrium density
matrix depends only on this ratio, it is possible to main-
tain thermal equili. brium at all asymptotically early times.

Note also that if the temperature To in Assumption 3
were set equal to zero, so that each oscillator were put
into its ground state, then the resulting state would be the
standard de Sitter-space vacuum —the one which is used
in the papers by Gibbons and Hawking or Bunch and
Davies. Thus, the thermal effects of the Gibbons-
Hawking temperature g/2m are taken into account impli-
citly by our formalism. (Although the logic used in our
construction makes no mention of the full de Sitter group,
it can be shown that the symmetry is manifested in the
propagator, and therefore in all Green's functions. )

Although we regard Assumption 3 to be as plausible as
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(3.32a)

where

One also has

00 t 0
(3.32b)

any assumption about the initial state, we must point out
that it is not necessarily true. For the very small values of
A, which will be necessary in order to obtain a reasonable
spectrum of density fluctuations (see Sec. VII), the in-
teractions are far too weak to cause thermalization in the
time available. Thus, thermal equilibrium is really only
one of many conceivable initial states. It is clear, of
course, that sufficient inflation will always wipe out the
memory of the initial state, since the wavelengths which
are relevant at late times corresponded in the early
universe to such extremely high energies that only the
zero-point oscillations could have been excited. However,
questions such as the duration of inflation are sensitive to
arbitrarily long wavelengths, and are affected by the ini-
tial state. Thus, it would be worthwhile to explore the
consequences of other initial states, but we have not yet
done so.

Now that both the dynamics and the initial state have
been specified, it is just a matter of straightforward calcu-
lation to answer any question that one might ask about
the behavior of this idealized model. Using Assumption
3, the expectation values of products of the operators a
and a~ can be calculated by using the results for a canoni-
cal ensemble of a simple harmonic oscillator. In particu-
lar, one has

8
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FIG. 5. The root-mean-square value of the Fourier coeffi-
cients a (t) are given by the square root of the right-hand side
of Eq. (3.34). The time dependence arises from the first non-
trivial factor,

~
g(k, t) ~, and is shown in plot (a) for several

values of g =p /g . The midpoint of the graph corresponds to
the time when z=l, which means that the "effective wave
number" e ~'(k~ +y )' is equal to P, the inverse of the
de Sitter horizon distance. The second factor, [coth( z e )]'~,
represents the enhancement due to thermal effects. It is shown
in plot (b) as a function of the effective temperature
e —I I y[g[k 2+y2)I/2]

(a~ a~) = (a~a ) =0 . (3.32c)

Using (3.27), we can similarly calculate expectation
values involving the o.a' s. There is no correlation between
different values of a, and one has

(3.33)

3

i
gP(k, t)

i
coth( —,8 ), (3.34)

where f(k~, t) was defined in Eq. (3.28). The behavior of
~
f(k, t)

~

and coth( —,
' 0 ) are shown in Fig. 5.

It is interesting to examine the appearances of A in Eq.
(3.34). If one takes To ——0, then the right-hand side is
proportional to A' [which is contained in the definition
(3.28) of it(k, t)]—in this case one is seeing pure quantum
fluctuations. If one takes To&0 and y fixed, then fi
disappears in the limit fi—+0—in this case one is seeing
classical thermal fluctuations for a given mode. The
quantity y, on the other hand, arises from a sum over
modes; the Rayleigh-Jeans divergence of classical field
theory causes it to diverge as A~O, as can be seen in Eq.
(3.17).

The expectation value of arbitrary powers of cr (t) can
also be calculated by using standard harmonic-oscillator
techniques —the problem is identical to finding finite-

Xcoth( 2 O ) . (3.35)

It is now possible to calculate expectation values for ar-
bitrary products of fields P(x, t). It will be particularly

temperature expectation values of powers of a harmonic-
oscillator coordinate X. It can be shown that under
these circumstances x obeys a Gaussian probability distri-
bution, and therefore the same applies to o (t). The prob-
ability distribution is therefore completely determined by
its mean and variance, specified by Eqs. (3.33) and (3.34).
[In the infinite-volume limit, however, the probability dis-
tribution for a single mode becomes irrelevant. The num-
ber of modes which enter the sum which determines
P(x, t) approaches infinity, and the central hmit theoreni
implies that the probabilities become Gaussian. All that
matters is the variance of the probability distribution for
each o~(t), and the fact that they are independent. ]

The expression for (o~ (t) ) can be made more explicit
in the special case of p =0, in which case p= —', and a
simple closed form expression exists for Hz"(z) [see Eq.
(C5)]. One then has

'3
2 2

( 2( )) 1 b iriX
1

ka +y
4 2~ (k '+y')'" X'

J
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useful to have an expression for the equal-time propaga-
tor, which in the infinite-volume limit is given ny

(P(x, t)P(y, t) )
1 fd'ke'"'" "'~ g(k, t)

~

coth( —,'Sk) . (3.36)
(2m )

The reader who wishes to derive the above equation will
find some useful intermediate steps in Appendix A. For
the special case of p =0 the expression reduces to

Thus it is clear that for z sufficiently small (t sufficiently
large), the desired criterion is met. Note that z can be
thought of as the ratio of the horizon length X ' to/p the
"effective wavelength" 2m. ez'/(k~ +y )'/, so the
behavior of 0 (t) can be described classically whenever the
effective wavelength is much larger than the horizon
length.

The special case of p =0 must be treated separately,
since in this case p= —, and the right-hand side of Eq.
(4.3) vanishes identically. Repeating the calculation, one
finds that the 1eading term in this case gives

(1 2+y2 )
3/2

g2 2+T —2X~

X2

AX(P(x, t)P(y, t)) = f d ke' '"
16m.

R ——coth( —,O~) .1

taboo Z
(4.4)

g( k2+ y2 )
1/2

&coth
2 0

(3.37)

R ~ does not grow as-quickly in this case, but it is still true
that the behavior is classical whenever the effective wave-
length is much larger than the horizon length.

