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Following the method of Ioffe and Smilga, the propagation of the baryon current in an external
constant axial-vector field is considered. The close similarity of the operator-product expansion
with and without an external field is shown to arise from the chiral invariance of gauge interactions
in perturbation theory. Several sum rules corresponding to various invariants both for the nucleon
and the hyperons are derived. The analysis of the sum rules is carried out by two independent
methods, one called the ratio method and the other called the continuum method, paying special at-
tention to the nondiagonal transitions induced by the external fie1d between the ground state and ex-

cited states. Up to operators of dimension six, two new external-field-induced vacuum expectation
values enter the calculations. Previous work determining these expectation values from PCAC (par-
tial conservation of axial-vector current) are utilized. Our determination from the sum rules of the
nucleon axial-vector renormalization constant Gq, as well as the Cabibbo coupling constants in the
SU3-symmetric limit ( m, =0), is in reasonable accord with the experimental values. Uncertainties in

the analysis are pointed out. The case of broken flavor SU3 symmetry is also considered. While in

the ratio method, the results are stable for variation of the fiducial interval of the Sorel mass param-
eter over which the left-hand side and the right-hand side of the sum rules are matched, in the con-
tinuum method the results are less stable. Another set of sum rules determines the value of the

linear combination 7F—5D to be =0, or D/(F+D) = —,2 .

I. INTRODUCTION

In the past few years the sum-rule method in quantum
chromodynamics (QCD) has emerged as a major tool for
computing the masses and coupling constants of low-lying
hadron states. ' The procedure, while approximate, has
met with a considerable amount of success. In particular,
in a series of papers, Ioffe and his collaborators have
successfully computed the masses of the nucleon and its
octet partners as well as the isobar and the decimet
members. In a later extension of this work, Ioffe and
Smilga and independently Balitsky and Yung considered
the correlation function of the baryon current in an exter-
nal electromagnetic field I'&„. By computing the term
linear in I'„„in the current correlation function, they were
able to calculate the magnetic moments of the proton and
neutron to within 10% accuracy.

In this present work we follow the ideas of Ioffe and
Smilga and consider the propagation of the baryon
current, i.e., of the nucleon and the hyperons, in an exter-
nal axial-vector field Z&, and compute the terms propor-
tional to Zz. In this way we are able to determine the
axial-vector coupling constants of the nucleon and hype-
rons. We find that the theoretical determination of the
axial-vector renormalization constants are in reasonable
agreement with experiment for hyperons as well as the nu-
cleon, provided the vacuum expectation value of the

chiral-symmetry-breakipg parameter is about 20% small-
er than the value usually assumed,

(qq) = —(0.25 GeV)'.

It is known that if the axial-vector current is conserved
exactly like the vector current and the physical vacuum is
invariant under chiral SU3 && SU3 symmetry, then the
axial-vector coupling to the baryon octet will be of the
pure D type and the F-type coupling will be zero, as fol-
lows from SU3 symmetry and charge-conjugation invari-
ance. Furthermore, there will be parity doubling in the
baryon spectrum. The lack of conservation of the axial-
vector current is attributed to the breaking of chiral in-
variance by the physical vacuum and is essentially a low-
energy phenomenon. Therefore the sum-rule calculation
should reveal that the F-type coupling should tend to zero
and D-type coupling tend to unity in the chiral-symmetric
limit. We shall see that QCD sum-rule approach brings
out these basic features of hadron physics very clearly.

The QCD sum-rule method is basically the following.
To compute the properties of a given hadron, one chooses
a current which has a nonzero matrix element between the
physical vacuum and the hadron in question. For the case
of the proton we shall use the current '

g(x)=[u'(x)Cy„u (x)]y&y d'(x)e' '.
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One then computes the correlation function

n-(p ) =i f d x e' '"(0
~
T(21(x)7)(0))

~

0) (1.2)

which satisfies a dispersion relation of the form
&2

( 2) (1.3)
&2 2'JT p —p

For large p, that is in the limit x~O, the product
g(x)7i(0) can be computed in terms of the quark and
gluon degrees of freedom via the operator-product expan-
sion (OPE). This in turn leads to an expansion of m(p ) in
terms of the various vacuum correlation functions, such
as the chiral-symmetry-breaking parameter (qq ). On the
other hand, using a dispersion relation, the correlation
m(p ) can be computed as an integral over the absorptive
part, that is to say, in terms of the nucleon and excited
states which have the same quantum number as the nu-
cleon, apart from parity. By matching the Borel
transforms of these two calculations, one in terms of the
operator-product expansion and the other in terms of the
physical intermediate states, over a range of values of the
Sorel mass parameter in the region of the nucleon mass,
one is able to deduce self-consistently the proton mass and
the coupling strength of the current g to the one-proton

I

state.
In computing the OPE for the baryon-current correla-

tion function in an external field Z&, one encounters
terms of two types: (a) Z& interacting with a hard quark,
i.e., a quark which carries a substantial part of the current
momentum p appearing in Eq. (1.2). (b) Terms which
correspond to modification of the quark and gluon vacu-
um correlation functions by the external field. ' These
latter terms are analogous to the susceptibility terms one
introduces in the discussion of dielectric and magnetic
substances.

In our calculation, the fact that all gauge interactions in
perturbation theory are chirality preserving (SU5 color
gauge interaction, as well as the usual weak interactions)
leads to the fact that the terms of the type (a), i.e., the
hard-quark terms, can be simply related to the propaga-
tion function in the absence of the external field Z&. In
this context the excellence of the choice of the baryon
current, Eq. (1.1), made by Ioffe manifests itself very
clearly, as will be discussed in detail in Sec. II.

For deriving the sum rules, it is simpler to calculate the
correlation function in configuration space first. It is easy
to see that the most general form to first order in the
external field is

(0~ T(21(x)2)(0))
~

0) =f(x )x+g(x )1+f,(x )x Zxy5+f2(x )Zy5+g1(x )x Zy5+g2(x )o Z~xpy5.
/

(1.4)

Here and in the following for a four-vector A

A =A&y". The structures f1, f2, and f are chiral odd,
while the rest are chiral even. In momentum space the
correlator takes the general form

~(p )=F(p )P+G(p )I+F1(p )p ZPy5

+F2(p )ZY5+Gl(p )x p Y5+G2(p )~ay p Y5 '

It will be shown in detail in Sec. II that the leading terms
in p for the coefficients F1(p ), F2(p ) via the OPE are
identical to the leading terms which are obtained for the
coefficient F(p ) occurring in the mass sum rule written
down by Ioffe. '

The current correlation function n(p ) in the absence of
the external field corresponds to the creation of a state
which has the quantum numbers identical to the. nucleon
apart from parity by the current Ti(0) and its subsequent
annihilation by r1(x). In the presence of the external field,
as pointed out by Ioffe and Smilga, one should take into
account the fact that the intermediate nucleon state can
make transitions to excited states under the influence of
Z&. These nondiagonal terms should also be kept in the
computation of the current correlation functions in terms
of the physical intermediate states and are a priori of ar-
bitrary and unknown strength. As will be discussed in de-
tail in Sec. III, these nondiagonal terms interfere dif-
ferently in the sum rules corresponding to the coefficient
F1(p ) and F2(p ) for the structures p Zpy5 and Zy5,
respectively. In particular, states of opposite parity add
destructively in the p Zpy5 sum rule, while in the Zy5

I

sum rule they add constructively. As a result, in the latter
sum rule, the nondiagonal terms are quite significant.

In Sec. IV we extend the calculations to hyperons.
Bearing in mind that if chiral symmetry were exact the
Cabibbo coupling strengths would be I'=0 and D=1, we
have chosen the transitions X—+X and X—+A which in-
volve, respectively, only pure F and D couplings. In addi-
tion the sum rule for the =—+= vertex which involves the
difference D —F is also written down.

%'e have analyzed the sum rules by two independent
methods. One of them we call the ratio method; it does
not require an explicit knowledge of the coupling strength
p& of the current 21(x) to the nucleon state and is
described in detail in Sec. V. It depends on utilizing the
ratio of the sum rules for the correlation functions with
and without the external field Zz. This procedure is quite
stable as a function of the Borel mass parameter.

In the other method we follow the procedure of Ioffe
and sum over the excited contributions in the right-hand
side of the sum rules using asymptotic freedom. This pro-
cedure requires an explicit determination of the coupling
strength p1v and is determined from the mass sum rule.
Although this latter method is more sensitive to the pre-
cise value for the Borel mass variable over which the left-
hand side and the right-hand side of the sum rule are
matched, we find that the results are compatible with the
ratio method.

We find that the value of the axial-vector coupling con-
stant for the baryon octet depends quite sensitively on the
vacuum expectation value of the chiral-symmetry-
breaking correlation

a = —(2m) (0
~ qq ~0) .
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A value of a=0.45 GeV is preferred by our sum rules
rather than the value of a=0.55 GeV which is more
commonly used. This confirms Belyaev and Ioffe's ob-
servation that the value a=0.55 GeV is an overestimate
and a reduction of about 20% in its value should bring
their determination of the baryon masses into closer
agreement with experiment.

