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Pseudoscalar electromagnetic vertex function: Quark-hadron duality
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A double-dispersion-relation model for the neutral-pseudoscalar-meson —two-photon vertex func-
tion is proposed. Several spectral-function sum rules are derived. Quark-hadron duality is estab-
lished in the model, so that the low-energy behavior of the vertex function is dominated by vector-
meson resonances, and the high-energy behavior of the vertex function is determined by QCD
dynamics and light-cone algebra. The vertex function is then applied to study the decay processes
m. (g )~yy, m (g )—+e+e (p+p ), ~ (g )~e+e (p+p )y, and the scattering process
e+e —~m'(g')y.

I. INTRODUCTION

5 ($2
Fp(s i,s2) = 1—

3/2mv (si+sp —mp )

1
X

(1—s&/mp )(1—s2/mz )
z 2

The other is a simple pole model:
2A

Fp(si, s2) =
A —Sj —$2

(2)

The pseudoscalar-to-two-photon vertex has been the
subject of both experimental and theoretical investigation
for several years. ' The off-shell behavior of the vertex
effects a variety of processes which can be used as probes.
Some of these processes are tr (g )~e+e (p+p ),
Dalitz-pair decay m (g )—+e+e (p+p )y, e+e
~sr (go)y e e ~e e ~ (ri ) etc.

In tr (q )~e+e (p+p ) the vertex function
Fp{k '(k —kp ) ) is probed only in an integrated sense as
one needs to integrate over all the unphysical photon mo-
menta. In the Dalitz-pair decays one probes the structure
of the vertex function at low energies where one would ex-
pect the structure to be dominated by vector-meson reso-
nances. On the other hand, in colliding-beam experiments
one could probe the structure at very large ( —10 GeV) in-
cident invariant mass.

There is a quark-hadron duality at work in the follow-
ing sense. At low energies we expect, from analyticity,
that the structure of the vertex will be vector-meson (had-
ron) dominated. On the other hand, at large values of k,
for extremely unphysical photons, perturbative QCD (Ref.
10) and light-cone algebra" dictate that Fp(k;(k —kp) )
behave like 1/k . Thus the high-energy behavior is dic-
tated by the quark-gluon dynamics. A model that satis-
fies both the low-energy and high-energy behaviors allud-
ed to above will be said to satisfy quark-hadron duality.

To the best of our knowledge, two models for
Fp(k '(k —kp) ) have been suggested which satisfy the
quark-hadron duality as referred to here. One was sug-
gested by Ma and Babu:

It was shown by Bergstrom that the form in (2) can be
derived from a potential model for heavy-quarkonium
systems. It is unlikely that the same technique would ap-
ply to light systems. In any case, (1) and (2) can be treat-
ed as phenomenological models for Fp(s~, s2).

The quark-hadron duality in the heavy-quarkonium ra-
diative decays has been studied through QCD sum rules. '

Such a duality has been claimed to be justified in the m.

electromagnetic decay also since the massive-quark-loop
model and the vector-dominance model yield the same
slope parameter in tr ~e+e y (Ref. 8).

In this paper, we propose a model for the vertex func-
tion which invokes quark-hadron duality in the sense we
have described. %'e postulate that at low energies the ver-
tex is vector-meson (hadron) dominated while at high en-
ergies it is constrained by perturbative QCD and light-
cone algebra. We write a double dispersion relation for
Fp(s~, s2) for a fixed v's =~s~+~sz in the center of
mass. Such a dispersion relation involving a single and a
double spectral function is obtained by dispersing in both
s& and s2. We constrain the asymptotic properties of
Fp(s ~,s2 ) through perturbative QCD and light-cone alge-
bra. This leads us to certain spectral-function sum rules
which we exploit.

Our estimates of the low-energy processes such as
tr ~yy, g ~yy, tr (g ) +e+e (p+p )—and the slope
parameter in m (q )—+e+e (p+p )y are not much dif-
ferent from those obtained by vector-meson dominance,
which is to be expected. However, our model does give
significantly different results from those obtained from
traditional vector dominance for high-energy processes
such as e+e ~tr (g )y.