IV. CLASSICAL BEHAVIOR AT LATE TIMES
V. THE SMEARED FIELD OPERATOR

((o ')(~ '))' '
R~=

(b,cr b,m );„ (4.1)

becomes much larger than one. To calculate R~ at late
times, one begins by rewriting Eq. (3.34), using Eq. (C3) to
describe the asymptotic form of the Bessel functions ap-
pearing in g(k~, t), as defined by Eq. (3.28). One obtains
the asymptotic form

t~ oo 2'
3

e{2P—3)Xtl 2( )
8~X

'
4X
2 2 coth( —,

' 0~) .
k +y

(4.2)

It is easily seen that the growth factor e' p ' ' agrees
with the asymptotic classical growth rate for solutions to
the differential equation (3.9), ignoring the A,P interaction
term. One can carry out an analogous calculation of
(o ), which is related to (ir ) by Eq. (3.22). Finally,
one obtains

Following the logic described in Sec. II, at late times we
can think of each Fourier coefficient o~(t) as a classical
variable with a value described by a classical probability
distribution. Once the classical approximation becomes
valid, one can use classical equations of motion to
describe the subsequent evolution.

To see when the classical approximation becomes valid,
we should check to see when the minimal quantum uncer-
tainty (b,o~hir~)~;„= —,i' becomes negligible. More pre-
cisely, we must see when the ratio

Since we know the probability distribution for each
coefficient cr~ which occurs in the expansion (3.15) for the
scalar field P(x), one might think that the probability dis-
tribution for the field itself is well determined. This is ba-
sically true, but there is one subtlety which must still be
taken into account If on. e were to calculate (P (x, t) ) us-

ing the probability distribution described above, one
would find that the sum over modes would diverge at
large k. Thus there are infinite fluctuations in P(x, t), in
the sense that the standard deviation of the probability
distribution is infinite.

In fact, whenever one tries to discuss the value of a
quantum field at a specified point, whether in flat or
curved space-time, the fiuctuations in the field are always
infinite. Unlike many other infinities which arise in
quantum-field-theory. calculations, this infinity is physi-
cally real and should not be removed by a renormaliza-
tion. It means that if one were to measure the field with a
device which has a spatial resolution I, then the width of
the probability distribution for the measured value of the
field would increase without bound as I becomes smaller
and smaller.

A measurable quantity with finite fluctuations can be
defined by "smearing" the field in a manner which simu-
lates the finite spatial resolution of a measuring device, so
that its value corresponds to a spatial average of the local
quantum field P(x). For definiteness, we will use smeared
fields which are defined with a Gaussian weight function:

Pt(x, t) = fd y exp[ ——,
' (x—y) /I ]P(y, t),

(2ir) I

(5.1)

(2p —3)I" (p) z
(4.3)

where l is an arbitrary smearing length. Using the expan-
sion (3.15) for the scalar field operator P(x, t), one obtains
a rather simple expansion for the smeared field operator
Pt(x, t):
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1 2r
Pt(x, t)=

(2rr) i
'3

v 2o(0, t)+ g e " '" [o+(k, t)cosk. x+0. (k, t)sink x]
k=(2m/b)n

n integer
n&0

(5.2)

X [J~'(z)+&~'(z)]

g(k 2+ 2)1/2
)& coth

2 0
(5.3)

where y, p, and z are given by Eqs. (3.17), (3.20), and
(3.21).

VI. NUMERICAL RESULTS

In this section we will present some numerical results
based on the formulas derived in Sec. V. For convenience
we will now set %=1, and we introduce the notation
G = 1/Mp, where Mp ——1.22)& 10' GeV denotes the
Planck mass.

The Lagrangian for the scalar field is contained in Eqs.
(3.3) and (3.4), and involves the two free parameters A, and
p. It is, however, more convenient to think in terms of di-
mensionless parameters, which can be taken as A, andg:—p /g . The original parameter p can then be
recovered by rewriting Eq. (3.7) as

Thus, the smearing can be seen to provide precisely the
sort of high

~

k
~

cutoff which is required.
The probability distribution for the field Pt(x, t) is then

perfectly well defined. If one wishes to visualize a typical
configuration for the scalar field at any point in its evolu-
tion, one can use Monte Carlo techniques to generate
values for each of the a~ according to a Gaussian proba-
bility distribution of the correct width. At present we are
developing a computer program to carry out this pro-
cedure. One can also calculate (Pt (t) ), which is given in
the infinite-volume limit (see Appendix A for useful inter-
mediate steps) by

—3Xt

(Ptz(x, t) ) = I k dk e
8m'

T, =2/, , (6.3)

I /2

(6.4)

2

pth —— Net T30
(6.5)

where Niff denotes the effective number of massless spin
degrees of freedom (i.e., each bosonic spin state with mass
«T counts as one unit, and each fermionic spin state
with mass « T counts as —', ). Thus po ——p,h at a tempera-
ture Td,s given by

Thus, for the purely scalar model, both P, and T, tend to
be of oi'der of the Planck scale, and can be somewhat
larger than the Planck scale when q is small. The smear-
ing length I is not a parameter of the physical problem,
but it is a parameter of the questions that we will be ask-
ing. We will usually take /=To ', so the smearing
length will correspond to one thermal wavelength.

Figure 6 shows how Pt '=(Pt )'~ varies with time,
for i) =0.2 and A, = 10 ' . The zero of time for this figure
has been fixed by setting To =X, and the smearing length
has been chosen as i=To ' The p. oint where P=P, is
labeled 3, the point where T= T, is labeled 8, and the
point where T=X is labeled D.

