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We study muon capture by ' C in a general class of weak models. There is always a parameter
characteristic of the weak model that can be extracted in a nuclear-model-independent way from the
average polarization P„,the longitudinal polarization I'I and the asymmetry a in the angular dis-
tribution of recoils. For a less general class of models the asymmetry o. is unnecessary. Using the
experimental values of I'I and P,„weget a lower bound for the mass of the right-handed gauge bo-
son of the left-right-symmetric model, M~ & 2.5M&, in a nuclear-model-independent way. The

dependence of this bound on the experimental values is also discussed.

In a recent series of papers' the relevance of muon
capture in analyzing the weak charged currents structure
has been shown. In Ref. 1 it was shown how to analyze
the muon capture by ' C in a model-independent way. In
Ref. 2 an upper bound was extracted for the mixing of the
charged gauge boson of the left-right-symmetric model
using the available experimental data.

As a consequence of the large momentum transfer in
the process ' C(p, v&)' B(g.s.) it is possible to study the
magnitude of the induced pseudoscalar current —which is
inaccessible in 13-decay experiments. That is why this is a
field of current experimental activity, and this means
that it is worthwhile to analyze in more detail the possibil-
ities of the muon-capture process to provide information
about the precise structure of the weak interactions.

In this paper we present a calculation of all the observ-
ables in the muon-capture process ' C(p, v&)' B(g.s.) in
the most general class of weak models with an effective
Lagrangian build up with vector and axial-vector
currents. The calculation is performed in a nuclear
model-independent way, that is, using covariant form fac-
tors for the nuclear matrix elements. The first interesting

result we arrive at is that for this general class of models
there is a combination of parameters of the weak model
that can be extracted, independent of the form factors,
from the experimental values of a complete experiment
that is, measuring the rate I, the average and longitudinal
recoil polarization P„and PL, and the angular asym-
metry a. The asymmetry a has not been measured, so we
show that by a suitable restriction of the weak model
there exists a less general class of models where the previ-
ous result also applies, but only using the well-known ex-
perimental observables I, P,„,PL, , in fact, I is not neces-
sary. Among this last class of models there is the
manifest-left-right-symmetric model in the limit of van-
ishing mixing between left- and right-handed charged
gauge bosons, so using P„and I'I we get a lower bound
for mass of the right-handed bosons, M~ )2.5M~ . Fi-

R L
nally we analyze the sensitivity of this bound to the pre-
cision of P„and PI .

The most general effective Lagrangian for the process
l+ u —+v~+d with the structure "current Xcurrent" is, us-
ing vector and axial-vector currents,

G~cosHg
[Cv(vy"1 )(d you )+C~ (vy"ysl )(dypysu )+Cv(vy"ysl)(d y„u)+C„'(vy"l)(d y„ysu )] .V2

In order to avoid nuclear-model dependences we parametrize the hadronic matrix elements in this way:

. FM(q')(P„i+,~~ V~~P„O+)=t
771p

(P2, 1+,A,
~

A"
~
P),0+) = Fg(q )P' (A)+Fp(—q ) q" F~(q ) k" .—I 2 4M'
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X=
Gg —t+ Gv

Gg —t GvX'=—
G~ —t+Gv

' (5)

C~+ C~

1
Cv 1+Cv/Cv

1+Cg /Cg

where the set of Eqs. (4) and (5) with the relations among
observables and reduced helicity amplitudes obtained in
Ref. 1 provides us with a calculation of all the observables
of muon capture in the general class of models defined by
Lagrangian (1). Equations (4) and (5) are independent of
any nuclear model, all the nuclear dependences are under
control by the set of parameters defined in Eq. (3). It
must be emphasized that this set of equations is valid for
any nuclear transition 0+—+1+ where we can neglect E' '

and the muon mass m& with respect to the nuclear aver-
age mass. As a check of Eqs. (4) and (5) we note that in
the parity conservation limit we must have
T(A.~, A,„)= —T( —I,&, —A, ), this relation implies
Cz ——Cv ——0 or Cz ——Gv ——0. Both eliminate the parity
violating pieces coming from the Lagrangian. As long as
we, are involved with time-reversal-invariant inter-

V" and A" are the vector and axial-vector quark currents,
P(A, ) is the polarization vector of the spin-1 state, q" is
the momentum transfer, and k~ is the sum of both 0+
and 1+ nuclear moments. In what follows we will use the
same notation as in Refs. 1 and 2, for undefined magni-
tudes. The relevant combinations of covariant form fac-
tors entering in the amplitudes are:

E(v)Gv=-
2mp

E(v)
G~ = —I'~ — I'

2m'

Z"m E(v) E(v)
GP=, +P — I'E — +MP

m~ 2m' 2m'

E' ' is the neutrino energy, and this expression tells us
that all the form factors except F~ are induced ones. In
Ref. 1 all the observables are written in terms of the four
independent reduced helicity amplitudes T(A,~, A,„)where

