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Relativistic radiation transport in dispersive media
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A general-relativistic radiative transfer equation in an isotropic, weakly absorbing, nonmagnetized
dispersive medium is derived using the kinetic-theoretical approach and the relativistic Hamiltonian
theory of geometrical optics in those media. It yields the generally accepted classical equation in the
special-relativistic approximation and in stationary conditions. The influence of the gravitational
field and of space-time variations of the refractive index n on the radiation distribution is made ex-
plicit in the case of spherical symmetry.

I. INTRODUCTION

The importance of radiative transfer in radio astro-
physics and radio emission in plasmas led many authors
to discuss the transfer equation in dispersive media. The
first derivation' valid for the geometrical-optics ap-
proximation and for stationary intensity modifies the
well-known consequence of Snell's law (dldl)(I/n )=0
(Ref. 4) into

n (Ijn )= kI+e, —

so as to take into account the phenomenological change of
the specific intensity I along an element dl of ray path,
due to opacity k and emissivity e in an isotropic medium
of refractive index n. Different equations are due to Ost-
er using a semiclassical transport theory for a photon gas
and Harris using a nonrelativistic kinetic-theoretical ap-
proach, the photon propagation being described by the
classical Hamiltonian; ' these equations do not reduce to
Eq. (1.1) in the stationary case. However, Zheleznyakov,
arguing that the equation of continuity for the energy
density should be written in the phase space (r, photon
position vector; I, unit vector tangent to the ray), derived
practically the same equation as Harris, showed its
equivalence with Eq. (1.1) when dl verifies the classical
Fermat principle, and invalidated Oster s equation. For
the sake of completeness, we note attempts' ' made to
extend Eq. (1.1) for radiative transfer in nonuniform mag-
netoactive plasmas.

It is the purpose of this paper to implement these
heuristic derivatives with a general-relativistic transport
theory using a kinetic-theoretical approach' ' and the
invariant Hamiltonian theory of geometrical optics in an
isotropic dispersive medium. ' Indeed, kinetic theory re-
lies heavily upon the phenomenological concept of the
photon which is not always well defined. ' However,
when the eikonal approximation can associate to wave

II. NOTATION AND DEFINITIONS

Space-time is a I.orentzian manifold; in local coordi-
nates x '

( i=0, 1,2,3) its metric has the components g;J and
its connection I zk, they are related by

h hg";k Bkg" —g jP k —g. P =0, Bk axk
(2 1)

For physical interpretation, a tetrad basis e, may be intro-
duced by

e, =e, ek, ek=IBk] (ab, . . =0, 1,23) . . (2.2)

Indices a, b, . . . are used for the tetrad basis and i,j, . . . for

fields, rays along which the amplitude is propagated, and
when the square of amplitude can be related to average
electromagnetic energy, we can recover a quasiphoton
number then, we may use a heuristic theory of photons
whose trajectories are the rays and extend its validity in a
weakly absorbing, normally dispersive medium where
opacity k and emissivity e are phenomenologically intro-
duced. A more general treatment could proceed along the
path paved by Wolf. '

After giving a few definitions in Sec. II we recall in Sec.
III the relativistic Hamiltonian theory of geometrical op-
tics in a nonmagnetized, normally dispersive medium. In
the corresponding phase space, the invariant distribution
function of photons F(x,p) is defined and its equivalence
to the classical one is shown in Sec. IV. The radiation
transport equation is derived, and its form in the rest
frame of the medium is made explicit in Sec. V. The
special-relativistic approximation in stationary conditions
determines by comparison with Eq. (1.1) the relativistic
transformation laws for opacity and emissivity (Sec. VI).
A spherically symmetric space-time is considered in Sec.
VII and the influence of the gravitational field and gra-
dient of n on F(x,p) is determined. A brief conclusion is
the content of the final section.
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a j a k b b c j jA =AeJ, e, ek ——5a, e e, =5g

An orthonormal basis is defined when

(2.3)

gab ea eb gjJ gab 7
J

(2.4)

the coordinate basis. The tetrad components of a vector
A'are

Hamiltonian has the advantage of including the vacuum
case as well.