The graph has been drawn using our approximation of
a perfect de Sitter space for all time, but it is interesting to
mark on the graph the time at which de Sitter expansion
is actually expected to begin. This will occur roughly
when the false vacuum energy po, defined by Eq. (3.6), is
equal to the thermal energy density, which is given by

' 1/2
3i,2:. (6.1)

22
lo

'Mp, (6.2)

and that

In order for the mass-density fluctuations to be sufficient-
ly small, as will be discussed in Sec. VII, it is necessary
for A, to be very small- of order 10 ' . Thus we will be
primarily concerned with values of k in this vicinity. The
value of g is very important to the estimation of the dura-
tion of the inflationary era—the larger the value of g, the
more unstable is the false vacuum configuration. We will
explore values of i1 in the range of 0.1 to 10. Note that p,
(the value of P which minimizes the potential) is then
given by

' 1/2

0)
2O

IO
E
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IO

C

IO
lo -l5 -lO 0 5

Xt

FIG 6. The va. riation of Pt '=((Pi )}'~ with t, shown for
g=0.2 and A. =10 ' . The zero of time has been fixed by set-
ting To—=g, which means that T=+ when t =0. The smearing
length has been chosen as I=TO '. The point where P=P, is
labeled A, the point where T= T, is labeled 8, the point where
T= Td,s (i.e., when the thermal and false vacuum energy densi-
ties are about equal) is labeled C, and the point where T=g is
labeled D.
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3 10K,
des l y2 3+ P

27Tn eff
(6.6)

F (A T l)= dy e
161T (y +A, )'

&(coth[ —,'(y +A)'i ] . (6.8b)

A 2
2 —2Xty 2 ~2 ~Pk physical —~ k T &+p (6.7)

so the fact that the potential-energy function is unstable is
irrelevant to these modes —they continue to evolve for
some time like the modes of a massless free field. And
for a massless free field, dimensional analysis guarantees

~rmS
that Pt 0: T. Note that this argument depends on the
condition A, «1; if A, were of order one, then the picture
of Mazenko, Unruh, and Wald would presumably be a
valid description.

It is clearly seen in Fig. 6 that P t
' traces out straight

lines for both early and late times, with a short segment of
curve -which interpolates between the two asymptotic
lines. Expressions for these two asymptotic lines are de-
rived in Appendix D, but we state the results here. For
early times one has

Pt '-Tpe 'F(A. , Tpl),

where

(6.8a)

The value of Td s 1s shown on Fig. 6 as point C, using
the estimate X,tt=200. At first one might be worried,
since the point T= Td,s is not at the extreme left of the
graph. However, most of the thermal excitations occur at
wavelengths of order T ', and at early times they behave
in any case as if they were in Minkowski space. The
non-Minkowski nature of the space becomes important
when T=X, when these wavelengths cross the de Sitter
horizon (which occurs at t =0 in Fig. 6). Since Td,s ~~+,
the universe has by this time been undergoing de Sitter ex-
pansion for many time constants (X '). Excitations of
the longest wavelengths will of course be strongly influ-
enced by the non-de Sitter behavior at early times, but we
will not consider this effect.

Note that Fig. 6 provides a clear answer, at least in the
context of our assumptions, to the first question men-
tioned in the Introduction. According to the picture
described by Mazenko, Unruh, and Wald, "when T falls
below T, the scalar field is expected to settle into small
regions with P =+/, . The expected size of these regions
would be of order T ', which is exactly the smearing
length used in Fig. 6. Thus, if this picture were valid,
then P t

' would level off,at a value of order P, when T
fell to T, . As can be seen in Fig. 6, the actual behavior of
qYt

' is very different. p1
' continues to fall long after T

reaches T„decreasing to a value many orders of magni-
tude below P, .

The continued falling of p1
' is a clear result of our nu-

merical calculations, and the reason can be easily under-
stood. When T=T„ fluctuations will indeed carry Pt '
to values of order +P, . However, when one decomposes
these fluctuations into Fourier components as in Eq. (5.3),
one sees that they are dominated by wavelengths of order
T '. For these wavelengths

F(A, , Tpl) has a smooth limit as A~O, and numerically
one finds, for example, that F(0, 1)=0.216. For late
times we find

s( t.) g Xf

To

p —3/2

F(i,,rl, Tpl), (6.9a)

where

I 4
' 2p —3

F2(A~rl Tpl)=
J

—A, ( Tpl+) /4x dy
(y +1)

xcothI —,
'

[A,(y +1)]'i I, (6.9b)

where as before p= 2(9 +4 —2))' / F(A,, r.l, Tpl) does not
behave smoothly as k—+0, but rather behaves as

' 2p —3

'3/A(p —1)1 (p+ —, )

(6.10)

Note that the leading behavior above is independent of
Tpl—for very small A, , the field P at large times is ap-
parently very smooth on comoving scales l of order Tp
and so the smearing length does not matter.

It is shown in Appendix D that the behavior of P t
' at

large times [Eqs. (6.9)] is dominated by wavelengths
which are of order 1/V A, times the thermal wavelength
T '. Thus these dominant wavelengths cross the de Sit-
ter horizon when T=X/V A, =M@/rl [where we used Eq.
(6.4) for X]. Since this temperature is higher than the
temperature Td,s at which de Sitter expansion is expected
to actually begin, it follows that our assumption of exact
de Sitter evolution for all time could have a large effect on
the behavior of P t

' at large times. It would therefore be
important to calculate this behavior under more realistic
assumptions, but we have not yet done so.

Note also that for the special case of rl =0 (or
equivalently, p =0), Eqs. (6.9) and (6.10) indicate
that (Pt ) approaches a constant at large times. On the
other hand, a major point is made in Refs. 15 and 16 of
the fact that (P ) grows at large times as (I!4n. )X t.
The discrepancy is caused by the fact that we are using a
fixed coordinate smearing length, while the regularization
technique used in Refs. 15 and 16 corresponds to using a
fixed short-distance cutoff in physical units. If we were
to use a fixed physical smearing length, we would also
find that (Pt ) behaves as (1/4n )X t at late times.