As discussed in detail in Sec. V, the determination of
the precise values of the renormalization constants is sub-
ject to some uncertainties. On the other hand, choosing
the same parameter for the Borel mass variable, as is done
in earlier calculations of the nucleon mass, the Gz value
does come out close to the experimental result. The Ca-
bibbo couplings D and I in the SU3-symmetric limit are
also not far from the experimental data. In the broken-
SU3-symmetry case, the results depend significantly on
the methods of analyzing the'sum rules.

We have summarized in the Appendix for the reader' s
convenience a collection of Fourier transforms and Borel
transforms needed in the text.

During the course of this work, we became aware of the
work of Koniuk and Tarrach and Belyaev and Kogan, '

who have discussed some of the problems to which this
paper is addressed. We disagree with Belyaev and Kogan
on several points. More importantly we be1ieve that their
method of analyzing the sum rules which involves sub-
tracting two different sum rules may not be a priori reli-
able and moreover they used an unrealistic value of the
coupling strength P~ in their calculation. On the other
hand, in our analysis we use two independent methods,
one of which involves no explicit knowledge of P~, and
the other which uses Pz as determined by the mass sum
rule. The consistency between these two methods assures
us that our P~ is indeed close to its true value. Further in
our analysis of the sum rules, we do not restrict the value
of the external-field-induced correlation (0

~
qG&„y"q

~

0)
to that given by the analysis of Novikov et al. " and re-
gard it as a parameter.

II. DERIVATION OF THE SUM RULES:
CONFIGURATION-SPACE RESULTS

Wl q—i—Dq, with D=y"(V&+ig~Z&y5),
(2 1)

g, is the QCD gauge coupling constant, and A.
" are the

Gell-Mann matrices. The value of the weak coupling con-
stant gz depends on the quark type as well as the field Zz.
If, for instance, Z& is the third component of an isovec-
tor, then g„=—gd and g, =0, with corresponding assign-
ments for other SU3-flavor currents.

Following Ioffe ' we take the nucleon current to be

g(x) =e'"'[u(„)Cy„u(„)]y'y„d'(x),

=4[(ug Cdg )uL —(uL, CdL, )ug ]e'"',
(2.2)

(2.3)

g(y)=e ' [u (y)y„Cu' (y)]d' (y)y5y
I I I —bl I I I=4e' ' [(d g Cu ~ )u I —(d I Cu L )u ~ ]

We are interested in the correlation function

vr(p)=i J d x{0
~
T{g(x)g(0))

~

0)e'

(2.4)

(2.5)

(2.6)

We shall find it advantageous to use the form for the
current in the helicity representation given by Eqs. (2.3)
and (2.5), respectively. Since the u and d quark masses
can be considered zero for our purpose, the splitting of the
field into left-handed and right-handed pieces is very use-
ful. Furthermore, both the SU3-color gauge interactions
and weak interactions in perturbation theory leave the
chirality of the fermion unchanged. The product
T(g(x)g(0) }consists of terms of the type

where a, b, c denote the color indices, C is the charge-
conjugation matrix and the right- and left-handed projec-
tions of the quark field q(x) are

& —'Vs
qz(x) = q(x),

2

&+r5
qI (x)= q(x) .

2

Equation (2.3) is obtained from Eq. (2.2) by a Fierz rear-
rangement. The adjoint nucleon current can be written as

We introduce an external axial-vector field Z„(not to
be confused with the intermediate boson Z ), whose in-

teraction with the quark field q is written as

T{g(x)g(0))=Op(x)+Or (x)—E)(x)—E2(x),

where

(2.7)

and

Oz (x)=T(u~(x)Cd~ (x)ul' (x),d z Cu g u L, ) 16e' 'e'

OL(x)=T(ur(x)Cdh(x)u~(x), d I Cu I u z )164' 'e'

Ei(x)=T(u~(x)Cd~(x)uL(x), dl. CuL, u l. )16e' V'

(2.8)

(2.9)

(2.10)

E2(x)=T(ur'(x)Cdi (x)u~(x), d g Cup u L, }16e 'e' (2.11)

We shall calculate the OPE expansion for these operators using the procedure of Ioffe and Smilga. In essence, it con-
sists of using standard perturbation theory but with provision being made for the fact that normal products like:qq:,
which by definition in the perturbative vacuum have zero expectation value, acquire a nonzero expectation value in the
physical vacuum.
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Returning to Eq. (2.8) it is evident that in the product Og(x), the d quark remains right-handed in its propagation
from the space-time point 0 to x, while the two u quarks either simultaneously retain their chirality or change their
chirality. Thus the terms O~(x) and OL(x) contribute only to the chiral-odd invariants f(x ), f~(x ), fq(x ) in Eq.
(1.5). Similarly the products E~(x) and Ez(x)contribute only to the chiral-even invariants.

Following Ref. 5, the quark propagation function in the presence of the external field Z& can be written as

ig&b (x);k g'b x Z(x)(k i ~ab „(xopv+opH) k

27T x 277 x 32m' ' 2 " x'

+i~ ~ik&0
I qq I

0&++gq&&"(Z) s) k&o
I qq I

0&+ 36gqx Z ~ p1 5&0
I qq I

0&

+ &g,x (0
I
qo"Gqg,

I
0&+ [(—,'x Z —x Zx)ys];k+higher-order terms .

72
(2.12)

The first three terms correspond, respectively, to the free
propagation function for a massless quark, the propaga-
tion with interaction with the external Zz field and the
vacuum gluon field G&, where gz is the coupling con-
stant defined in Eq. (2.1) and g, is the SU(3)-color gauge
coupling constant and A,

" are the SU(3) Gell-Mann ma-
trices. The fourth term represents the breaking of chiral
symmetry by the physical vacuum. The fifth term arises
from the fact that in the presence of the external field Z&,
Lorentz invariance of the vacuum is broken and

(qy„ysq &+0. We have defined a susceptibility X by

« I q1',xsq I
o & =g,»„&0

I qq I
o& (2.13)

The sixth, seventh, and eighth terms arise on expanding
the vacuum correlation (0

I q (x)q(0)
I
0& in a Taylor

series around x =0. Thus

(0
I q (x)q k(0)

I
0&

=&o
I q,'(o)q'„(0)

I o&+x„&oI(v"q')q k I
0&

and

6p~ ~ ep~apG
ap

Gap G nap
2

We note that in Eq. (2.12) the first three terms are odd
in chirality and are the "hard-quark" terms mentioned
earlier. The terminology "hard" reflects the fact that in
momentum space these correspond to the quark carrying
large momentum. The soft-quark terms, i.e., the chiral
condensate and its modification thereof by the external
field, are all even in chirality with the exception of
qy&ysq and q G& y"q which are odd.

It is now straightforward to compute the operator-
product expansion in Eqs. (2.8)—(2.11). As an illustration,
consider the coefficient of the identity operator which
arises from the first two terms in the propagator in Eq.
(2.12). Using chiral projections, these two terms can be
written as

xpx~+ ", (OI (V"V"q )qk
I
0&+ . , (2.14) i 6' 1 —'V5 1+y5 (1+ig~x.Z),

2%2
(2.18)

x„((V'"q )q k &
=5'b x"Z"o„„ys(qq &, (2.15)

and

zxx((V"V" q)q k &

x 6.=5' '
& qg, o'Gq &192

where we have followed the conventional approach and
used fixed-point gauge, x"3&——0, so that covariant
derivatives are equivalent to ordinary derivatives.

Using the equation of motion (V+igqZy~)q=o, one
can write

which simply reflects the fact that the left-handed and the
right-handed quarks have opposite couplings to the exter-
nal field and, more importantly, the effect of the interac-
tion with the external field appears simply as a multiplica-
tive factor in the hard-quark term. To comprehend close-
ly the nature of the similarity between the OPE with and
without an external field, it is useful to keep both the
terms independent of Z„as well as terms linear. in Z&.

We list below the contribution in perturbation theory to
the Wilson coefficients' in the OPE Eq. (2.7) to Eq.
(2.11). The coefficients of the identity operator and of Z„
are given by Figs. 1(a) and l(b), respectively:

g,~(qq &+ [(—,
' x Z —x.Z x )y5] k (2.16)

The external-field-induced susceptibility ~ appearing in
(2.16) is defined by

( q G~~p~ & =Zplc(0
I qq I

0 &

where

(2.17)

PEG. 1. Diagrams for Eq. (2.19).
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FIG. 2. Diagrams for Eq. (2.20).

24i x
Fig. 1=+ 6 &

(1+igdx Zys) .
7T X

(2.19)
FIG. 4. Diagrams for Eq. (2.23).

Notice that there is no contribution from the interaction
of the Zz field with the u quark.

The coefficient of G„~G~~ and Z&G„~G~p are given by
Figs. 2(a) and 2(b).

Fig. 2=+ (1 ig„x—.Zys)&g, G &, (2.20)
327T x

where

Fig. 4=+, [(g„+gd)Z x xys —g„x'Zys]X&qq & .

(2.23)

Notice that for an isovector field, g„=—gd and therefore
the coefficient of Z.x xys vanishes.