This paper is organized as follows. Section II discusses
the analytic properties of Fp(s&, s2). Asymptotic condi-
tions are imposed on Fp(s&,s2) and spectral-function sum
rules derived. The parameters of the model are deter-
mined and nc(go) —+yy calculated. In Sec. III, the slope
parameter in the — Dalitz-pair decays ~ (g )
—+e+e (p+p )y are calculated, as are also the leptonic
rates m (g )—+e+e (p+p ). In Sec. IV we calculate the
cross section for e+e —+tr (g )y. Conclusions follow in
Sec. V.
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II. THE VERTEX FUNCTION Ep(s ~,s2)

The P~y*(k~)+y*(kz) vertex function is defined
through

In the following, we discuss some constraints on the
spectral functions. If one of the two photons is physical,
the large-k& behavior of Fp(k, ;0) is predicted by pertur-
bative QCD to be'

f d xe ' 8(x ){0~[j„(x),j„(0)]
~
P(k)+k2))

pFp(ki, k2 )

(2~)
(3)

V2fF o(k) ', 0)=—
1

F (ki,'0)=—
The vertex function Fp(k~, kq ) satisfies a sidewide-

dispersion-relation representation' for a fixed value of
one of the invariants,

IrnFp(s, k, ')
Fp(k),'k2 )=fp(k2)+ —f ds .

s —k1
(4)

F„(k&',0)=—,(f =134 MeV),
1

If both fp(k2) and ImFp(s, k2 ) are real analytic functions
of k2, one can disperse in the second variable and write a
double dispersion relation for Fp(k~ 'kp )

which, using (5), leads to two sum rules

op(s)f ds =0 (P=rt, g )
S

Fp(ki,'k2 )= —f o(s) 1 1
2+ '

2
ds

' s —k1 s —k2

f f est)

Xds dt,

where 'o.(s) and p(s, t) are the single and double spectral
functions, respectively, and p(s, t) is symmetric in s and t.

1 pp(s, t)—f crp(s)ds + f ds dt =apf
a =v2, a„=v 2/v 3, a„=4/v 3.

%hen both k1 and k2 are in the deep timelike region,
the leading term of the asymptotic expansion of the am-
plitude in (3) is determined by the equal-time commutator
of currents"

f d xe ' 8(x ){0~[j& (x),j„(0)]~P(k&+kz))k,

0 f d'xe ' {0~[j„(x,0),j (0)] ~P(k)+k2))+O(1/k) ) .
1

(9)

On the other hand, if both k& and k2 are in the deep spacelike region, then the behavior of the current commutator in
the light-cone region (x =0) dominates the transition amplitude in (3). It is believed' that the light-cone behavior of
hadron current commutators can be determined by the free-quark current. The commutator of electromagnetic currents
in the region near the light cone is then obtained as

[j„(x),j„(0)], = fg„[q(0)Q yA(x) —q(x)Q yA(0)]

+g„[q(0)Q ypq(x) —q(x)Q y„q(0)]—g,p[q(0)Q y q. (x) —q{x)Q y q(0)]

+i' ~p[q(0)Q y5y q(x)+q(x)Q y5y~q(0)][ Q(x;yytq 0) . —
Bx~

(10)

The operator-product-expansion technique is then applied
to the bilocal operator so that

q(0)Q'y5y q(x). o

=[1+c(x)+.. . ]q(0)Q y5y~q(0),

where c(x) is proportional to the fine-structure constant
of QCD and its contribution is suppressed at small x (at
large momentum transfer). We ignore the Wilson coeffi-

cient c(x) in (11) and define the U(3) vector and axial-
vector currents as

V' (x)= g q, (x)—y„q, (x),
A'

a=1

A„'(x)= g q, (x)—ysy„q, (x),
a=1
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3

V„(x)= g q, (x )Qy&q, (x),

2
3

Q= 0

0 0

(12)

0 0 I
3

Using the PCAC (partial conservation of axial-vector
current) condition

FICx. 1. I' —+yy in the vector-dominance model.