We can now explore what happens as the parameters
are varied. Figure 7 shows the behavior of P~ for vari-
ous values of g, again using A, =10 ' . All the curves are
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FIG. 7. The behavior of P P' for various values of q. All the
curves are drawn for Tp =g, Tpl = 1, and X= 10 ' . On each
curve, A denotes the point at which PP'=P„B denotes
T=T„Cdenotes T=T«s, and D denotes T=X.
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FIG. 9. The behavior of P ~
' for various values of A, . All the

curves are'drawn for q=0.2 and Tp—=g. The upper curves
show the effect of a fixed coordinate smearing length ( Tpl =1)
and the lower curves show a fixed physical smearing length
(T l e~'=1).

drawn for Tc —=X, and Tol = 1. On each curve, A denotes
the point at which PI ——$„8denotes T=T„Cdenotes
T=Td,s, and D denotes T=X. The differences between
the curves at early times are due entirely to the different
values of X (and hence Tz), which is given by Eq. (6.4).

Figure 8 shows the effect of varying Tol. All the
curves are drawn for g=0.2, Tc=X, and A. =10 ' . The
upper three curves are drawn for fixed values of Tel, cor-
responding to smearing over a fixed coordinate wave-
length. This type of smearing is relevant when one is in-
terested in following the evolution of an expanding region
of space. The lower three curves correspond to fixed
values of Tale~', so in this case the physical smearing
length is held fixed. The behavior is very different at ear-
ly times, but for p & 0 and A, « 1 it is indistinguishable at
late times.

Figure 9 shows the effect of varying A, . All the curves
are drawn for g=0.2 and Tc=X. The upper curves show
the effect of a fixed coordinate smearing length (Tol =1)
and the lower curves show a fixed physical smearing'
length Tpl e~'=1.

Finally, we can investigate the range of the parameters
and rl which leads to an acceptable inflationary

scenario. One must bear in mind, of course, that our cal-
culation applies to only a narrow range of conceivable

particle theories. Most theories would involve a multiplet
of scalar fields, and an effective potential which is more
complicated due to couplings to other fields. However, it
is still reassuring to discover that a single scalar field, cou-
pled to no other fields, can by itself be the driving force of
an acceptable inflationary scenario.

To determine an acceptable range of parameters, we
must first calculate how much inflation is necessary in
this model. The entropy density in the universe today is
dominated by the background radiation of photons and
neutrinos, and is given roughly by

sp-3000 cm (6.1 1)

in units with Boltzmann's constant k set equal to one.
Taking the radius Rc of the observed universe today as
10' light years, we find

Rp sp —3&10 (6.12)

Since this quantity is essentially conserved in the post-
inflationary era, it must have had this value since the
reheating which occurred at the end of inflation. If we as-
sume that the reheating is fast compared to 7 ', then the
reheating temperature is determined simply by conserva-
tion of energy, p„h

——pc, using Eqs. (3.6), (6.5), and (6.1):
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FIG. 8. The behavior of PP' for various values of Tol. All
the curves are drawn for g=0.2, Tp=g, and A, =10 ' . The
upper three curves are drawn for fixed values of Tpl, corre-
sponding to smearing over a fixed coordinate wavelength. The
lower three curves correspond to fixed values of Tpl e+', so in
this case the physical smearing length is held fixed.
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FIG. 10. The maximum acceptable value of X as a function
of g:—p /g . If A, exceeds this value, then it is unlikely that an
arbitrary region will undergo sufficient inflation to explain the
large-scale homogeneity of the observed universe.
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4 135K, 4
P 4 p ~

Sm g X,ff
(6.13) m. ~ (p —1)1 (p+ —, )

X & A)4(p-"
I'(p)

The entropy density immediately after reheating is given
by ~~ xr —(2p —3)/3 —138(2p —3)~~~ eff (6.21)

2~'
jeff &r

45

3
eff

160~

I /4

Mp (6.14)

The expression on the right-hand side is rather complicat-
ed, so a graph of its value is shown in Fig. 10.

VII. COSMOLOGICAL DENSITY FLUCTUATIONS

Thus, immediately after reheating, the radius R„of the
region which will evolve to become the observed universe
is given by

A„s„=Ao so . (6.15)

We assume that as inflation begins (at T=Td,s), the re-
gions of homogeneity have typical sizes of order X ', the
Hubble distance. Inflation must then continue long
enough for this length to be stretched to R„, so the dura-
tion b, t of the inflationary era must satisfy

e~~') XR, ,

which implies

)68+ 4 ink 2 ln& &p 1IlÃgff

(6.16)

(6.17)

Mp
gt~ ——1 —ln +lnq

To

%'e must now compare the above expression with the
amount of inflation which is expected to occur in this
model. Inflation begins roughly when T=Td, s', using
Eqs. (6.6) and (3.14), one finds that this condition is met
at time t;, where

Xt; = ——,
'

ink, + —,
' 1nrt+ —,

'
1I1Ngff ln(Mp/To) . (6.18)

As we will discuss more fully in Sec. VII, we expect in-
flation to end roughly when Pt '=P, . Using Eqs. (6.9a),
(6.10), (6.2), and (6.4), one sees that this condition is met
at time t~ given by

~ ~ avdo+3&do=—
BP

(7.1)

The full scalar field is then decomposed into a classical
and quantum part, according to

One of the most fascinating features of the inflationary
universe model is the manner in which it accounts for
cosmological density fluctuations. While earlier cosmo-
logical models relied on the introduction of an ad hoc
spectrum of primordial fluctuations, in the inflationary
model both the large-scale homogeneity and the residual
density fluctuations are viewed as consequences of the
underlying particle physics. The large-scale homogeneity
is a direct consequence of the tremendous expansion, and
the residual fluctuations are relics of the zero-point quan-
tum fluctuations in the early universe. %'hiIe quantum
fluctuations are normally relevant only on microscopic
distance scales, the inAationary models have the enticing
property that microscopic distance scales in the early
universe are stretched to astronomical scales today. In
this section we will discuss the origin of these fluctuations
in the context of the exactly soluble model described in
Sec. III.

We begin by reviewing the semiclassical approach
which has been used in the literature, following most
closely the approach used in our own paper. However,
we will adapt this approach to a scalar field with the po-
tential energy function used in Sec. III.