The coefficient of q G& y~ is given by Figs. 5 and 6:

&g, 'G'& = &g.'G. ~G "p & . (2.21)
1 5 xZx 5 Z

Fig. 5= — ( —,g„+gd) ys —
3 g„ys ~&qq

X X
The contribution from the diagrams in which the vacuum
gluons interact with different u lines are zero, ' both in
the sum rule for the mass as well as for the external field
case. Therefore there is no dependence on gd in Eq.
(2.20). One can check this readily in the helicity represen-
tation, Eq. (2.8).

We assume factorization' for the four-quark correla-
tion function, which receives contributions both from the
hard-quark term in the first three terms in the propagator
Eq. (2.12) as well as the soft-quark terms. The hard-
quark contribution to the (qq) are given by Figs. 3(a) and
3(b):

Fig. 3= — (1+igdx.Z ys) &qq &3~' x4
(2.22)

For the odd chiral structures x Zxys and Zys, these are
the only diagrams containing hard quarks which appear
in the coefficient of operators of dimensions d(7. No-
tice that in all the cases above, the proportionality factor
between the hard-quark terms and the corresponding
terms in the absence of the external field is evident as
promised in the Introduction. Next we turn to the soft-
quark terms.

The coefficient of qy„ysq is given by Fig. 4:

(2.24)

1 xZx 1 ZTs
Fig. 6=+ (g„+gd) 6 )'s+ —

~ ~&qq &

7T X 2 X

Combining the expressions of Figs. 5 and 6, we get

13 Z'Vs

6 X4
] 2 x 'Zxfs

7T 3 X
RuFig. 5+Fig. 6=—

(2.25)

ZVs
+Id a&qq & . (2.26)

Notice that the coefficient of x Zxys is independent of
Rd.

Next consider the soft-quark contributions to the coef-
ficient of Z&&0~qq ~0& . This arises from the seventh
term in the propagator expansion given in Eq. (2.12) and

FIG. 3. Diagrams for Eq. (2.22). FIG. 5. Diagrams for Eq. (2.24).
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(a)

1 I
I

I

(b) & (c)

l
]
I

I
I

FIG. 6. Diagrams for Eq. (2.25).
FIG. 8. Diagrams for (a) Eq. (2.28) and (b) Eq. (2.29).

is given by Fig. 7:

2
Fig 7= — Su

9m

X'ZX
X4 y5&qq &'

J

(2.27)
To compute the contribution to m(p) from these various

Wilson coefficients, we need to compute integrals like

Fig. 8(a) =—

Fig. 8(b)=—

qq

2 gd X~Z
4 p 6 & qq

(2.28)

(2.29)

Note that unlike the odd chiral structures, the leading
contribution to the even chiral case arises from the exter-
nal field interacting with a soft quark and not a hard
quark.

The coefficient of qqqy&y5q is given by Fig. 9:

Z Xt'
Fig. 9=+ ", o p, &qq&'X. (2.30)

3& X

Finally the coefficient of qy&yzq qo" Gq is given by Fig.
10:

Fig. 10=— gug VVc
1

48m

1

48 2 Ru X&qq & &qo" Gq & . (2.31)

So far all the terms considered have odd chirality. Next
we consider even chirality terms.

The leading terms in the OPE are the operators qq and

Z&qq for the external-field-independent and the external-
field-dependent cases, respectively. These terms are given
by Figs. 8(a) and 8(b) and are computed using the fourth
and the sixth terms in the propagator expansion Eq.
(2.12):

[. . ]„:—f dx

with (2.32)

(. )=1, x~, or x xp,
where e is a positive infinitesimal quantity corresponding
to the usual Feynman boundary condition and they are
listed in the Appendix for the readers' convenience. Vs-
ing these, the coefficients of the structures p Zpyq, Zyq,
and i o~pZ pPy5 can be written and are presented in Table
I.

We next carry out the Borel transformation as follows.
Remembering that the OPE coefficients are calculated for
spacelike values of P2= —p,
& lf (p') ) =fa(M')

lim
n~oo

p —+oo

P2/n =M2 fjxed

(p2)n+1

n!

(2.33)

The Borel transforms needed for our purpose are listed in
the Appendix. Collecting all the results, the Borel
transforms of the correlation m(p) corresponding to the
structures p.Zpy&, Zyz, and io~+~p~y5 are given by
the following. For p Zpy5,

FIG. 7. Diagram for Eq. (2.27). FIG. 9. Diagram for Eq. (2.30).
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TABLE I. Wilson coefficients (a) with no external field and (b) with external field, in momentum
space. Apart from a multiplicative factor i/(2~),

(a)

Fig. 1(a)

Fig. 2(a)

Fig. 3{a)

Fig. S(a)

—4p ln( —p )

——,
'

&g, ~62) ln( —p )

2 1—3a-
p —ap ln( —p )

p-Zpr5
(b)

Z$5 &~a~ p )'5

Fig. 1(b)

Fig. 2(b)

Fig. 3(b)

Fig. 4

Fig. 5

Fig. 6

Figs. 5 and 6

Fig. 7

Fig. 8(b)

Fig. 9

Fig. 10

gdp In( —p )

p
1—

3 gda
p——,(gd+g, )Xa In( —p')

1O—(2gd + —,g„)a.a—
2

1
p

2( g„+gd )a.a

—
3 vag„—

9gua 4p

4gdp ln( —p )

g &g 2G2 ) ]n( p2)2, 1
3 ada

p—
3 (gd —Sg„)gap In( —p )

—(gd —Sg„)~a ln{ —p )

3(gg+gd)Ka ln( —p )

2(gd+4g„)a.a ln( —p )

1
9 gua

p —3gda In( —p )

Tga gg—1
p

gula mo
p

f

4 2

gd) +(gu+gd) tzX+M +(5g +3gd)+«+g. ,', &g'G—'&+(g.+gd)( w«)+(gu Y~gd)

For Zy5,

(2.34)

( —gd ) + (gd —5g„)—,', XaM"+ (gd —5g„)—,
' «M'+g„—,', & g'6') M'

(2m)

Q
+(g„+gd )( ——', «)M —(g„+—', gd ) (2.35)

For Z~ po ~pf 5,

2 p 4 2 1

(gj 3 QM gg 3 Xa +g Plo XQ)
(2m )

(2.36)

We shall refer to them as the left-hand side (LHS) of the
sum rules. The right-hand side (RHS) of the sum rules
are to be computed in terms of the physical hadron inter-
mediate states and coupling strengths, which are given in
the next section. FIG. 10. Diagrams for Eq. (2.31).
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III. THE CORRELATION m(p) IN TERMS
OF THE PHYSICAL INTERMEDIATE STATES

The QCD sum rules are obtained as usual by comput-
ing n(p) in terms-of physical intermediate states as given
by the dispersion integrals in Eq. (1.3). In the presence of
the external field Z&, there are not only diagonal transi-
tions in which the initial state

l j ) is the same as the final
state

l
k), but there are also nondiagonal transitions

The diagonal nucleon contribution to m(p) can be writ-
ten as

i4 ~ ( Z—&G~y„ys)
l l

p mx- p —m~

where u (p) is the nucleon spinor with the normalization

UU =2mN (3.4)

We must also take into account the so-called single-pole
terms, in which either the initial or the final state is the
nucleon, while the other is an excited state. Further since
21 is a fermion current these excited states can be of either
parity. This is crucial in the following, since the contribu-
tion from the positive- and the negative-parity states com-
bine differently in the different helicity structures. To see
this in detail, and at the same time to keep the discussion
simple, let us momentarily ignore the width of the excited
states and introduce the definitions

GgkN Z
(p —m~ + 1 6) and

( 0
l

21 l PJ ) = A,j+ u ( m j+ ), — (3.5)

g [[(p'—m„')+2m+2]y„ (0
l
rj l Sj ) =A~ ysv (mj ), (3.6)

2p&—p+ 2m&(i o""p„)I ys . (3.1)

The axial-vector renormalization constant Gz is defined
by

where
l Pj) denotes a positive-parity state of mass mj+,

while
l Sj ) denotes a negative-parity state of mass mj .

are the coupling strengths of the baryon currents to
the physical states in question. The weak-field- Z&-
induced transition matrix elements are defined by

(N
l Jq l

N) =(N
l (uy@ysu dyqysd) —

l
N)

=g~ v(p)y, ysv (p)

(Pj l
J„' lPk&= G,+„—+u(m, +)y„y,v(m„+),

( Sj l Jp l
Pk ) Gjk U(mj )you (mk

(3.7)

(3.&)

and

(0
l 21 l

N) =A~u(p), (3.3)

Using these definitions, Eqs. (3.5)—(3.8), we collect the
coefficients of the various invariants in the expansion of
m(p):

coefficients of 2p ZPys= g
j,k

Gjk As/ kk Gjk kJ A k

(P —mj+ )(P —mk+ ) (P mj )(P— mk )—
Gjk Aj Gj+-X+X„-

(P —mj )(P —mk+ ) (P —m+ )(P —mk )

Gjk Aj~l, k (p +mj mk ) Gjk Aj A,k (p +mj mk )

(P —mj )(P —mk )

Gjk+AjAk (p mj mk+) —Gjk Aj+Ak (p mj+mk )—
(p —m )(p —mk ) (p —m )(p —mk )