A& and A,„refer to the helicities of the 1 recoiling nu-

cleus and the neutrino, respectively. Using the same
method presented in Ref. 2 we get up to a global normali-
zation

T(1,—,
'

) = V2 N/3X—', T( —1,——,
'

) =V2 X,
(4)

T(0, —, ) = N/3X, T—(0, ——, ) =XX,
where the four combinations of parameters entering in
this equation are

Cw+C
2

(GA t+GV) ~

actions —we consider here only this type of model —the
amplitudes T(A,~,A,,) are relatively real, ' and so only four
observables are independent, for example, I, P,„,I'I, and

In this case the parameters entering in the right-hand
side of Eq. (4) are real and looking at Eq. (5) it is evident
that with a complete experiment we can extract, indepen-
dent of any nuclear assumption, the parameter P which

only depends on the weak model under consideration.
Having in mind that N only enters in the rate of capture
I we see that in order to get/3 we need P,„,Pt, and a. It
is evident that Eqs. (22) of Ref. 1 gives us a functional re-
lation of the type f(/3;P,„,PL, ,a) =0.

As an example of a model where /3 is an interesting pa-
rameter we have for the manifest-left-right-symmetric
model9

Cz ——C[( 1 —sin2g) +b (1+sin2$) ],
C~ ——C[(1+sin2$)+ b, (1—sin2$)],

Cz ——CI =C(1 —b, )cos2$,

where g is the mixing angle between the left- and right-
handed gauge bosons and 6 is the ratio of their masses
b =(M~ /M~ ) . The constant C gets the value

C=(1+6, )
'~ if it is used in the muon decay rate to de-

fine the Fermi coupling constant GF (Ref. 9). So using
the results of the previous analysis we can conclude that
measuring the asymmetry a it would be possible to get the
combination of b, and g defined by

tang(1+ tang)+ 6(1—tang)
(1+tang) —5 tang'(1 —tang)

in a nuclear-model-independent way. This type of
analysis would represent an interplay between the usual
muon-decay and /3-decay experiments' in the sense that
we are using a semileptonic process involving the muon
family.

As has been shown elsewhere, " in the standard model
there are only two independent observables I and P„,and
in the general case there are four. We have experimental
values for I, P,„and PL so in order to use now these ob-
servables to obtain information on possible extensions of
the standard model, there are two strategies one may pur-
sue. The first is to use some nuclear information, either
theoretical or experimental, from related processes such as
/3 decay. This was the line pursued in Ref. 2. The second-
strategy is to restrict in some suitable way the general La-
grangian (1) in order to have a model with only three in-
dependent parameters so that we have the chance that I,
P,„,and PL affords us with a complete experiment. In
other words the idea is to restrict the w'eak model in such
a way that the four parameters in the right-hand side
(RHS) of Eq. (4) become three only. Looking at the set of
Eq. (5) and having in mind that we can only impose con-
ditions on the weak model parameters it is evident that
the only possibility there is to impose t = t+, so that we
get X'= 1. In turn this means we have restricted the gen-
eral class of models of Lagrangian (1) to the models that
verify

Cv

Cv
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The bonus we get from Eq. (8) is that we have eliminated
one parameter X' that depends on the nuclear structure.
We are left with a class of models where the number of
independent observables is three. By explicit calculation
we will check later that I, P„,and PL are in fact in-

dependent, so these three experimental observables
represent a complete experiment for the class of models
described by Eq. (8) and for these models we can extract
the parameter P. This only contains information on the
weak model.

Among the theories that verify the set of Eqs. (1) and
(8) is the left-right-symmetric model in the case of vanish-

ing mixing among the left and right charged gauge bo-
sons, even in the case that we include an additional
Cabibbo-type angle for the right-handed sector. Restrict-
ing ourselves to the so-called "manifest-left-right-
symmetric model" the condition (8) can be realized by the
set of Eqs. (6) provided /=0, and so we have'2

2

X= (9)

Pl ——— 2 1 —6
(2+X ) 1+6,

2 P Q

2+X
(10)

P PP(P 2 1 +2X P2+X'

where I is defined in Ref. 2 and takes account of the
muon wave function at the origin and Pz is the polariza-
tion of the muon in the 1Sshell.

As we have mentioned before, I fixes the global nor-
malization of the form factors and looking at Eq. (10) it is
apparent that P and PI are independent and so we con-
clude that with these experimental values it is possible to
get in a nuclear model independ-ent way-a lower bound for
the WR mass of the manifest-left right symmetric -model-in
the limit of vanishing mixing It is worth. while to point
out that from nonleptonic b.5=1 weak decays and from
semileptonic decays (see Ref. 18) there have been derived,
respectively, the bounds

~ g~ &0.004 and
~ g ~

&0.005, so
that Eq. (8) is a very good approximation for the left-right
model considered here.