(0~ Ap(0)
~

vr (p)) =i Pp,p

(0~ A„(0)
~
g(p))=i P„(f„=f„=f),P

(0
~
Ap(0) ( g;(p)) =i Pp .P

(13)

1—I o t (s )ds =/3t f
1 1 2

3vZ' " 3ve' (15)

Substituting (15) into (8), we have the following condition
on the double spectral function pz(s, t):

We find the large- k (either timelike or spacelike)
behavior of Fp( k; (P —k) ) as

1 pp(~, t)I ds dt =ypf~,

F 0(k;(p —k) )„,

F„(k;(p —k) )kg

vlf
k

~z f.
y o——5/3V2, yz ——5/3V6, y„=10/3v 3 . (16)

The radiative decay amplitudes of ~ and q are deter-
mined by p(s, t) only:

Fp(0 0) = I '
ds « .

st

Equation (5) then leads to a sum rule for the single-
variable spectral function o.(s),

The vector-meson-dominance (VMD) model has
used'~ to calculate the two-photon decay processes of neu-
tral pseudoscalar mesons, which are represented by the
Feynman diagram in Fig. 1. The strong-interaction ver-
tices in the VMD model are

W2g ~e„, t3—(B"~ )(8 p~)vP e„, &[(8—"p')(8 p~)+(8"co )(8 coi ) —2(B~Q')(8 P&)]qp vcx

e„„p[(B"po')(&p )+(&"~')(& ~~)+(&"P )(& P~)]q' (18)

where

3g
gvs

2
I (P yy)= m~ ~FJ(0,0)

~

(20a)

where

and the electromagnetic vertices are' '
2 A, 2

fop e 2 m~eI EM +2 po+ ~~ —— P &z . (19)
g 3 3 g

(We assume mz ——m„.)
The predicted radiative decay rates of pseudoscalar neu-

tral mesons are

F 0(0,0)=
4~2

I (m —+yy)=7. 6 eV,

(20b)
cos8 —2 2 sin8

~0

I (g —+yy)=0. 355 keV .

~
rt ) =cos8

~ g ) —sin8
~

71'), 8=—11.1 .

Qur predictions are in agreement with the measured
values"

The physical state g is the linear combination of two iso-
scalars g and q', i.e.,
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I,„~,(n. ~yy)=7 9.+0 5.5 eV

(21)

I,„p,(q ~yy) =0 3.24+0 04. 6 keV .

Therefore, the double spectral function is dominated by
vector-meson poles and has the form

p 0(s, t)= 5(s —mz )5(t mq —),V2mP 2 2n' '4f
5v 2m, '

pz(s, t)= 5(s m—e )5(t —mz )
12 3f

4
mp 2 2

6~& f. 5(s —m~ )5(t —m& ),

(a) L, =ggI e& z F~"r) ~ (B,yB,.), .

1

(b) L, =i g e„„,~~ 'd'~'(B, a~P, ),
ml

(25)

single spectral function and constrained the parameters by
using (7) and (15). We follow a different approach out-
lined below which builds in the features characterized by
(24). In our model o 0(s) is the absorptive part of the
Feynman amplitudes shown in Fig. 2.

The four-particle vertices in the diagrams are described
by the following effective interaction Lagrangians which
have different dimensionalities (higher-dimensional opera-
tors are presumably suppressed by large mass scales):

and (22)
(c) I =&' gg'e„,, F" (M O'M;)a ~o

m&
——m~ ——768.5 MeV . (23)

The asymptotic chiral symmetry in the spectral func-
tion sum rules requires the effective vector-meson mass
parameters to be degenerate. Another explanation is that
the heavy radially excited vector mesons can effectively
shift the mass m~ downward.

The single spectral function plays no role in the radia-
tive decays of pseudoscalar mesons. However, as we shall
see in the following sections, when one of the photons is
off shell as in Dalitz-pair decay n (rt )~e+e y,
~ (g )~y*y*~e+e (p+p, ), or e+e ~m. (g ) the sin-
gle spectral function does play a role.