Gj++X~+X+(mj++m+)
coefficients of io~pZ~p~ys

(p2 m +2)(p2 m +2)

Gjk+A,j A,k (m mk+)—
(p' —m ')(p' —mk+')

Gjk Aj Ak (mj +mk )

(P —mj )(P —mk )

G&k kj+A. k (mj+ mk )—
(P —mj+ )(P —mk )J

In particular when either
l j ) or

l
k ) is the nucleon for the coefficient of 2p Z pys, we have the combination

(3.9)

(3.10)

(3.1 1)

GNk ~N~k GNk ~E~k G'N ~' ~N GjN ~j ~N

(p —m/ )(p —m/,
+

) (p mg )(p —mk ) —j (p —mj+ )(p —mg ) (p —mj )(p —mg )

(3.12)

which is sharply different from the corresponding coefficient of Zys given by
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GNk+~N4 (p'+ mN mk+ )

k ~ (P mN )(P mk

GNk AN A, k (p —mNmk )

(p' —mN')(p' —mk ')

GjN+A, j+A,N(p +mj+mN )

(p2 m +2)(p2 2)
GJN A,J AN(p —mNmj )

(p —mj )(p —mN )
(3.13)

as well as at i o~jtZ p ~y5

GNk ~N~k ( N+mk
(p' m—N')(p' m—k+')

GNk N~k (mN ™k) GjN ~j ~N(mj +mN) GjN ~j ~N(mj mN)

(p mN —)(p mk —) j (p mj+—)(p mN —) (p mj —)(p mN —)
(3.14)

Imagine now for the excited states, chiral symmetry is realized in the Wigner-Weyl mode, that is, parity doubling.
Then it is reasonable to expect

+ — + — ++ + — ++ —+j ~ kj kj ~ GNk —GNk ~ GjN G (3.15)

—m +2/M2 —m 2/M2
=2(2m) g(Aji) e ' + g(Aj ) e

J J

The structure at 1,

Then in the coefficient of the structure p ZPy5, the contribution from the positive- and negative-parity states will cancel
each other, while for the structures at Zy5 and i o t9Z p, there is no such destructive interference.

Now one might ask whether our assumption that chiral symmetry is realized in the Wigner-Weyl mode for the excited
baryon states has any justification provided by the QCD sum rules? To see that this is indeed the case, we turn to the
mass sum rules derived by Belyaev and Ioffe. The structure at P,

6 2 a mM Mf 4 2i 4/9 0 3.16
L 4/9 4L 4/9 3~2

ab 8X17 &s a
J J (3.17)

Here, and in the following a is as defined in Eq. (1.7),

a= —(2m) (Oiqq i0),
b =(0

i g, G„"„G""
i
0),

a, =g, /4m,

L =ln(M /A )/in(p /A ),
amo ——(2~) (Oi qo Gq i 0),

where p is the renormalization scale taken to be 500 MeV
and A is the QCD scale parameter taken to be 100 MeV.

It is seen that in the RHS of these sum rules, the contri-
bution of each state is a positive-definite quantity
(Aj

—
) exp( —mJ /m ). In the p sum rule, Eq. (3.16), the

positive- and negative-parity state contributions add,
while in the second sum rule, Eq. (3.17) they combine
with opposite signs. On the other hand, the asymptotic
behavior in the Borel variable M is sharply different in
the LHS of these two sum rules. 3 forteriori, the OPE on

I

the left-hand side becomes more and more accurate for
larger values of M, therefore the behavior of the sum
over the physical states on the right-hand side is more ex-
actly described for large M by the leading term on the
left-hand side. Hence the only way by which the two sum
rules can be consistent is for the excited state contribu-
tions in the right-hand side of the second sum rule to can-
cel asymptotically. In particular it strongly suggests that

i
Xj+ —Aj

~

0 and
i

m+ —m
i

0 for large j.
Returning now to the case where the external field Z&

is present, we can write the right-hand side of ~(p) as the
sum of three pieces: (i) one containing the diagonal nu-
cleon term which has a double pole at the nucleon mass in
momentum space, Eq. (3.1), (ii) one involving transition
between the nucleon and excited states, Eq. (3.12), which
has a simple pole at the nucleon mass in momentum
space, and (iii) the pure excited-state contributions. Upon
Borel transforming, one can write the sum rules as fol-
lows: For p.Zpy5,

M va (g G ) 5aL
81 4/9 61 68/81 32~2L 4/9 18~2+ + +

—mN /M2 2=p N +3 e +excited-state contribution .
M

(3.18)

For Zy5,

2lf Af pa 3 2 68/8 &

6 4 M2( 2G2g
——M xaL c a L4/9 —

2+ L = Gg 1—
8I 4/9 2L 4/9 32L" 18

2mN mN2/Jtr12N

M

+excited-state contribution . (3.19)
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Fol' /0'sspZ p
T

Ma Mga ~a
I21 32/81

—m~ /M2 2

=pz (m~G~+cM )e +excited-state contributions,
48I.'" (3.20)

where p~ (2——vr) A&/. 4 In. writing down the sum rules
following Ioffe and Smilga we have also incorporated the
effects of the anomalous dimensions of the operators g,
qq, . . . for the Wilson's coefficients in the left-hand
side. "

For our purposes it is convenient to rewrite the mass
sum rules (3.16) and (3.17) as follows:

I

strengths to be

& p i J.'i»=G. =D+F,
&X+

i Jp i
X+)=Gx 2F——,

&A
~ Jp ~

X ) =Gyp —— D,
3

(4.2)

(4.3)

(4.4)

M bM ) 2 4/9 a ~06 2 2 2

+ —a I
gl 4/9 321 4/9 24M

=p ~ e +excited states,
—m~2/M2

aM ab 17 &s a —
&

—m~~/w2
~ M~e

4L, 72 81

(3.21)

+- exc'ited states . (3.22)

IV. EXTENSION TO HYPERONS

Since significant experimental data for the hyperon lep-
tonic decays exist and the Cabibbo theory works reason-
ably well, it is important to extend the calculation to
hyperons. To this end it is useful to consider transition
amplitudes of the type X~X, %~A, and:-~:- induced
by the external isovector field Z& and write for the
current

Jis =(ul Is} 5u dpisl'sd)— (4.1)

since SU3-Aavor symmetry predicts these coupling

Our discussion in the previous paragraphs, in particular
Eq. (3.12) to Eq. (3.14), shows that in the sum rule (3.18)
we can expect the nondiagonal single-pole term A to be
small, while similar coefficients B and C appearing in
Eqs. (3.19) and (3.20) are expected to be non-negligible. A
comparison with the mass sum rules Eqs. (3.21) and (3.22)
is also quite illuminating. Since we know the experimen-
tal value of Gz to be close to unity, we see that the
p.ZPy5 sum rule Eq. (3.18) bears a close similarity to the
mass sum rule Eq. (3.21). On the other hand, in the Zys
sum rule, Eq. (3.19), the sign of the nucleon contribution
is reversed in the RHS. In the even chiral sum rule Eq.
(3.20), even the leading term on the LHS is different from
the leading term on the LHS of the mass sum rule Eq.
(3.22). We shall not consider the even chiral structure
sum rule Eq. (3.20) any further in this paper.

i Jp i
= ) =G==D F. — (4.5)

%'e have suppressed the baryon spinors for simplicity.
The second and third matrix elements are particularly in-
teresting since if SU3&SU3 chiral symmetry were exact,
i.e., m„=md ——I,=0 and the physical vacuum is invari-
ant under this transformation, when D= 1 and F=O. To
derive the sum rules corresponding to these transitions we
make use of the currents

= (s'C y„s )y 5y „d'Q ', (4.6)

(u'C——y„u )ysy„sV'b',

rIA= i2/3[( uC+ps )1'g1 ~d

(d'C—res'))'s)'„u 'Ã"'
1

gxo ——~ [(u'Cyqd )y5y„s'
2

(4.7)

(4.8)

+(d C}pu )/gpss ]E (4.9)

We shall first consider the sum rules in the hypothetical
SU3-flavor-symmetric limit: m„=md ——m, =0 and
& uu ) =

& dd }=
& ss )&0. The modification taking into

account the strange-quark mass and the difference be-
tween &uu ) and &ss ) are considered in Sec. V.