All of the papers in Ref. 5 introduce a homogeneous
solution Po(t) to the classical equations of motion:

So

+ 1
lng ——,ink,

1

2p —3

I'(p)
ir'~'(p —1)1 (p + —,

'
)

(6.19)

P(x, t) =go(t)+5/(x, t) . (7.2)

5j+3X5j e "'V'5y= —,-(yo)5& . — (7.3)

Assuming that
~
5$

~
&&Po, 5$(x, t) is then treated as a

free quantum field obeying the linearized equation

1

g(t~ —t; ) = —1 ——,InN, tt

+ —,
'

(p ——,
' )1ni, +(p ——, )ing

2p —3

I'(p)
ir'~'(p ——,

'
)I (p+ —,),

As we mentioned in the Introduction, the precise meaning
of Po(t) in the quantum-mechanical context is never prop-
erly stated in these papers.

Applying this approach to the model described in Sec.
III, one has

(6.20)
= —p P+AP (7.4)

Comparing with Eq. (6.17), one finds that sufficient infla-
tion requires

For early times when P «P, =p/V I,, one can neglect the
term in the equations of motion, so that
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go+ 3XNo =tM'4o

5ttt+3X5ttt=p 5ttt+e 'V 5$ .

(7.5a)

(7.5b)

Pp(t) -P exp[ —,
'

(2p —3)Xt], (7.6)

If k is sufficiently small, it was shown in Sec. VI that
there is a long time interval (Xht &70) for which the
above equations apply, so it makes sense to look at the
large-time behavior of the solutions. We will call this
time period the "middle rollover period" —the period
which is early enough so that Pp «P„but late enough so
that the solutions to Eqs. (7.5) are well approximated by
their asymptotic forms. The general solution to (7.5a) in-
volves a growing- and a decaying exponential, and the
large-time behavior is given by the growing mode

t*(k)=X 'ln(k lp) (7.14)

at which the two terms on the right-hand side of the equa-
tion are equal. For t « t'(k), the mass term is negligible
and the field is well approximated by a free massless
(minimally coupled) scalar field in de Sitter space. The
two-point function is then well known, ' ' and is given
by Eq. (3.37) in the limit To~0. One then has

' 1/2

de Sitter space. Following the approach of Ref. 37 (which
is quite similar in this respect to the other references), one
begins by rewriting Eq. (7.5b) for 5$(k, t), obtaining

5$+3X5ttt=p 5ttt e—~'k 5$ . (7.13)

There is then a time

where P~ is a constant, and p is given by Eq. (3.20). For
large times one can neglect the spatial gradient in (7.3), so
the large-time behavior is given by

bP(x, t)= (X2+I 2e —2+ )t

16m

On the other hand, for t » t'(k) one can write

(7.15)

5$(x, t) —f(x)exp[ —,
'

(2p —3)Xt],

for some function f(x).
One can then define the quantity 5r(x) by

5~(x) = —lim 5$(x, t)
t~aa p (t)

(7.7)

(7 8)

=Pp[t —5r(x)] . (7.9)

To continue, one Fourier expands the spatially inhomo-
geneous functions 5r(x) and 5ttt(x, t), using the standard
notation

f(x)= Jd ke'""f(k) . (7.10)

One can then show that the density fluctuations are deter-
mined (in lowest-order perturbation theory) by 5v(k). To
quantify the density perturbations, recall that they result
in oscillations with a time-independent amplitude once the
wavelength becomes much less than the Hubble length
(assuming that this occurs during the radiation-dominated
era). They can then be characterized by the root-mean-
square value (averaged over time) of these oscillations, and
it can be shown that

5p, (k) =2v 2X5~(k) . (7.11)

The only remaining problem is to determine 5$(x, t),
which is of course a stochastic quantity. We describe the
root-mean-square fluctuations of any (translationally in-
variant) stochastic function f(x) by the quantity

1/2

bf(k) —= k Jd x e'"'"(f(x)f(0))
(2m )3

(7.12)

where ( ) denotes the usual expectation value. To deter-
mine b P(x, t), one treats 5$(x, t) as a free quantum field in

This quantity is interpreted as an asymptotic time delay,
since at large times one can write

tt (x, t) =Pp(t)+5/(x, t)

=Qp(t) —Pp(t)& (x)

Attt(k, t)

Pp(t)
(7.16)

&p,(k) [2(1+ii)]' ' X
m. i (2p —3)

(7.17)

It should be noted that the above description relied on the
assumption that the A,P term in the equation of motion
could be neglected at time t (k), an assumption which is
valid provided that

'
2p —3

k
(7.18)

p a

2

The above method seems reasonably convincing, and its
consequences (in the context of the Coleman-Weinberg
potential) have been accepted by a number of authors.
However, it clearly has at least two deficiencies. First,
there is the second question which we discussed in the In-
troduction: the classical solution Pp(t) has no clear inter-
pretation in the quantum-mechanical context. In particu-
lar, it is clearly not the expectation value of the quantum
operator. Second, the matching condition used to deter-
mine the final answer is clearly only an approximation.
We will now discuss how both of these deficiencies can be
overcome by using the exactly soluble model of Sec. III.

To understand the decomposition (7.2), one must
remember that the goal of the inflationary scenario is to
cause some very small region of preinflationary space to
evolve into a region comparable to the observed universe.
Let the coordinate radius of this region be denoted by a,
and then choose some ~ &&1/a. One can then consider a
Fourier expansion of the smeared field Pt(x, t), as given by
Eq (5.2). On. e must choose I small enough so that the
fluctuations on the length scales of interest will be visible,
yet not so small that fluctuations on irrelevantly small
scales become dominant. Now let Pp denote the sum of all

If one assumes that both of these approximations are
reasonably accurate at t =t'(k), then one can match them
at that time to determine hv(k). Using Eqs. (7.11),
(7.14)—(7.16), and (7.6), one has the final result

' (2p —3)/2
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Using (7.21) to calculate the densitynsit fluctuations, one
finds

hp, (k)

P (2p 3)vr P—X'~ (k +y

Xcot '"(-,'e„) . (7.22)

2~r(p) x
(2p —3)m.
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approximate calculation o ef the same quantity is shown as a
function of g =p /g .2
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with respect to the coordinate x, which is normalized so
that the scale factor in the de Sitter phase has the simple
form e~', as in Eq. (3.1). The correspondence between
this length scale and the length scale of the present
universe will be strongly dependent on how much infla-
tion occurs, which depends on the value of P .