In the following we construct a phenomenological
model for cr(s) with a built-in cutoff and constrain its pa-
rameters through (7) and (15). We then apply it to
m (rl )~e+e (p+p )y, ~ (rt )~y'y" ~e+e (p+p ),
and e+e ~n (7) )y On ge.neral grounds one may pos-
tulate the structure of o (s) to be

pq (s, t) = 5(s —mp )5(t —m )
5m, '

6 3f
4

+ 5(s m~ )5(t——m~ ) .
6v 3f

The radiative decay rates do not depend on the value of
the vector-meson masses. Using the sum rules in (16),
these masses are calculated to be

where B; are the charged J = —, baryons and their exci-
tations, and M; are the charged J"=0 mesons and their
first excitations. In introducing L

~ and L2 one has to be
careful not to disturb the low-energy yN~m N and
yN~m ~N phenomenology. Because of the appearance
of derivative coupling in L& and Lz the soft-pion
theorem, ' such as the Kroll-Ruderman theorem, are sa-
tisfied. The effective Lagrangians L& and Lz can be con-
sidered as dispersive corrections to the Born amplitudes of
nucleon pole graphs at very low energies. These high-
dimension Lagrangians violate unitarity. Their contribu-
tion to E, (I =0), M& (I =0), and M& (I =0) in pho-

toproduction vanish at threshold and the correction to
E +(I =0) is small, so that the standard description of
low-energy photoproduction through pseudoscalar-vector
theory remains undisturbed.

' 1/2

o(&)= G~ f&(s)8(s —4m )
S

1/2
s —4M 2—Gq fz(s)0(s —4M ),

where the first term arises from a two-particle intermedi-
ate state of particle mass m, while the second term, intro-
duced to secure convergence, is the two-particle state con-
tribution with particle mass M. The square roots are the
usual s-wave threshold factors and f~ and f2 are some
functions of s. G~ and 62 are normalizations.

One could have simply used (24) as a phenomenological PIC». 2. A model for the single spectral function.
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Even though each individual loop in Fig. 2 is quadrati-
cally divergent, the contributions of all intermediate states
in an SU(3) octet is rendered finite due to the fact that
there are equal numbers of positively and negatively
charged particles in an SU(3) octet .There are four SU(3)
octets in our model; in addition to the ground-state
baryon and pseudoscalar-meson octets, the J = —, reso-p 1 +

nances' X (1440), A'(1600), X*(1660), and :-'(1790)
and J =0 resonances' rr'(1300), E''(1400), and
g'(1431) are also considered.

If we assume

X+ X— K
gm Rm gm gm gm ~ g g g

N* X*+ X*:- + m' K'
Sm gm gm gm gm~ g g g

(m =1,2), (26)

and

(m- —mp )g~ = —(m g —m~g )g~

(m~ —mz. )g = —(m~ —mx. )g
2 2 2 2

(27)

then the cutoff-dependent terms ( m = —mp )g~ 1nA,
(m —mx )g lnA are also cancelled. The spectral func-
tion o,(s) is finally

the cutoff-dependent terms of the Feynman amplitudes,
such as A and k 1nA (for photon off shell), are can-
celled. If we impose another condition on the coupling
constants,

a+(s)= (A~s+Bymp )(1 4mp —Is)' (m„—~m= )+(Ags+Bg m „)(1 4m, —Is)' (m „~—m, )

+(Abs+Bbm~ )(1 4m I—s)' (m ~—mz )+(Aqs+Bl,'m~ )(1 4m I—s)' (m~ ~—mx ), (28)

where

1
Aj = (gi+g2»

6m

1
(gi —2g»3'

(29a)

The explicit expression off (x) is given in (A4).
The vector-meson dipole terms dominate the low-

energy behavior of the form factor.

III. APPLICATIONS TO DALITZ-PAIR
AND LEPTONIC DECAYS

and

Ab ———
24a '

Bb ——
6~

(29b)

Af Bf Ab, Bb can be obtained from Ay, B~,Ab, Bb by
changing g~, g2 to g ~,gz in (29a) and g to g' in (29b).

Conditions (7) and (15) determine g&, g2, and g in terms
of f . The explicit expressions are given in Eqs. (Al),
(A2), and (A3) in the Appendix.