To derive the sum rules corresponding to the X+~X+
transition vertex, for example, all we need to do is to carry
out our calculations of Sec. II using the current Eq. (4.7)
instead of the proton current Eq. (2.1). This consists of a
simple replacement of the d quark by the s quark. Since
we assume Z& to be an isovector, its coupling to the s
quark is zero. So the sum rules for the transition (4.3) are
simply obtained by setting gd ——0 in the formulas (3.18) to
(3.20). It is easy to see that the leading term is absent, re-
flecting the fact that in the exact-symmetry limit we ex-
pect that F=O. Writing down explicitly the sum rule for
the X+—+X+ vertex, at the odd chiral structures, for
S.ZS r5

M M M 2/M2

]2L 4/9 6J 68/81 321 4/9 e 9 12 s s

+excited-state contributions, (4.10)

and for Zr5,
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g2
+ &

2G2) a L4» P 2e ~x ~

12 ] 2L 4/ I 68/81 321 4/9 9 ~2

+excited-state contributions . (4.11)

The sum rules for the other transitions can be written similarly. For the transition of X—+A, for Z.p py5,

M M M
~»Xa+ 6s&s, ma+ ~» &g, G )+ , a L —=pzpxe * (D+C"M )+(excited states), (4.12)

SI 241. 12L, ' 64L,

and for Zy5,

8L 4/9 24L 2L ' 64L 9 M

—rn 2/M2Il I~2

+ (excited states) . (4.13)

For =—+=, for p Zpy5,

8L 4/9

and for Zy5,

81 4/9

M a —m-~/M2

&
pa+ L ~ + —,'a, m, Xa ——,m, mo a, =p= e = (D E+CM—)+(excited states),

121 /

2
2

4» + 6s&s& + =P = e = (D F) 1 ——
2

+O'M +(excited states) .
121 4/9 2L 68/81 M

(4.14)

(4.15)

It should be borne in mind that the flavor-symmetric
limit defined by m„=m~ ——m, =0 does not coincide with
the usual SU3-flavor-symmetric limit defined by the
Gell-Mann —Okubo mass formula. Therefore the hyperon
mass should be set equal to the nucleon mass in this limit,
that is, m==m~ ——m~ ——m~, and not to the value given
by the SU3-symmetric term in the mass formula.

It is illuminating to compare these sum rules with the
mass sum rule Eq. (3.21). It is seen that the leading term
is absent in the X~X transition, while it is the same for
the other two X~A, :-~:-,just as in the nucleon case.
The coefficient of the G&„G""' term, that is the b term,
however, varies from sum rule to sum rule While. it is
identical for the nucleon and the mass sum rule, it is ab-
sent in the "~= transition. '

V. ANALYSIS OF THE SUM RULES

It is worthwhile to remind ourselves that the experi-
mental data on hyperon semileptonic decays is consistent

with the Cabibbo model. In Ref. 17, a detailed discussion
of the recent experimental data is given The .constants F
and D are determined to good accuracy. A typical fit, as
given in column 5 of Table III of Ref. 17 gives
E=0.477+0.012 and a=0.756+0.011. There are varia-
tions of a few percent, which depend on the detailed as-
sumptions made in fitting the data. Therefore it is sensi-
ble to analyze all of our sum rules in the SU3-symmetric
limit, which in the context of QCD corresponds to setting
m, =0, that is to say, that the hyperon masses are degen-
erate with the nucleon mass.

A. Determination of g and x by PCAC

To proceed further and determine the value of Gz we
need to know the values of the susceptibihty parameters g
and ~ introduced in Sec. II. As pointed out by Belyaev
and Kogan' these parameters can be evaluated through
the use of PCAC. In particular, the matrix element

&o I uy, y5u IO)z= —~Z„ f d"x e'~ "&O
I T(u(x)y.y u (» —d(x)y y d(x»uy, y5» I 0& I g 0 (5.1)

&0I uy„y5u Io)z= z„f ', —(5.2)

can be determined by the pion-pole contribution and is
equal to

f =133 MeV.

Returning to the equation for the propagator expansion
given by Eq. (2.12) where we had defined

where &q)'p)'sq) =gqZp&&qq) = Zpf~ gq ~—(5.4)

and

&0Iuy„y d
I

+)=f q„ (5.3)
this leads to the identification, that g & qq ) = f~ . —
An analogous determination of the expectation value
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(0
~ q G„„y"q

~
0) requires a knowledge of the matrix ele-

ment

(0
~ q G„„y"q

( ~) = tq„'~~ . (5.5)

There is an estimate of v~ by Novikov et al. ,
"which is

adopted by Belyaev and Kogan. ' This value is obtained
in Ref. 11 by a rather tenuous chain of argument. While
it is likely that the determination of the susceptibility P
given by Eq. (5.4) is quite accurate for our purpose,
a priori the determination of the matrix element Eq. (5.5}
may not be as reliable. Therefore we have included the
possibility that the matrix element (5.5) may have a dif-
ferent value from Ref. 11 by writing

where g= 1 corresponds to the value given in Ref. 11. In
our analysis, we shall consider different values of g'.

With this all the terms in the left-hand side of the sum
rules are now known and we shall analyze the sum rules
using two different methods. The fundamental assump-
tion in either of the methods is of course the principle of
duality, i.e., there exists an interval in the Sorel-mass vari-
able M, which includes in its range the mass of the had-
ron whose properties we are trying to determine, over
which the left-hand side and the right-hand side of the
sum rules match.

B. The ratio method

with

a (0
~ qq ~

0 ) = —
3 gf„0.2 GeV

(0
~ q G„„y"q [0)=aZ„(0

~ qq ~
0) (5.6)

(5.7)

Let us consider the nucleon sum rule at the structure
p.ZPy5, Eq. (3.19), multiplying the equation by M2 and
comparing it with the mass sum rule (3.21) derived by Be-
lyaev and Ioffe:

—m 2/M~ —m ~/M2

8L 32L" 61 6s/81

M M b i 2L4/9 P 2 m&'/—M ~ ~ 2 mj. /—M

8L 4/9 32L 4/9 6+—aL, = ~e + e
j&N

(3.19')

(3.21')

The asymptotic behaviors for large M for the two sum rules are identical. This again strongly suggests that the cou-
pling of the axial-vector current to the excited states Gz tend to 1 as MJ gets larger and the single-pole coefficients AJ
tend to zero. Let us introduce the ratio function,

M /SL +M b/32L +a L ( —'+ —')+M aa/6L
R(M )=

M /gL / +M b/32L / +aiL / /6

Computing this ratio in terms of physical intermediate states we can write

G„+AM + g (P 6+Am )P e
j&NR(M }IRHs=

g p2p —2 ™j
j&N

The function R (M ) is plotted in Fig. 11.
Now for the right-hand side we make the ansatz

2 — 2

R (M'}
~ R„s—G„+Am'+ [y+5( W' —m~'+M')] exp—

M

(5.&)

(5.9)

(5.10)

In writing this we are assuming that the excited-state con-
tribution in the ratio R (M ) can be effectively represent-
ed by a state with mass W somewhat analogous to effec-
tive pole approximation used frequently in dispersion
theory calculations. If our ansatz for the effective contri-
bution (5.10) is good, then we expect the right-hand side
and the left-hand side to match over a large region of M,
for M )mt' . In fact if the two sides matched asymptot-
ically then

bitrary value of y and compute

8' —m~2 2

R(M )—yexp
M

The function S(M } is fitted by

S(M ) =p+oM
in the fiducial region,

=S(M ) . (5.13)

(5.14)

G„+y=1, coefficient of constant term,

5+A =0, coefficient of M term,

(5.11)

(5.12)

0.9(M &1.2 GeV (5.15)

If the output value did not satisfy the condition p+y =1,
a new value of

To find the constants y and 5 we proceed as follows.
We fix 5 at an initial value, say, zero, and start with an ar- y=(y;„+1—p)/2 (5.16)
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I.75
(o)

I.50—
N-N

J.25—

0.75—

0,50-

0.25

0.75 l.o
l I

J.25 J.5

M' (Ge V')
l.75 2.0

was chosen and the processes were iterated. The conver-
gence of this iteration is shown in Fig. 12. We note the
following points. The iteration in y coverages rapidly,
and more importantly the final value of p is independent
of the initial value 5c.

We have also tried to satisfy Eq. (5.12) by iterating 5.
However, a small nonzero value of 2+5 persists. It
seems proper to us to choose 5=0 and let the constraint
of Eq. (5.12) be mildly violated in the large M region.
Figure 11 shows the match between the function R (M )

and our ansatz, Eq. (5.10). It is seen that our failure to
match Eq. (5.12) has little effect in the mass region of in-
terest, Eq. (5.15). It is of course unreasonable to expect a
fit over the entire M region. Therefore we take our final
value of G~ to be the limit to which p converges. Our re-
sults are displayed in Table II.

We have investigated the sensitivity of the final results

l.75

l. 50—

I 4 I I I I I I I

(~)
I. 30-

+ + + + |" g + + + + + + + + + + + + +
I. 20- +

N-N

l 00 X~A
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0.25—

I. IO-

I.OO- +

0.90—
0.80—
0.70—
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l t

2 4
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I I I I I I

6 8 IO l2 f4 l6, IS 20
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0.50—
I. IO-

I.00-
0,90-

0.25—

I

0.75
I

l.o
I I

l 25 l.5

M (GeV )

I

J.75 2.0

0.80—
0.70-
0.60-
0.50-

+ +
+ +

+ + + + + + + + + + + + +

I I I I I I I I I

FIG. 11. The function 8 (M ), Eq. (5.8), is given by the solid
curves. The dashed curves correspond to our ansatz fit in terms
of the baryon pole and excited states, Eq. (5.10) with 6=0. (a)
and (b) corresponding to the value g'=1 and —2, respectively,
while (c) is the "~=amplitude and is independent of g.