To see how this works quantitatively, note that Eq. (7.6)
can be rewritten as

Po(t')-P, exp[ —,
'

(2p —3)Xt'],

where

ln(P /P, ) .2

2p —3 X

(7.24)

(7.25)

2+ e 2Xt'dx'2

provided that one defines

(7.26)

x'=exp ln(P, /P~) x .2

2p —3
(7.27)

One then has

k'=exp — ln(P, /P ) k,2
2jg —3

(7.28)

and Eq. (7.23) can then be rewritten as

hp, (k') x2~1'(p) X

(2p —3)n.
(7.29)

Thus, when expressed in terms of variables which have
definite meaning in the post-inflationary era, bp/p does
not depend on any random variables.

VIII. CONCLUSION

The purpose of this paper has been an attempt to im-
prove our understanding of the slow-rollover phase transi-
tion which characterizes inflationary models. Specifical-
ly, we have constructed an approximate but exactly solu-
ble model for the behavior of the scalar field during such
a phase transition. We believe that this exactly soluble
model can serve as the zero-order approximation in a per-
turbative calculation of a realistic model, but we have not
yet attempted such a calculation.

The exactly soluble model is based on three simplifying
assumptions. First, we assumed an exactly de Sitter

Note that Eq. (7.24) involves no random variables, and
can serve as a starting point for calculating the subsequent
evolution of the universe as a function of t'. All of the
stochasticity has been relegated to Eq. (7.25), which re-
lates the time variable t, which we used to describe the in-
flationary era, to the time variable t' which will be used to
describe all the post-inflationary evolution.

In order to have a definite coordinate length scale in the
post-infiationary era, we can switch to a new coordinate
system (x', t') during the middle rollover period. The
metric for the (x, t) coordinate system is described by the
de Sitter expression (3.1), so one can write

s =—dt +e ~'dx

metric for all time. Second, we assumed that the scalar
field could be treated by a free quantum field theory, with
a time-dependent potential function
V(P)= ——,

'
(p ——,'A, T )P, where the background tem-

perature T behaves as Toe '. Finally, we assumed that
the initial state could be specified at asymptotically early
times by describing each mode variable by a thermal
equilibrium ensemble.

We have studied a number of consequences of this ex-
actly soluble model. The formalism developed in this pa-
per allows one to calculate the expectation value of an ar-
bitrary function of P(x, t). We have also studied the
behavior of the system at large times, and have concluded
that it can be described by a probability distribution of
classical trajectories. In order to discuss quantities which
are in principle measurable, we have made use of the
smeared field Pt, where l denotes the smearing length.
The probability distribution for this quantity was calculat-
ed, and numerical data for the expectation value of its
square were presented. We found that the root-mean-
square value of this quantity is large when the tempera-
ture is large, but that if A, «1, then the dominant contri-
bution comes from short wavelengths which continue to
red-shift while the temperature falls well below the criti-
cal temperature. The root-mean-square value thus attains
a very small value before it begins to grow due to the un-
stable potential. In this model one can calculate how
much inflation is expected to occur, and we derived an in-
equality which shows the range of parameters which lead
to sufficient inflation.

Finally we examined the question of density fluctua-
tions. We showed how to decompose the quantum opera-
tor P(x, t) into a piece $0(t) which is effectively homo-
geneous, and a piece 5$(x, t) which describes the spatial
inhomogeneities. We calculated the root-mean-square in-
homogeneities in 5$(x, t), and then showed how to infer
the root-mean-square density fluctuations bp/p.

For all the questions that we have studied so far, we
have found that the more naive approaches which had
been used earlier were essentially correct.

A number of topics remain open for future research.
For example, the assumption of exact de Sitter evolution
is certainly invalid at early times, and it would be interest-
ing to determine the effect of an initial Friedmann-
Robertson-Walker phase. In addition, there is no real jus-
tification for our assumption of a thermally distributed
initial state, so it would be useful to explore other possibil-
ities. Finally, it would be very worthwhile to attempt a
perturbative calculation in a realistic model, using the ex-
actly soluble model as a starting point. It may not be
tractable to obtain reliable numerical results, but it would
be worthwhile simply to show as a matter of principle
that one could compute corrections, and that they are
small in the case of weak coupling.
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APPENDIX A: RELATIONSHIP
TO THE STANDARD NOTATION

Since the notation used in Sec. III was both unfamiliar
and a little awkward, it is useful. to translate the results
into the standard expansion in terms of complex exponen-
tials.

Equation (3.15) can be replaced by the simpler expan-
sion

3/2
1 2m

P(x, t) =
(2m )

[d(k),dt(k')]=5 (k' —k) . (A6)

+dt(k) '"'"g'(k, )] . (A7)

The expressions for the expectation values can also be
translated in a simple way. From Eqs. (A2) and (3.32),
one has

&c'(k )c(k) &=, 5„,,
1

e "—1

and of course

(A8a)

(A8b)

The expectation values for the continuum normalized
creation and annihilation operators are then given by

& dt(k')d(k) &
= 5'(k' —k),

e "—1

(A9)
& d(k')d(k) &

= &dt(k')dt(k) & =0 .