The ray equations are
c

x '= =p'+8', 8'= (n 1)—E +n E V',
Bp; BE

(3.2a)

gapa
———5p„rip„5„,——(p, v, . . .=1,2, 3) .

We define the Pfaffian derivative 8, and the Ricci rota-
tion coefficients

~ BH ] jkp;= — . = ——,Bg pp +A;,
Bx

3;= —,8;[(n —l)E ],
(3.2b)

abc =e, ebj;ke, , B,=e BkJ

W'e have

(2.5)
where the overdot denotes derivation with respect to a pa-
rameter A, . From Eqs. (3.2a) and (3.2b) we get

h
~abc gab bc 2 (r)bgac+~cgba dagbc) p = —~kp p +& P Bkg +A (3.2c)

+ Y ( ~abc ~cab ~bac ) (2.6) With respect to an orthonormal frame with eo' ——V', let

with O', =I', —I', .
The physical interpretation of the theory is based on

(3+ 1) decomposition of mathematical quantities with
respect to an observer's frame of four-velocity u '

(u uk = —1). The projection tensor y;~ into the rest space
of this frame is

p'=EV'+pl' p =(h;,p'p')'" (3.3)

with p =nE as a consequence of the dispersion relation
H=O.

On the other hand, in a normally dispersive medium we
may define ' the group speed iv by

k k
XlJ glJ + / J& 71k~ & 7E Pk (2.7)

BEm= (1.
Bp

(3.4)

The corresponding tensor in the rest frame of a medium
of velocity V' will be denoted h;J. .

So, the frequency four-vector p' of light waves (or even-
tually, the four-momentum of the corresponding photon)
may be written

p'=Xu '+ps', (2.&)

with X= —p"uh, p =(yqp'p )', s sh=1, s "uk=0; 7 is
the energy of the photon for the observer of velocity u', s'
is the direction of the wave propagation in this observers
rest space. With respect to an orthonormal basis with
ep' ——u', we have s'=(O, s").

III. GEOMETRICAL OPTICS

H(x'P;) = , (g"P;P, +~p'»—

rop +(n l)E =0, —
(3.la)

where coo is the plasma frequency, the refractive index n

the reciprocal of phase speed, and E= —pkV . This

Consider a beam of radiation propagating through a
weakly absorbing, isotropic, normally dispersive medium
specified by its four-velocity V, refractive index n, opaci-
ty k, and emissivity e in a given Lorentzian manifold; we
may consider that g,J describes the gravitational field due
either to the medium itself or to other bodies.

In the geometrical-optics approximation, we derive the
equations of the rays along which the amplitudes of wave
fields are transported, from the Hamiltonian H(x', p;),
where p; =8;S, S being an eikonal; H(x', p; ) is in general
any function of (x',p;) such that H=O (and BH/Bp, &0
on H=O) gives the dispersion relation for the medium. In
an unmagnetized plasma, we may choose the Hamiltonian

It gives an estimate of the velocity of the peak of a
pulse. The definition (3A) is not applicable when
anomalous dispersion is present, as the velocity of a pulse
has then a nonzero imaginary part. ' Then

x'=nE(w 'V'+l') (3.5)

is timelike and the corresponding unit four-vector is the
ray velocity. '

IV. INVARIANT DISTRIBUTION FUNCTION

The Hamiltonian extremals defined by Eqs. (3.2a) and
(3.2b) are light rays. These equations guarantee the Liou-
ville theorem, i.e., the conservation of the eight-volume
d v by Lie dragging along the phase trajectories

(d v)=0, (4.1a)

d v =E&&kIdox dix d2x d3x'

d OPhd &P~d2P„d3P (4.1b)

E'pjki p
e" "~ are the Levi- Civita Permutation symbols. It

then follows that d x d p is also conserved by the same
Lie dragging with

d x =( —g) 6;J idpx dix d2x d3x

d p ( g) eijkldop dip d2p d3p i

as d p = —( g) '

e'1"'dpp;dipped—

2phd3pi. Moreover,

d p=bdbdm,

(4.2a)

(4.2b)