2 4 6 8 IO I 2 I 4 I 6 IS 20

ORDE R OF ITERATION

FIG. 12. Convergence of the iteration in y to determine the
renormalization constants for %~X, X—+A, and:" —+=. Note
that the final value is always independent of the initial value of
P 0
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TABLE II. Renormalization constants determined from p Zpys sum rules based on the ratio
method. (a) In the symmetrical limit the baryon mass is 0.94 GeV; the continuum mass is taken to be
8' =2.3 GeV . Different columns correspond to different values of the susceptibility x and the chiral-
symmetry-breaking parameter a. Values in parentheses correspond to the fiducial region 0.8 & M & 1.2
GeV~. First number is the renormalization constant and the second is the single-pole coefficient o..
Numbers immediately above are from fitting the region 0.9&M &1.2 GeV . (b) For the broken-
symmetry case, the " mass is 1.32 GeV, the fiducial region is 1.5&M &1.9 GeV . a=0.45 GeV,
&~=3.6 GeV~. This sum rule does not depend on g.

(a) SU(3} symmetric limit:
a=0.45 GeV

g= —2

PPlg =Ntg =77l~ =0
a=0.55 GeV

D+F
1.52, —0.19

(1.57, —0.22)
1.24, —0.07

(1.24, —0.08)
1.61 —0.21

(1.65, —0.23)
1.37, —0.11

(1.38, —0.12)

1.05, —0.10
(1.08, —0.12)

0.91, —0.04
(0.92, —0.05)

1.14, —0.13
(1.18, —0.15)

1.02, —0.08
(1.04, —0,09)

0.58, —0.01
(0.60, —0.02)

0.58, —0.01
(0.60, —0.02)

0.67, —0.05
(0.70, —0.06)

0.67, —0.05
(0.70, —0.06)-

(b) Broken SU(3) symmetry: m„=md=0, m, =0.15 CreV, f= —0.2.

0.56, 0.03

to the following two variations: (i) The fiducial range of
the Sorel-mass variable over which the duality is assumed
to be valid. For example, we have increased the fiducial
range to 0.8 (M (1.2 GeV and the results for the renor-
malization constants are displayed in Table I. (They ap-
pear within parentheses immediately below the values for
the shorter range. ) (ii) We have also varied the effective-
mass parameter 8' . The results are quite stable and the
variations are less than the variation due to the change of
the fiducial region in (i).

It is also straightforward to carry out the calculation in
the SU3 limit for the X—+A transition vertex, as well as
for the =—+= vertex (see Figs. 11 and 12). By this pro-
cedure, we determine the constants D and D —I'. Table II
displays the value of (D+F)~, DxA, (D F)= for dif-—
ferent choice of values for the chiral-symmetry-breaking
parameter: a=0.45 and 0.55 GeV . The results for varia-
tions in the susceptibility x. or equivalently the g parame-
ter introduced earlier are also tabulated in the same table.
It is seen from the table that the determination of the
values of D +I', D, and D —I' are mutually consistent.

m 2/M2
=P~ e (D+F+AM ) . (5.17)

H -8 Broken Symmetry

0.60-

creation and the absorption of the three-quark state, for
Borel mass greater than some effective mass, M ) W .
We refer to this approximation of the excited-state contri-
bution as the continuum method. VA'thin this approxima-
tion, the sum rules after transferring the right-hand side
excited-state contributions to the left-hand side can be
written as follows. For N~N,

M2~g ~2b 5g 2I 4/9

8L, 4/9 61 68/81 32I 4/9 l 8

C. The continuum method

In their analysis of the mass sum rules, Belyaev and
Ioffe sum over the contribution of the excited states, i.e.„

the states above the nucleon occurring in the nght-hand
side of the sum rules, by using the asymptotic freedom ex-
pressions given by OPE, in analogy with the situation in
the cross sections of e+e to hadrons, where it is well
known that the cross section for the excited states or the
continuum is very well reproduced by the asymptotic free-
dom expression. Therefore in the baryon case, one ap-
proximates the absorptive part of the physical excited
states by the imaginary part of the OPE expression for the

OAO-

0.20-

I.oo
s I

l.50 2.00

M (Gev )

FIG. 13. The =~" transition in the broken-symmetry case
by the ratio method, m, =0.15 CieV and f= —0.2. (See text. )
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(5.18)

For X—+X,

M Eo M'xa M'b Q'L, '/'

12I 4/9 6I 68/81 32L 4/9 9
+Q +

And for =~

—m 2/M~
=P~ e (F+2 "M ) . (5.19)

M E1
8L '" M"Eo

121.4/9 gQ + LI

—m 2/M2=P ~ e (D E+A "'M—) . (5.20)

We have introduced the functions

Ec(u) =1—e ", E& ——1 —e "(1+u)

with (5.21)

For X—+A,

~'Eo&a m'~Q m'b 2, „„
81 4/9 241, 4/9 121 68/81 64I 4/9 9

—M 2/M2
=P~ e (D+A'M ) .

To analyze the sum rules, we must determine the value
of the constants P ~ as accurately as possible. We follow
Ioffe and Smilga and use the mass sum rule (3.16) with
the experimental nucleon mass 0.94 GeV. For a=0.55
GeV and W =2.3 GeV, one obtains P N ——0.26 GeV .

Since in the ratio method we found somewhat b'etter
agreement with experiment if the value of a is decreased,
we have also analyzed the mass sum rule, Eq. (3.16), with
a=0.45 GeV and find the corresponding value of 13~ to
be P~ ——0.22 GeV if 8' is once again taken to be
8' =2.3 GeV . Now we proceed to determine the renor-
malization constants and the coefficients of the single-
pole term. Using the least 7 criterion, we match the
left-hand side and the right-hand side of Eqs.
(5.17)—(5.20) in the mass region 0.9 (M (1.2 GeV . The
results are displayed in Table III. Figure 14 displays the
left-hand sides of Eqs. (5.17)—(5.20) and their right-hand
sides corresponding to the best-fit values of the renormali-
zation constants and the single-pole terms.

As in the ratio method, we have also investigated the
variation in the value for the renormalization constants
due to the change of the fiducial region and the results are
again displayed in Table III. It is seen that the variations
in the final results here are somewhat larger than in the
ratio method. However, this should not be surprising,

TABLE III. Renormalization constants determined from p Z py5 sum rules based on the continuum
method. (a) The symmetrical baryon mass is 0.94 GeV, the continuum mass is taken to be 8' =2.3
GeV . Different columns correspond to different values of the susceptibility ~ and the chiral-
symmetry-breaking parameter a. The double-number entries are the renormalization constant and the
single-pole coefficient o.. The values not in parentheses are for 0.9&M (1.2 GeV, and the values in

parentheses are for 0.8 &M'& 1.2 GeV'. (b) For the broken-symmetry case, the double-number entries
in the g columns are the renormalization constant and the single-pole coefficient cr.

(a) SU3-symmetric limit:
@=0.45 GeV, P~ =0.22 GeV

=1 g= —2

mt =md = flag =0.
a =0.55 GeV', P~ ——0.26 GeV6

/=1 g= —2

1.26, 0.46
(1.40, 0.34)

1.07, 0.47
(1.19, 0.36)

1.58, 0.17
(1.73, 0.03)

1.41, 0.18
(1.56, 0.04)

0.85, 0.38
(0.96, 0.28)

0.75, 0.38
(0.86, 0.29)

1.13, 0.14
(1.25, 0.03)

1.05, 0.14
(1.17, 0.04)

0.41, 0.09
(0.44, 0.06)

0.31, 0.09
(0.33,

'
0.07)

0.44, 0.03
(0.48, 0.01)

0.36, 0.04
(0.39, 0.01)

0.45, 0.28
(0.52, 0.22)

0.45, 0.28
(0.52, 0.22)

0.69, 0.11
(0.77, 0.03)

0.69, 0.11
(0.77, 0.03)

(b) Broken SU3 symmetry: m„=mq=0, m, =0.15 GeV, f= —0.2.