The expansion for P(x, t) is then given by the following
simple expression: '

P(x, t)= fd'k[d(k)e'"'"g(k, t)
(2m) i

X g [ c(k)e' '"g(k, t)
k=(2n /b)n

n integer

APPENDIX 8:
FUNCTIONAL SCHRODINGER PICTURE

FOR FIELD THEORY

+c (k)e '"'"P*(k,t)], (Al)

[c(k),ct(k')]=51, g . (A4)

To take the continuum limit, one must rescale the an-
nihilation operators by

3/2

d(k)—: b c(k), (A5)
2m

where P(k, t) is again given by Eq. (3.28). The running
wave annihilation operators c(k) can be related to the
standing-wave annihilation operators a+(k) by the equa-
tions

a+ (k) ia (k—)
c(k) = if k~0,

2
(A2)

c(0)=a(0),
which for k&0 can be inverted to give

a+(k) = [c(k)+c(—k)],1

2
(A3)

a (k)= [c(k)—c( —k)] .
2

One can easily check that the operators c(k) obey the
commutation relations

For our field-theory problem a description similar to
the upside-down harmonic oscillator can be given using
the functional Schrodinger picture for field theory. This
is an unfamiliar method for probing field theory, but
brings new insights to our subject: it enables us to obtain
the time-dependent wave function and, therefore, gives a
clear description for the time evolution of the system as in
the case of quantum mechanics.

1. "Ground-state" wave functional

P(x)
~

g&~P(x) Il(g, t), .

m(x)
~ g& —+ —. %(P, t) .5

i 5$(x)

(Bla)

(Blb)

Then, the functional Schrodinger equation for our ideal-
ized model is

$2
ig q/ & f d3X e

—3xt/2 +el't[(yy)2+y2$2]
Bt 2

In the functional Schrodinger picture an abstract
quantum-mechanical state

~ P & is realized by 4'(P, t)
which is a wave functional of the c-number function P(x)
at a fixed time. The action of the operator P(x) on

~ g& is
realized by multiplying 4(P, t) by P(x), and the action of
the canonical momentum ~(x) is realized by functional
differentiation:

so that the new annihilation operators satisfy the commu-
tation relations e 32tt+2y2 qy (B2)
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H=gH (o,~ .), (83)

where cr denotes the mode variables and the sum g
means the sum over o(0), o+(k), and o (k), with each
pair (k, —k) counted only once, as in the text. The wave
functional of any energy eigenstate can then be factorized:

Since it is a free theory, in momentum space the mode
variables cr(0) and o+(k), defined in Eq. (3.15), complete-
ly decouple from each other and the Hamiltonian is given
by Eq. (3.23):

i
c)(k)

i

' —
i
c2(k)

f

=1 . (88)

Note that p(k, t} is simply a Bogoliubov transformation of
the mode function P(k, t) of Eq. (3.28), which was used in
the expansion of P(x, t) in creation and annihilation opera-
tors.

Using the normalization convention (88), the mode
function y(k, t) can be shown to obey a normalization
condition identical to (3.29). This normalization condi-
tion allows one to write B(k,t} explicitly in terms of its
real and imaginary parts:

qt=+%' (o,t), (84) B(k,t)= 1 ——e '
~

q&
~4 ((p [

fi (3t
(89)

3
2

g2 3Xt—iA =H%=
Bt 4 2m.

'I 3

+e3xt ~
[ e 2xt(k 2+—y2)a

where qt denotes the wave function for each cr and satis-
fies the Schrodinger equation

r

The magnitude of A (kt), can be determined by the nor-
malization of %~(o~, t), which gives

3 —1/4
b

m.
~
p(k, t)

~

2

2m
i
A(k, t)i =

The determination of the functions c1(k) and c2(k) is
dictated by the asymptotic behavior (86), which implies
that

—p ]o. (85)
B ( k t) (k2+y2)1/2e 2xt1

—~ 2A
(811}

0 277
exp —2t~ —00 b

3Xt (86)

It is straightforward to show that Eq. (85) has an exact
solution with a gaussian form

3

4 (o,t) =/I (kt)e.x,p —2 B(k,t)o.(87a)

Note that the above equation describes a system which
behaves at very early times as a simple harmonic oscilla-
tor with frequency tt)~(t)=(k~ +y )'/ e x'. Our first
goal is to find the "ground-state" wave functional for
each cr, where by "ground state" we mean the state
which behaves as a harmonic-oscillator ground state in
the asymptotic past:

3

Using the asymptotic behavior of the Hankel functions
given in Eq. (C2), one finds that (811) is satisfied for

c, —= 1, c—=0, (812)

1 1 b

8(2m/'b ) ReB.
3

(813)

which is exactly the same as the expression in Eq. (3.34)
except for the factor coth( —,'e~) which comes from the
thermal ensemble average.

which agrees exactly with the mode function 1('t(k, t) used
in Sec. III. From Eqs. (87a) and (89) we have immediate-
ly that

where 2. Classical behavior at late times

B(k, t) = — e3x' lny'(k, t)
2W Bt

(87b)

1/2

tp(k, t) =—1 mA

2 X
e

—(3/2)xt[ c (k)H(1)(z)

+c2(k)H~ '(z)], (87c)

where z is given by Eq. (3.21). Here c1(k) and c2(k) are
arbitrary complex functions. Since B(k,t) is unchanged
when t(()(k, t) is multiplied by a time-independent function
of k, it is possible to fix the normalization of y by requir-
-ing

and y(k, t) is any solution to the equation of motion
(3.18). [We have expressed B(k,t) in terms of 1p* rather
than tp in order to simplify the form of subsequent re-

sults. ] The most general solution to (3.18) can be written
as 2'

O~ —exp —2
t~oO b

3

Xe3Xt 7TX

xr'(p)

2 2k +y
4X

(2p —3)X o ' (814)

Let us observe that operating with the momentum opera-
tor on %~ at large times yields

In the functional Schrodinger picture we can explicitly
show that the classical description emerges at large times
as in the two-dimensional quantum-mechanical example
in Sec. II. The behavior of %~ for large t is given by, for
p )0,
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2m= (2p —3)X
i Bo~ b

3

e z'o 4 [1+0(z )], (815)
function of the nth excited state for the mode cr~, given by

'P "(o.~, t)

2K—exp —2t~ 00 b

3
(k 2+y2)3/2

X2

where the 0(z ) correction arises from the nonleading
. terms in Eq. (C3).

The 1+0(z ) on the right-hand side of Eq. (815) ap-
proaches one for z « 1 (large t), when the effective wave-
length becomes much larger than the horizon length. The
first factor is precisely the classical value of
m~(t)=2(2'/b) e z'cr'~ with o~= —,

'
(2p —3)go~, which is

the solution of the classical equation of motion Eq. (3.18)
at large times.