This model predicts the vertex function Fp(s~, sz) to be
of the form

Fp(s, o) =Fp(0, 0) 1+ap
PZp

(32)

There is a considerable amount of data on Dalitz-pair
decays vr ~e+e y and g ~p+p y, where the vertex
functions have been measured as functions of the invari-
ant mass of the Dalitz lepton pair. Even though the in-
tegrated rate of the radiative decay rr ~e+e y has al-
ready been verified ' to be insensitive to the m -form-
factor effect, the structure effects of m can be seen by
looking at the rate for events corresponding to significant-

ly large invariant mass of the Dalitz pair. In the kinemat-
ic region of Dalitz-pair decays, the vertex function is
parametrized by the linear formula

F Q( ~,ssz)= f(s~)+f (sz)

~2m, ' 1+ 2'
4m f~ (s( —mp )(s2 —mp )

2 2

F Q(s), s2)
'g

2~2F„.= F Q(si, s~),~3
where

o. Q(x)
f(s)= —I dx .

X —S

(30)

(31)

where ap is called the slope parameter. In our model, ap
is the sum of two terms

ap ——Ap( V)+Ap(f) . (33)

7

fPl P
2

A Q(V)=
P

(34)
2nl n. cr(s)

d'-'~)=.F„,(0,0) I, "'

The first term Ap( V) is the contribution from the vector-
meson pole term. The second term Ap(f) is the contribu-
tion from f (s) in Eq. (30). They are given explicitly as

2

A Q(V)=



32 PSEUDOSCALAR ELECTROMAGNETIC VERTEX FUNCTION:. . . 1749

and

2

This result justifies the "vector-meson dominance" in the
low-energy region.

The vector-dominance prediction, which remains virtu-
ally unchanged by the single spectral function introduced,
is in good agreement with the experimental values

Q p =0.05 +0.03

a p ——0.57+0.12 .
(36)

Numerically [we have used mz and m& from Eq. (23)],

A 0(V)=0.033, A O{V)=0.510,
(35)

A 0(f) A„o(f)
A 0(V) A 0(V)

= —0.023 .

The slope parameter of the electromagnetic vertex func-
tion has also been estimated in other models. The "tradi-
tional" vector-meson-dominance model predicts
ap ——Az(V) with the physical masses of vector mesons.
The fermion-loop model gives a simple formula for a 0,

2
1

Ulf
which can be consistent with data, if the fermion mass
mf is between 140 and 280 MeV. However, the formulas
for a, are different in the baryon-loop model and the

quark-loop model.
The decay rates of the rare decay processes m ~e+e

and g ~p+p depend sensitively on the structure of
m. (g )y y* vertex functions. In an early calculation
Drell' noted that if the decay goes through a two-photon
state and the vertex function F~(s& $2) is taken to be con-
stant then the real part of the decay amplitude is logarith-
mically divergent. To the leading order (the fourth order)
in electromagnetic interaction and to all orders in strong
interaction, the decay amplitude of the P~l+l mode is

i+i )=en- d'k & pq k Fp(k (k —q) )~(p2)y"(I(: p(+m) —)y"U(p, )
~ ~(2~) (k +i@)[(k—q) +i@][(k—p&) mI—+ie]

e"I
, R~~(P2))'5U(s i),

8m
(37)

which can be represented schematically by the diagram in Fig. 3. The effective coupling constant Rp is related to the
vertex function Fp(k';(k —q)') (Ref. 5),

l 2[q k —(q k) ]Fp(k;(k —q) )
Rp —— d k. (3&)

m mp (k +is)[(k —q) +i@][(k—p~) —m~ +is]

The decay width of this rare decay process is

I. (P~&+1 )= a m [R, (R )+(ImR ) ] . (39)

We found that the vector-meson pole terms in the ver-
tex function give the dominant contribution to the real
part of Rz. To the leading order in mz/mp, the dipole
form factor predicts

The imaginary part of Rz in the transition amplitude
arises from the two-real-photon intermediate state. It
gives the unitarity lower bound for the m (g ) leptonic
width,

[I (P~l I )]~mt tx 17l( ( ImRp )

a'm, m, ' F,(0,0) '
F..(o,o)

1 I+Pp '

ln
fjp, 1 —Pp

8 (P~l+l /2Y)vMD=
$ 8~2 Pl~ Pl y

2

ln
mp2 m)

(42)

P2(& )

In calculating the contribution of f(s) to Rp, we ap-
proximated f(s) by a polynomial for