P in GeV6
(a=0.45 GeV3)

0.42

mq
in GeV

1.19

8'
in GeV

3.2

Fiducial
in GeV

0.9 & M & 1.2 0.54, —0.10 0.41, —0.05

0.58 1.32 3.6
0.9(M (1.2
15&M &19

0.37, 0.32

—0.02, 0.63

1.3(M &1.7 0.32, —0.08 0.24, 0.08

0.37, 0.32

—0.02, 0.63
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0.80
N-N

0.80-

0.60- 0.60-

0.40- 0.40-

0.20— 0.20-

. I.pp I.50
I

2.00

M (GeV )

2.50 I.OO l.50
I

2.00
M (GeV )

2.50

(c) (cI )

0.80— 0.80—

0.60- 0.60— B-B

0.40— 0.40—

0.20— 0.20—

l

l.pp1.50 2.50
I I I I I

I.OO 2.00 2.50 l.50 2.00
M (GeV ) M (GeV )

FIG. 14. Comparison of the right-hand side and the left-hand side of the nucleon and hyperon amplitudes using continuum ap-
proximation, W~=2.3 GeV, P~ ——022 GeV, /= 1, m& ——mx=mx=m=. The solid curve is the left-hand side of Eqs. {5.17) to
(5.20), divided by P~~. The dashed curve is the least-square fit in the fiducial region O.r9(M~(1.2 GeV, assuming the functional
form, exp( —m~~/M~) exp( —m~~/M~)[D +8+AM ], etc. , as given by the right-hand side of Eqs. (5.17) to (5.20). (a) %~X. (b)
X X. (c) X A. (d):-—+=.

since the parameter P z itself enters explicitly in the con-
tinuum method and itself is determined not too accurate-
ly. Moreover, it is seen from Fig. 14 as we move away
from the fiducial region, the difference between the LHS
and the RHS is substantial except for the X~X case. It
is seen from Table III that as in the ratio method in the
SU3-symmetric limit, the determination of the D and I"
from different sum rules is mutually consistent, i.e., the
equalities

D. SU3-syxnmetry breaking

Now we turn to the effect of SU3 breaking. At this
point, it is sensible to keep m„=md ——0 still, but we must
allow for m, &0. Moreover, one knows that
(0

~

ss~ 0)&(0
~

uu~ 0). Following Belyaev and Ioffe, we
incorporate the effect of these corrections by modifying
the strange-quark propagator function from the massless
limit given by Eq. (2.12) to

(0 is'(x)s (0)
i
0)

Dx~+ I'x =(D ++4
as well as

Dx~ —Fx =(D —+)=-

(5.22)

(5.23)

=RHS of (2.12)
2

+flub 'x (O~ss ~0)+ (Oper. Gs ~0)
48 24

are satisfied.

nzs + 0 ~ ~

4m x
(5.24)
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Define

a, —:—(2m. ) (0 ~ss ~0) =(1+f)a . (5.25)
(a)

Following Ioffe and Smilga, ' we take f= —0.2 and
m, =0.15 GeV.

Using Eq. (5.24), it is straightforward to calculate the
corrections to the sum rules for the X—+X and:- —+= am-
plitudes. However, the effect of the strange-quark mass
on the X~A transition is too complicated to analyze and
will not be considered here. The modified sum rules are
as follows: For X~X,

0.80-

0.60—

0.40-

M Mva Mb aL
12L 6L, 8 8' 32L

ms
gaa,

12
0.20— Z -X Broken Syrnrnetry

=p +2 exp( —mx~/M2)(2F +p"M2) + excited states,

and for =~=,
(5.26) t.oo I.50

I

2.00

M (GeV )

2.50

8I.4"
4 2M ya 4/9 mg

4/9 + L + Xaa, — mo a,12L'"
=p= exp( —m= /M2)(D I'+p"'M—2) 0.80—

+excited states . (5.27)

The modified mass sum rules given by Belyaev and
Ioffe, for X,

0.60—

8L 4/9 32L 4/9+
2amsmo

12

=p= exp( —m= /M )+excited states . (5.29)

a2I. 4/9 a mo am, M amo m,

8L 4/9 32L 4/9 6 24~2 4L 4/9 24

=PxexP( —mx /M )+excited states, (5.28)

and for =,

OAO—

0.20—

I.OO
I I

l.50 2.00
M (GeV )

2.50

Px =0.42 GeV, W =3.2 GeV

P = =0.58 GeV, 8' =3.6 GeV
(5.30)

Following the least@ criterion as before we have deter-
mined the broken-symmetry values of Fx and (D F)=-
using the fiducial mass regions:

for X, 1.2 &M & 1.6 GeV

for ", 1.5&M &1.9 GeV
(5.31)

We have again analyzed the sum rules using the ratio
and the continuum methods. In the former we have used
for the ratio R(M ) the left-hand side as given by Eqs.
(5.27) and (5.29) and used the fiducial range 1.5 &M & 1.9
GeV to determine the new D Fvalue. As seen f—rom
Table IE, there is only a small departure from the symme-
try limits. The fit for the =~" case is shown in Fig. 13.

For the continuum method (see Fig. 15), first the cou-
pling strengths px and p= are redetermined using the
mass sum rules (5.28) and (5.29) and the experimental
values of the hyperon masses. We find for a =0.45 GeV

FIG. 15. Broken-symmetry case using the continuum
method. Comparison of the RHS and the LHS of the sum rules
Eqs. (5.26) and (5.27). As in Eqs. (5.17)—(5.20), the continuum-
states contributions are transferred to the LHS in these figures.
(a) X~X. The fiducial region 1.2&M &1.6 GeV is used to
match the left-hand side (solid curve) and the right-hand side
(dashed curve) after dividing through by P~ . (b):-—+". The
fiducial region 1.5(M &1.9 GeV is used to match the left-
hand side (solid curve) and right-hand side (dashed curve) after
dividing through by P =i.

The results are again displayed in Table III. It is seen
that there is substantial change from the SU3-symmetric
case. A large part of this change of course comes from
the change in the definition of the fiducial region. As
remarked earlier, the results are sensitive to the fiducial
region and the departure from the symmetry limit can be
reduced by moving the fiducial region to lower M value.
On the other hand, it is not clear to us within the spirit of
duality whether such a choice is proper.
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E. The Rye sum rules

We now turn to the Zy5 sum rules (3.19) and (4.15). In
the SU2-symmetric limit for the proton and the cascade,
they are given below as Eqs. (A) and (8):

M Xa 4 3 aa 2 bM a I.
8L 4/9 2L 4/9 2 L 68/81 32I 4/9

2/M~ 27?l~

The left-hand side of this equation is plotted in Fig. 16.
We have fitted this curve with the form A, +o.M . Notice
that the fit works well over a large M region, suggesting
that for this particular linear combination the continuum
is probably not too significant. Identifying A, with
(7F —5D)/6, we arrive at the values listed in Table IV.

We have also determined the coefficient (7F—5D)/6
using the continuum method. As in the earlier discussion
the effective mass for the continuum is taken to be
W =2.3 GeV . Transferring the excited-state contribu-
tion to the left-hand side, one arrives at

+continuum, (A) e —3 6M E 9KQM a L4/9M2
-m~ /M 4 4

2 2 16 L 4/9 2I 68/81 9

2m~
1 — (D F)+8"—

M

+a M4 KQ M2 i 2i 4/9

12L 4/9 2 L 68/81

—m~ /M
=P1V e

= —,[7F—5D] ——,[5+(7F 5D)+8-'
120l~

—68"]M (5.33)

The left-hand side of this sum rule for the case a =0.45 is
illustrated in Fig. 16. It is seen that a straight line fit,
A, +crM, works very well. The best-fit values of

, (7F—5D—) and o are displayed in Table IV. Notice
that the A, value is very small numerically although F and
D by themselves are not small compared to unity. Table
IV therefore suggests the relation

+continuum,

(5.34)7F=5D .

This in turn gives for the ratio

D 7
F+D 12

=0.58
l

which is quite close to the experimental number'

0.40
( )

M bM
8I. /' 321. / 6

1.4/9=p~2exp( mdiv /M )— 7F -59 No continuum corrections

0.20-
+continuum .

respectively. As usual, when m, =0, we must set
m==m„and P„=P= .2= 2

As noted earlier sum rule (3.19) has a structure which is
very different from either the mass rule Eq. (3.16) or the
G~ sum rule at the structure p.Z py5, Eq. (3.18). For one
thing, the diagonal-nucleon double-pole term enters the
right-hand side with a negative sign. Further, as pointed
out in Sec. III, we expect the nondiagonal single-pole term
at the nucleon mass to be significant, unlike in the sum
rule, (3.18). Therefore it is not possible to extract directly
the renormalization constants D +F and D F from—
these sum rules. However, it is interesting to consider a
linear combination along with the mass sum rule (3.16),
given below as Eq. (C)

It is easy to see that the linear combination
—,[6(8)—5( C) —( A )] of these three equations eliminates
both the leading M term arising from the unit operator
the M term arising from the coefficient of (qy&y5q).
After multiplying both sides by

m 2/M2
N /2 2p 2

we obtain

I.OO I.50
I

2.00 2.50

M'(GeV')

0.20-

(b)
7F-5D Continuum corrections, W =2.5 Ge V

e —3 bM 9~aM +a 4/9
ng~2/M~ 4 4 2

2p 2 16 L, 4/9 2I 68/81 9
™+

I.OO l.50 2.00 '

M (GeV )

2.50

FIG. 16. The Zy5 sum rule, Eq. (5.32) for the linear com-
bination 6 (7F —5D) in the SU3-symmetric limit, with g= l. (a)

The solid curve is the left-hand side of Eq. (5.32). The dashed
curve is the right-hand side without including the excited-state
contributions. (b) The left-hand side (solid curve) and the right-
hand side (dashed curve) of Eq. (5.33) with W =2.3 GeV .(5.32)+excited states .

= —,
' (7F—5D)—,[5+(7F SD)+8' 68"]M-'—

t 2711~
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TABLE IV. Results from Zy5 sum rule for 6 (7F—5D) in

SU(33 limit (m„=md ——m, =03. The parameters a=0.45 GeV,
P~ ——0.22 GeV . In the symmetrical limit the baryon mass is
0.94 GeV and the fiducial region 0.9 & M' & l.2 GeV .