The special case of p =0 (p= —', ) must be treated
separately. From the expression for H3/2(z) in Eq. (C5),
the large tbeh-avior of 4 for p2=0 is

e P H„([4(2~/b) ReB(k, t)]'/ cr )2n/2 n!

x p.'(~, t) . (820)

Here the H„denote the Hermitian polynomials, and ep(z)
is a phase defined by

H,'"(z)=M, (z)e'"" . (821)

Note that %~(o~, t) looks exactly like the corresponding
formula for the ordinary harmonic oscillator, except that

inc (z)
the phase factor e p replaces the harmonic-oscillator
phase e '" '. The probability distribution can be obtained
by the standard harmonic-oscillator technique, and we
obtain

2 2
. " +& x~+l e o~x

(816)

3

p [o,t] = — ReB (k, t)tanh —,e4 2m 1

3

X exp —4 ReB(k, t)
2'

1/2

and applying the momentum operator on %~ gives

g 8%' 2~ k +y= —2 er'sr~ %'~[1+0(z)] .
i- Bo. b

f(m, o,t)= ~%'(o.. , t)
~

5(m —( )), (818)

where ( . ) is the classical value of ~ in the large-t lim-
it, as shown in Eqs. (815) or (817). Therefore, the wave
functional describes cr evolving in the potential according
to the classical equation of motion.

(817)

The first factor on the right-hand side of Eq. (817) is pre-
cisely the classical value of m for p =0 in the large-t
limit, and the correction factor at the right approaches
one for small z (large t), but not as quickly as in the case
of p )0.

Thus, our idealized field-theory model is described by
classical physics at large times. However, as in the case of
the upside-down harmonic oscillator discussed in Sec. II,
it is described not by a single classical trajectory, but by a
classical probability distribution

xtanh( —,'e )o~ (822)

The' mode variables o. are Gaussian distributed, with
(o~ (t) ) given by Eq. (3.34).

APPENDIX C:
USEFUL PROPERTIES OF BESSELFUNCTIONS

In this appendix we summarize some useful properties
of Bessel functions, as can be found in Refs. 43 or 44.
Following the notation of Ref. 43, Bessel functions of the
first kind are denoted by Jp(z), Bessel functions of the
second kind (also called Neumann functions) are denoted
by Np(z), and Bessel functions of the third kind (also
called Hankel functions) are denoted by Hp '(z) and
H' '(z).P

The Hankel functions are related to Jp(z) and Np(z) by

Hp "(z)=Jp(z)+iNp(z),
(Cl)

Hp '(z)=Jp(z) iNp(z) .—

3. Probability distribution at finite temperature The behavior of the Hankel functions for asymptotically
large z is given by

So far we have neglected the effects of the thermal en-
semble. Since each o (t) behaves as a simple harmonic
oscillator in thermal equilibrium at early times, one would
expect a distribution of excitations for each mode given by
e /g„oe . Therefore, the probability distri-
bution for o. at finite temperature is given by

H'"'(z)—
]./2

e-+i [z —(m/2)p —(m/4) J

(C2)

p [o,t] cc g e
f

4 "(o,t)/.
n=0

(819)

where e is defined in Eq. (3.32b) and 4" is the wave

where the plus and minus signs hold for k = 1 and k =2,
respectively. For small z, one has the following asymptot-
ic forms:
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P

Jq (z) — — [1+O(z )],I p+1 2

T

N (z)- — — [1+O(z )]+O(z&) .I (p) z 2

2
L

(C3)

H 3/2 (z ) =—(I)

H3/2(z) =—(2)

' 1/2
iz Z+Ie"

m'Z Z

1/2
2 gz Z —l

e
7jz z

(C5)

The Hankel functions obey the identity

(C4)

Closed form expressions exist whenever p is a half-odd
integer. We are particularly interested in the case @= —,',
which corresponds to p =0:

APPENDIX D: ASYMPTOTIC BEHAVIOR OF P t
'

In this appendix we sketch the derivations of Eqs. (6.8),
(6.9), and (6.10), which describe the asymptotic behavior
of P i

'= (P i ) ' for very early or very late times.
In either case, one begins with the expression given by

Eq. (5.3), which is valid for all times. Equation (3.21) in-
dicates that z ~ e ', so at very early times the integral in
Eq. (5.3) will be dominated by large values of z. Using
Eq. (C2) to describe the asymptotic behavior of the Bessel
functions for large z, one has

e 2xt —~ k2dk e
—k2l (k2+y2)1/2

(pt'(t) )—
4~2 p (k 2+y2)1/2

coth
2 Tp

1+0 x
(k2+ 2)1/2 (Dl)

The result (6.8) is obtained by the substitution y =2k/Tp.
For very late times, the integral in (5.3) is dominated by very small values of z. One then uses the asymptotic formulas

(C3) to obtain

22pr2( )pe —I

Sm

r

e
~ k 2dk —t: ! (k 2+ y2)1/2

coth(k'+ y')" 2Tp

2 2k +X -2X~
X2

Equation (6.9) then follows from the substitution y—:k/y.
Since the integral in (6.9b) receives its dominant contri-

butions from y of order unity, it follows that the dom-
inant values of k are of order y= —,

' V A, Tp. The dominant
wavelengths are therefore longer than the mean thermal
wavelength by a factor of 1/v A., which in our model is
roughly 10 .

To find the behavior of (6.9b) for very small A, , one uses
the asymptotic approximations

—A,(Toly) /4
e —1,

X (~,„,T,l)&g~ 0

2p —2
4

Jp ( 2+ 1@+1/2

(D4)

I x" '(1+x )" 'dx = —,'8 ~, 1 —v—
0 2' 2

The result (6.10) is obtained by carrying out the integra-
tion, using the general relation"

coth[ —,
'

[A,(y +1)]'/2I-
[A,(y'+ 1)]'-/2

to obtain

(D3) I (p, /2)r(1 —v —p/2)
2r(1 —v)
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