(4.3)

where dm is the element of three-area of the "mass shell"
H = ——,

' b in momentum space; as a consequence of Eqs.
(3.2), l2 is a constant of motion; hence the conservation of
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d x dm during Lie transport along rays, V. THE RADIATION TRANSPORT EQUATION

(d x der)=0 . (4.4)

dN =F(x,p)
i

x "uk
i
dXd~ . (4.6)

To relate I' to the nonrelativistic distribution function,
consider at the event x, the four-volume d x constructed
on dX and a displacement dx'=x 'bl. along the rays that
intersect target dX

d x =(—g) E;&k~x d&x d2x d3x AA,

x "uk
I

d& ~~ (4.7)

With respect to the frame of velocity u ', we have also

d p=( g) —ejk(u'd)p d2p d3p =
~

u;x'~der, (4.5)

when (d&p', d„pj, d3p ) span a three-surface element on
the "mass shell" whose normal is x '.

Now, if d& is the number of phenomenological photons
crossing along the rays tangent to x ', the three-surface
element dX;=dXu; in the positive sense of the normal
and having the frequency vector p' in the range dm, i.e, if
dN is the "flux" of x ' across dX drr, the invariant distri-
bution function F(x,p) is defined by

5(dN)= d xd~.
, coll

(5.1)

Now, defining (dF/dA, ),o&~ by

= —a(E)F(x,p ) +13(E),
dI'

, coll

(5.2)

where a(E) and P(E) are, respectively, the phenomenolog-
ical invariant absorption and emission coefficients, and
using Eqs. (4.4), (4.6), and (4.7) we have

x kBk+p k
k F(x,p) = a(E)F—(x,p)+13(E) .

Bp
(5.3)

Substitution in Eq. (5.3) from Eqs. (3.2a), (3.2c), (5.2a),
and (5.2b) gives the radiation transport equation

This equation results when the change
(dF/dk)„&~d x d~ of the number of photons in the range
dXdm. , due to absorption and emission is equated with
the range 5(dN) corresponding to the variation of F(x,p)
along the rays,

From Eqs. (4.5), (4.6), and (4.7) we get

dN =F(x,p)d x d p, d x =dX . (4.8) (pk+Pk)QF+(Pkjppj+PlpQgkj+gk)
p'

This shows that F(x,p) reduces to the nonrelativistic dis-
tribution function.

However, with respect to an arbitrary frame, we may
define another function f(x,X,s) by

dN=f(x, X,s)dXdQd x, (4.9)

where d Q is the element of solid angle in the direction s;
f is related to F by

F(x,p) =p 'f (x,X,s)
ax
Bp

(4.10)

With respect to the rest frame of the medium, Eq. (4.10)
reads

F(x,p) =(nE) f (x,E,I)w, (4.11)

where f(x,E,I ) is the distribution function used generally
in astrophysics. As a consequence, we have in terms of
the specific intensity I =wEf the invariance of In E
(=F).

= —aF +P, (5.4)

which obviously reduces when n = 1, to the corresponding
equation. ' All the physical quantities (photon flux vec-
tor, energy-momentum tensor, etc.) then can be defined as
the moments of F(x,p), solution of Eq. (5.4).

Now, Eq. (5.3) concerns a distribution function F(x,p)
defined over the entire momentum space, for all possible
four-momenta. But actually, we are interested in the
values of Fon the "mass shell" H = —,' b . Geometr—ical-

ly, as in the case of a nondispersive medium, ' ' " we are
led to think of F not as a function of all four-momenta,
but rather as a function of those momenta tangent to
IH = ——,'b2I. Then, only three of BF/Bp' are indepen-
dent; we may therefore choose as independent variables
three of p "s or any three combinations of them.