~

v s
~

&4 GeV and
by its asymptotic expression —(f /3V 2)(1/s) for

~

Ms
~

)4 GeV. We found

Pp ——(1—4m( /mp )'

with numerical values

[I (m ~e+e )]„„;,=3.7&& 10 eV,

[I (g ~p+p )]„,=4.24&& 10 eV .
(41)

Pq(~ )

FKJ. 3. P~l+I through 2y intermediate states.
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(R o)f

f(R o)~/ and

(0
f
8(x)[j„(x),j„(0)]

/

~ )

and

(R D)f

f(R o)p f

(43)

The predicted decay widths and branching ratios in our
model are

I (~ «e+e )=1.46[I (m «e+e )]„„;,,
B(m. «e+e /yy)=0 69.X10

(44)

I (g «p+p )=1.31[I (g «p+p )]„„;,,
B(go«p+p /yy ) = 1.40&(10

The prediction for the g «p+p mode is consistent with
the recent measurement

(0
~
e(xo)[jp (x),j™(0)]

~ g ) .

High-energy cross sections were later calculated by Dicus,
Kolb, and Teplitz, who also estimated the effects of the

weak neutral current and the background reaction. They
used two models for the I'y*y* form factors, and found
the predictions of these models to be very different. The
first model, the pole model of Herman and Geffen,
predicts the cross section to go as E for high beam en-

ergies. The second model, the fermion-loop model,
predicts the cross section to go as (~/2E)4(in2E/m)~
when the beam energy is much higher than the fermion
mass m. Owing to the large background reaction rate at
high energy, they do not expect to observe the rapid fall-
off predicted by the simple pole model.

B (g «p+p /yy) =(1.7+0.7) && 10 (45)

However, the predicted branching ratio of the m ~e+e
mode is 3—4 times smaller than the Ineasured value

P)+ P2

B(vr «e+e /yy)=(1. 8+0.6))&10 (46)

This measured branching ratio of pion leptonic decay
requires that the dispersive contribution be about 1.5
times the absorb)tive contribution. Among the existing
models of neutral-pseudoscalar-meson leptonic decays, the
recently proposed Tupper-Samuel model gives predic-
tions in good agreement with data. They assume that the
decay amplitude is defined by a once-subtracted disper-
sion relation where the squared mass of pion is the in-
tegration variable. Even though a form factor f(m ) ap-
pears at the (m )*yy vertex, the two photons are always
on the mass shell. The Inodel does not really belong to
the type of models which we are studying. Therefore it
may not be meaningful to compare their result with ours.
It is desirable to measure ~ ~e+e again considering
that an early measurement of the branching ratio,

B(g «p+p /yy)=(5. 9+2.2)&&10

was also much higher than the present value. But if the
leptonic width of the pion is really as high as the current
experimental value, one may conjecture that the "conven-
tional" theory does not describe the phenomenon. In fact,
recently Bergstrom ' has conjectured that new physics,
beyond the standard electroweak theory, may influence
the rare decays of vr . If this is true it would indeed be re-
markable that the physics at the scale of IO GeV will be
tested at such low energies as the pion mass.

IV. FORM-FACTOR EFFECTS
IN e+e ~7T y, 7) y

p)
e

P2

e

p)
8

P)+ P2

i1k- P2

imp —k1

(c)

The vertex functions Ep(s, 0) can also be studied in the
e+e ~m y, g y. The low-energy cross section of these
processes was calculated in 1970 by Young, " who used
hard-pion techniques of current algebra to evaluate the
matrix elements

P2

e+

FIG. 4. Diagrams contributing to e+e ~m y.
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The transition amplitude for e+e ~py arises from
the processes shown in Fig. 4.