In the set of Eq. (10) we have also included implicitly
the value of the neutrino longitudinal polarization' Pl in
order to simplify the numerical analysis. In fact, the pa-
rametrization (10) is the same that has been used' to ex-
tract the neutrino helicity —the neutrino longitudinal po-
larization PL in our terminology. ' So if we take into ac-
count, from Eq. (1()) that

Using Eqs. (9) and (4) with X'=1 and the results of Ref. 1

we get

I =I'6„'(2+X')

0.20—
PL= —0.9 l

O. I 2

0.08

0.04

&2.5 M~ . If we do not take into account the

lower bound extracted from the KL Its-mass difference, ',
the best experimental bound for Mz comes from the

R

muon-decay experiment of Carr et al. ' and in the case of
neglecting the mixing g the bound they get is
M~ &5.7M~ . It must be emphasized once more that
the bound obtained in this work has its own interest be-
cause it comes from a different piece of the electroweak
Lagrangian. In any case, keeping in mind the current ex-
perimental activity in the muon capture by ' C let us
analyze the dependence of P on the experimental values.

It is apparent from Eq. (10) that if X were equal to zero
it would be the upper limit of PL that would fix the upper
limit on A. This is not the case although X is of the order
of 0.26, so we have plotted in the Fig. 1, g as a function
of X for different values of PL. The reported value of Pt
in Ref. 13 is PI ———1.02+0. 11 so the upper bound of PL
is —0.91 and is the region under this curve (Pt = —0.91)
that is allowed by the PL value. The corresponding X
value' is X=0.268+0.062, so the shadowed region of the
figure is the one allowed by experiment and gives the
correlated bounds on 6 coming from PL and X. The pre-
viously given value 6 (0.16 corresponds to the average of
this correlated upper bound shown in the figure.

It is apparent also from the figure that the essential pa-
rameters to set an upper bound on 6 is the upper limit of
PI, although. the lower bound of X may also be relevant.
For illustrative purposes we have plotted b, (X) for
PI ———0.96 in this case the upper bound of 6 is more
sensitive to the lower bound of X because the b, (X) func-
tion has a big dumping at the end point. From the figure
we can see that by improving the upper bound of Pl to
the value —0.96, it would be possible to reach an average
upper bound for 6 of the order of b, & 0.06.

We must also point out that the experimental values
previously used correspond to the experimental values
suitably corrected to take into account the muon capture
leading to higher excited states of the ' B (Ref. 13). So we
have put ourselves in the worst situation, in other words,
we have taken from Ref. 13 the set of values that gives
the poorest upper bound for b, . If, for example, we had
used X=0.26+0.06 and PI ———1.04+0. 11 that means
PI ———1.08+0.11 we would have 6 & 0.12, that is
Mg )2.9M'

PI ——— O. lo O.20 0.50

and the reported "experimental"' value PL ———1.06
+0.11 we immediately get the lower bound 6&0.16 or

FIG. 1. The curves represent A(X) for different values of I'I. .
The shaded region is the experimentally allowed region and
gives us the upper bound on A.
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1 —6
Pq(~) = P„.1+6 (12)

In this case we can see that the ratio measured in Ref. 13

„"= ——,
' (1+2X) (13)

Before concluding, in order to check the consistency of
the set of Eq. (10) with the way X is extracted from the
experimental values we must make some additional com-
ments on this last topic. In fact, the set of experimental

gvalues are two linear combinations of P„and I'I I'z and
a magnitude related to Pz of P& itself. ' Because the ratio
of P,„and PI is less affected by excited states correc-
tions, the best way to make the numerical analysis is to
use this ratio and either P„orPl . As long as P& is mea-
sured directly the obvious way is to use P„to get X and
the ratio, with X, to get h. But this is not the case in Ref.
13. If we define P„=kP&(vr), where P„(m.) is the muon
polarization in the m decay, what they measured is the
depolarization factor k, so it is a straightforward calcula-
tion in the model under consideration that from pion de-
cay

merical analysis performed in Ref. 13.
In conclusion we can say that muon capture by ' C has

shown itself to be a powerful tool in the analysis of the
structure of the weak interactions. The crucial point is
that for the models described by Lagrangian (1) there al-
ways exists a parameter of the weak model that can be ex-
tracted from a complete set of experimental data indepen-
dent of the way we describe microscopically the nuclear
degrees of freedom. So we must stress once more that by
measuring the angular asymmetry o: this kind of experi-
ment can be used to analyze the structure of weak interac-
tions. To have a numerical idea of which type of bounds
can be obtained we have restricted ourself to a less general
class of models in order to use the actual experimental
values. For the manifest-left-right-symmetr ic model
neglecting the mixing between left- and right-handed
charged bosons we get the conservative bound
M~ & 2.5M~, of course, in a nuclear-model-inde-

pendent way. We have also shown that by improving the
upper bounds of the longitudinal polarization a little it
will be possible to reach precisions comparable with other
types of experiments that prove different combinations of
the weak currents.

is independent of b, and so we must use R to extract X
and PL to get P. The values of 'R corresponding to the X
value used in the figure is R = —0.512+0.041. Note that
it has been crucial to check Eq. (12) in the model used
here in order to translate here, mutatis mutandis, the nu-
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