No continuum
corrections

Continuum approximation
with 8' =2.3 GeV

6 (7F—5D) 0.036 —0.003 0.053

g= —2

—0.092

0.075 —0.373 0.049 —0.242

—,
' (6a"—a') 1.00 0.17 1.02 0.32

cÃ =0.613+0.009.
On the other hand, from Eq. (5.33)

VI. DISCUSSION

In our analysis of the sum rules, we find both the
strength and the weakness of the sum-rule approach for
the determination of hadron properties. On the one hand,
the sum rules illustrate some basic features of hadron
dynamics clearly. For example, the fact that in the
SU3y SU3-chiral-symmetric limit, the coupling constant
F tends to zero and D tends to unity is brought out by the
structures of the hard-quark terms. In the limit where
chiral SU3XSUs is broken, but flavor SU3 remains intact,
we find that the coupling D decreases to a value below
unity, while the value of I'+D moves up from unity.
These very general features emerge as a consequence of
the structure of the OPE with and without the external
field. The sum rules also suggest that chiral symmetry
perhaps is realized in the Wigner-Weyl mode for the
high-mass states.

On the other hand, to extract the precise values of had-
ron couplings from the sum rules is a difficult task. We
are faced with several problems. First, we must make
some approximation for the excited-state contributions in
the right-hand side of the sum rules. Second, the duality
principle in itself is only an approximate statement. We
have taken this principle to mean, for example, in the case
of the nucleon, the left-hand side and the right-hand side
of the sum rule should match over the Sorel mass variable
0.9&M'&1.2 GeV . While it is obvious that the same
fiducial region should also be applicable for the hyperon
amplitudes in the SU3-symmetric case, it is less clear in

z [5+(7I' 5D)+8—' 68"] .—
12m'

The values of ,'[8' 68—"]ar—e given in Table IV for
a=0.45 GeV and different values of g. It suggests that
the single-pole coefficients, .

B' and 8", should be of the
order unity and therefore quite comparable to the double-
pole terms; this is in sharp contrast to the p Zpys sum
rule. This confirms our remarks in Sec. III concerning
the nature of the interference between the odd- and the
even-parity states.

the experimentally relevant broken-symmetry situation
what is the correct Sorel-mass region over which this
matching should be done. We have found that the results
of the calculation change if we change this fiducial range,
especially in the continuum method.

Nevertheless the following conclusions emerge from our
calculations. It is worth stressing that the key parameter
that enters in all calculations of baryon properties is the
quark chiral condensate (0

~ qq ~
0). To a first approxi-

mation the nucleon and isobar masses are proportional to
( (0

~ qq ~

0) (

'~ . Belyaev and Ioffe in their analysis of
the mass sum rule for the nucleon and isobar including a
large number of terms in the OPE found that the comput-
ed masses came out uniformly higher than the experimen-
tal number and suggested that perhaps the value of a is
overestimated by about 20%. The Gz sum rules confirm
their observation and thus reducing a would help to bring
both the mass calculation and the Gz calculation closer to
experiment.

We have seen that in the presence of the external field

Z&, counting operators to dimension 6, we have intro-
duced two new vacuum expectation values, whose values
are phenomenologically characterized by the susceptibili-
ties X and x. Using PCAC the susceptibility g is related'
to the pion decay constant f . On the other hand, the
determination of the susceptibility Ir requires a knowledge
of the matrix element (0~qG&„y~ ~m) which is not
directly related to experiment. A priori we do not know
even its order of magnitude. It is therefore impressive
that the value obtained for this matrix element by Novi-
kov et al. ,

"when employed in the G~ sum rules leads to
sensible results. In fact, if we use the continuum method
to analyze the sum rules and use the best fiducial region
recommended in Ref. 3 with 0.9&M &1.2 GeV, the
axial-vector renormalization constants D and I' come out
very close to the experimental values. Perhaps this is not
altogether a coincidence.

Comparing the ratio method, which does not involve an
explicit knowledge of Pz, and the continuum method, it
is gratifying that the two methods are compatible if we
recognize that the sum-rule procedure itself is only ap-
proximate. It is difficult to pinpoint the precise reason
for the difference in the values of the renormalization
constants determined by the two methods. It could arise
from either of the following: (i) Errors in the value of P~.
(ii) The different methods of accounting for the excited-
state contributions in the right-hand side.

We have seen that in the ratio method, the constant
D+F determined from the nucleon sum rules comes out
somewhat higher than the experimental number. The sus-
ceptibility 7 does not enter the nucleon sum rule. There-
fore keeping it at its PCAC value, Eq. (5.2), if we decrease
the susceptibility a from the value given in Ref. 11, we
find that the agreement with experiment improves. On
the other hand, the discrepancy could also be due to
higher-dimensional operators in the OPE in the left-hand
side.

We have seen that the sum rules at the Zy5 structure
cannot be individually used to extract experimental infor-
mation, because of the reversal of the sign of the Gz term
on the right-hand side, as well as the relative importance
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of the single-pole terms. However, we have been able to
combine several sum rules and determine the ratio
F/(F +D) to be approximately —,", , which is close to the
experimental value of 0.6. Moreover, it also confirms the
relative importance of the single-pole term as analyzed in
Sec. III.

The analysis of the broken-SU3 situation is considerably
more complicated. Since the Cabibbo theory is empirical-
ly successful, it makes sense to investigate vertices like
X~X and:-~:-, which are of course not accessible for
experimental measurement. On the other hand, the choice
of these amplitudes simplifies theoretical analysis very
considerably. If the initial and final baryons are very dif-
ferent in mass, then the distinction between the double
pole whose residue contains the physical coupling of in-
terest and the single-pole term is blurred W.e have found
that in the ratio method, the D Fvalu—e obtained from
the =~" amplitude is quite stable. In the continuum
method, however, the =~= amplitude is less stable than
the X—+X amplitude.

As for future work, the following questions are worth
pursuing. A global analysis of all baryon sum rules, for.
the masses, magnetic moments, and G~ value should help
to determine quite accurately the value of the quark chiral
condensate. Alternative calculation of the QCD vacuum
susceptibilities especially ~ would help to narrow down
the uncertainties in the present calculation. Finally the
amplitude X~A mhich is experimentally known is a real-
istic candidate for investigating the broken-SU&-symmetry
case, since the mass difference mx —mA is only about 80
MeV, and moreover, the corresponding axial-vector cou-
pling constant D is experimentally close to unity.

Note added. After the submission of the present
manuscript for publication, our attention was called to a
work by V. M. Belyaev, B. L. Ioffe, and Ya. I. Kogan
[Phys. Lett. 151B, 290 (1985)]. In this paper, taking into
account those terms proportional to f m ~, these authors
stated that they had reevaluated the sum rules of Ref. 10
and obtained I'=0.45 and a=0.95. This solution is
essentially the same as our solution given in column one
of Table III.

f(x)
(xz —ie)"

(Al)

where e is a positive infinitesimal supplying the appropri-
ate boundary conditions and f(x)= 1, x~, x~x&. We de-
fine the following bracket symbol

[f] f d4x ip.x f (x)
(x —ie)" (A2)

Equation (A2) is most easily computed by introducing a
parameter a and evaluating

I d'xe'P"
(x —a —ie)

(A3)

The integral in Eq. (A3) is well known. To obtain the
value of Eq. (A2) one merely differentiates (A3) with
respect to a n times and sets a =0.

One obtains

[1]zn =Cn(p )" »( p)— (A4)

in ( —1)"
(n —2)!(n —1)!4"

(AS)

2 1
[1]z—— 4i nz—

[x ]z ——8n' (A6)

RaP . 5'aPP
[x~xp]z ———8in 4

—4
P P

[l]4——in ln( —p ),

[x ]4——2n.

Similar formulas for [x ]z„, [x x~]z„, etc. , may be ob-
tained from Eq. (A4) by differentiating with —i Blip~,
( —i BIBp )( i Blip—p), etc. For convenience we write
out, a few:
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APPENDIX

[x~xp]4= —2ln z
—22

' gaP 5'WP

P 5'

[116= p'»( —p'),
8

[x ]6= — p ln( —p ),a 4 a

Sax P
[x~xp]6 —— g~p»( —p')+2a

~ 2

[1]8—— p ln( —p ),
3X2

[x.]8= pW'»( —p')
3X2

(A9)

In the text we need to calculate the Fourier transforms
of expressions like

~ 2

[x x&],= [g &p ln( p)+2p p~ln( —p —)],3X2"
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~ 2

[11 to= p'ln( —p'),
32X 210

2

3~2' p~ ln( —p ),
~ 2

[~.xp]to= (g.pP'+4PWpP')»( —P') .3~2'

[& ]to=— (A 10)

The Borel transform is defined by the following limit,

Note that p is assumed to be spacelike. For the right-
hand side of the sum rules which are written in the form
of a dispersion integral, the Borel transform is given sim-
p&X bX

8[f(p )]=—J ds Imf(s)e (A12)

On the left-hand side there are two types of terms that
occur. Their Borel transforms are

&[f(p')]

1irn
n~m

—p ~oo2

P2/+ ~2 fIXed

1
( p2)n+1

yg t

n

f(p ) . (All)
dP

1

(p +ie)

B (p ) ln
1

P

( 1 )ttf

(m —1)! (M2)~

=m t(M )
+'

(A13)
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