The weak-neutral-current interaction in the standard
electroweak theory is given by

gv= g
( —, —stn Oll ),

cosOg

4 cosOgr

L;„,(x) = e—y„(gl, +guys)e(x)+Gl V„(x)+GVV„(x) Gl —— ( ——, +sin Oll. ),
cosOg

Ap(x) A~(x)+G, a3(x)+
3 6

Z"(x),

gGv ——
2W6 cosOg

(47)

where the hadronic currents V&(x), A&(x), and V„are
defined in (12). The effective couplings are

2 cosgp
Only the vector currents contribute to the m yZ coupling
which can be related to Fl (s,O) by isospin rotation. The
matrix element of axial-vector current (0

~
A&(x)

~
m, y)

vanishes by charge-conjugation invariance. The transition
amplitude for e+e ~w y is

M(e+e ~m'y) =e~(k)U(p2)
e F„'(s,O)

e ~k (p, +p, )~y,(A +By5)+iCysy +iD"y5 u(pl)
s

(49)

where

( Gy+ &3/2Gp )g v sA=1—
2 2e (s —Mz )

( Gl +&3/2Gi )g~ s
e2 (s —Mz )

~ZeG, g,f m,C=—
2Mz

1 1
2+ 2

z ~ —Mz

2VZeG„g„f m,
DP

Mz

Pr
z'

5'2
2u —Mz

s =(p) +p2), t =(p) —k) ~ u =(pp k)

The spin-averaged total cross section of e+e ~m' y is

(1—m /s)
0(e+e ~m y) = a'

~

F 0(sO)
I

'
3 (1—4m, /s)

2me
1+

s
[A ['+ 1—4m,

aG, 'g~ f 'm, '
+

8Mz 4

16(m~ /s)

s(1—4m, /s)'~ (1—m /s)

g(1 m /s) — 2m /s 4(m, /s)(m~ /s)
s(1—4m, /s) (1—m /s) (1—m /s)

1+(1—4m /s)'

1 —(1—4m, /s)'~ (51)

The transition amplitude and cross section of
e+e ~g y can be obtained from Eqs. (49), (50), and (51)
by making the following changes: F 0 +(s,O)~F o(s, O), —
G~~G~/~3, and m ~mz.

The first term of Eq. (51), the "direct-channel" contri-

I

bution, arises from processes shown in Figs. 4(a) and 4(b).
The second term, the "crossed-channel" contribution,
comes from processes shown in Figs. 4(c) and 4(d). We
study the scattering process at beam energies far above the
threshold v s =m but below the Z-boson mass, so that
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the final state has a "hard photon" and weak correction is
small. Another reason for considering hard photons only
is that the bremsstrahlung processes of Figs. 4(c) and 4(d)
are expected to be infrared divergent. This divergence is
cancelled by virtual photon corrections. To be more
specific, the energy region is 3.5(&s &50 GeV. At
t/s =50 GeV, the weak correction to the cross section is
about 13%. The cross section is predominantly deter-
mined by the vertex function F~(s, O) in this energy re-
gion. When the beam energy is sufficiently high (for ex-
ample, Vs ) 10 GeV), F,(s,O) and F p(s, O) can be ap-

proximated by the expressions

v 2m, 'F p(s, O) =f(s)—4' f„(s—mz )

f /3v 2 1.18f

(cos8 —2&2 sin8)
71

F ps, O=
v'3 17

F sp, O

(cos9—2V2 sin&)

the vector-meson (dipole) form factor. Both Ma-Babu
and Herman-Geffen form factors become a simple pole
when one of the photons is on the mass shell. In Fig. 5,
we show the cross sections cr(e+e ~vr (q )y) in the
lower-energy region 3 (v s (5.5 GeV. At
+s =2m-*=3.6 GeV. The imaginary part of the ampli-
tude rr ~y(X*,X *)~y,y* is not cancelled by the corre-
sponding amplitude of ~ ~y(:-*,:- ')~y, y* which van-
ishes at the threshold, so it significantly enhances the
cross section. Even though the enhancement depends crit-
ically on the values of parameters (such as m „mz ) of
the model, we do expect the cross section to have struc-
ture in this energy region.