With respect to the rest frame of the medium where p'
admit of the decomposition (3.3), we may choose E and
two of I"s. Equation (5.4) reads

nE(w 'V'+I')8;F+(I „pip Bkp, dkg'& g') V, — + k
F= aF+p, —

nE nEw (5.5)

where in F,=F(x,E,I') one should retain only two of I"s.
Replacing in Eq. (5.5), ( V', E, I', w, nE, and h,z) by

( u', X, s', BX/Bp, p, and y;j ), we get, naturally, the trans-
port equation with respect to an arbitrary observer.

l
gEJ IlJ & Jk

V'=5o' —+I =0, I"I„=1 (u, v =1,2, 3) .
(6.1)

VI. SPECIAL-RELATIVISTIC TRANSFER

In this section we assume space-time to be Minkowski-
an with coordinates x ' such that

As in F(x',E,l") only two of the I"'s should be re-
tained, we must, on account of the constraint l"I„=1, re-
place BF/Bl" by (5„' l„l')BF/Bl'. Then —in the rest
frame of the medium the transport equation becomes
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nE(w 'B +I"B„)F+ Ao +A "(S„' r„—I") 8
BI"

aF—+P . (6.2)

If stationary conditions are moreover prevailing, i.e.,

VII. SPHERICAL SYMMETRY

We assume the gravitational field to be described in co-
moving coordinates of the medium by the spherically
symmetric metric

BOF =0, Bon =0, E =const, (6.3)
ds = e—dt +e dr +R (d8 +sin 8dtp ), (7.1)

Eqs. (3.2a) and (3.2b) yield

dl„
dl =nE dA, , k„= =(5„' l„l—")B„inn,Q dl Q Q U (6.4)

which states that the spatial gradient B„n lies in the oscu-
lating plane to the curved light ray, k" being its princi-
pal normal. Equation (6.2) now reads

l"B„+k" F= — F+
nE nE

(6 5)

which agrees with Eq. (1.1) if we define phenomenological
opacity k and emissivity e by

k=, e=PE n .
nE

(6.6)

Equation (6.5) determines the relativistic transformation
laws for opacity and emissivity; when n=1, we thus re-
cover the known relativistic transformation properties of
k and e (Refs. 26 and 27). The proportionality to n ' re-
sulting from Eq. (6.6) for k is also well known. "

with N, A, and R functions of r and t. The matrix e, ' re-
lating the coordinate basis e; to the co-moving orthonor-
mal basis e, is determined by

V'=e, '=e 5Q', e &' ——e 6&',
l

e2' ——R '52', e3' ——(R sin8) '53' .
(7.2)

p '= (E,nE cos8, nE sin 8 cosy', nE sin8 sing ) . (7.3)

On the other hand, owing to spherical symmetry, only
two of the components of p' are independent; we may
choose them to be E and l'=p=coso so that

F =F(r, t,E,p) . (7.4)

Eqllatlon (5.5) becomes, with respect to the basis ee,
after a long but straightforward calculation

The Ricci rotation coefficients can now be easily comput-
ed. Moreover, in the subspace spanned by e„(u = 1,2,3),
we introduce spherical coordinates with e~ as the polar
axis. The physical components of the photon four-
momentum are

nE(w 'D, +pD„)F En p D—,A+n (1—p )—+npD„C& + nE(1 —p ) —+

2gQ
w n w nw nE w

aF aF +P, (7.5)—
Bp

where D, =e B„D„—=e 8„, U =D,R, and I =D,R.
For n = 1, we recover the radiation transfer equation in a nonrefractive spherically symmetric medium. In the static

case, E is a constant of motion, and we can further choose as radial variable r =R (r). We get

1 —i" B
e pB~+ F—

r Bp

1 2 ) B B d4 BF
(1 np w )——+pE F —B lnn = kF+n E e—.

n 2 Bp BE dr "
Bp

(7.6)

The terms in the first parentheses are the classical ones, those in the second parentheses describe the variation of Fdue
to gravitation light deflection and red-shift; the third term on the left-hand side of Eq. (7.6) exhibits a transverse effect
on F due to the radial gradient of lnn.

VIII. CONCLUSION

It is remarkable that the radiative transfer equation derived by standard relativistic methods confirm the classical Eq.
(1.1) in a stationary situation. Indeed, in more general physical situations, Eq. (5.4) and its transforms provide a natural
tool to investigate the influence of the gravitational field and the effect of space-time variations of n on radiation distri-
bution function, in an isotropic, weakly absorbing, normally dispersive medium.
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