The cross section of the fermion-loop model, with

npf ——0. 15 and 0.3 CxeV, used by Dicus, Kolb, and
Teplitz, is also shown in Fig. 5. As one might expect,
their cross section does not rapidly fall off with the beam
energy. The cross section obtained in the fermion-loop
model is also an increasing function of internal fermion
mass as the structure is then harder. Since each model
makes a very distinct prediction in the intermediate-
energy region 3(Vs (5.5 GeV, experimental data on
e+e ~'rr (q )y in this energy region should be valuable
to understand the structure of I'y*y* coupling.

f /3@2 1.18f„
(52)

V. CONCLUSION
About 17% of F p(s, O) and F,(s, O) comes from the

single dispersion integral f(s). Our prediction of the
cross section is 1.45 times the cross section predicted by

Iko
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FIG. 5. a(e+e ~m y) vs V s. Dash-dot line, prediction of
the fermion-loop model (Ref. 30). Dashed line, prediction of
our model with vector pole terms only. Solid line, prediction of
our full model. Dash-dot lines (a) and {b) use mf ——0.3 and 0.15
GeV, respectively.

The structure of the Py*y* vertex function FI, (s] sp)
can be unravelled by studying m (g )~yy, ~ (g )
~e+e (p+p )y, m. (rIp)~e+e (p+p ), e+e
—+m (g )y, and e+e ~vr (g )e+e . Except for the last
two processes all the others probe the structure at low in-
variant mass v s (V s =~s& +~sz in the center-of-mass
system). In the last two processes the structure may be
probed in the region of V s —10 GeV.

In this paper, we have proposed a double-dispersion re-
lation for Fp(s&, s2) by dispersing in the two invariant
masses st and sq for a fixed v s. We constrain our model
by demanding that Fp(s&, s2) is resonance dominated at
low energies (s~,s2 —1 GeV ) and is controlled by quark-
gluon dynamics at high energies (s&,s2~pp). These con-
straints imply certain spectral-function sum rules which
are to fix the parameters of the model.

%'e conjectured that the double spectral function is
vector-meson dominated and used a field theoretical
model, only as a device, to parametrize the single spectral
function. Only the double spectral function contributes to
rr (q )~yy. The spectral-function sum rules led to effec-
tive P-vector-meson masses lower than the measured ones.
The lower masses presumably fake the contribution of
higher-mass vector mesons which are also expected to
contribute.

We found that the effect of the single spectral function
on the low-energy processes mo(g )~e+e (p+p )y,
m. (vP)~e+e (p+p ) was small. However, its contribu-
tion to e+e —+m (g )y was quite large. For example, at
the invariant energy Ms ) 10 GeV the cross section is
45% higher with the single spectral function than without
it. Our cross sections for e+e ~rr y as a function of
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v's in the region V's ) 5 GeV, are lower than those of
Dicus, Kolb, and Teplitz in the fermion-loop mode1
presumably because the form factors are harder in that
model. We expect that the single spectra1 function will be
an important contribution to e+e ~e+e n (ri ) also.
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APPENDIX

The sum rule in Eq. (7) implies the following relation of the coupling constants g2 and g in the interaction Lagrang-
ians:

g2=
4
g

2Pl K—mK ln
2Pl~

PlK —Pl ~
2 2

2 2
PlK~ —m ~~

2 2
PlK~

2
m ~~

Pl K ln
2

—Pl ln
Pl~ Pl~

2 2
PlP 2

Pl =
m ln —m= ln 2+

Pl~

pl- —m2 2
~agl P

2 2m ~)jg m~Q

2 2m g Pl~ g

m, ln —m ~1nm„' " m'

(A 1)

The.convergence of the integral in Eq. (15) requires

(mz —m )(m~ +mz —m~ —mz )
2 2 2 2 2 2

g 4 (m= —m~ )(mz +m= —m, —m, )

2PlK—mK ln
2m~

PlK —Pl ~
2 2

2 2Pl K~ —Pl

2 2
'

mK~
2 m~~

mK ln —m ~ ln
m~ pl~

(A2)
2 2

pip 2
m-

Plp ln —Pl - ln +
Pl~ Pl ~

2 2Pl — —PlP
2 2

2 2
m~g

m ~ ln —m ~ ln
m„

The sum rule in Eq (15) a.lso determines g in terms off,

2Pl K
2

ln +
Pl ~

mK —m~2 2

2 2
mK~ —Pl ~i

2 2PlK m„
ln —Pl ~~ ln

Pl~ Pl~

(mz —m )(mz +m ~ —mx —m )
2

'

2 2 2 2 2

(m= —m~ )(m, +m&, —m= —m~ )
2 2 2 2 2 2

2 2
m& m=

m~ ln —m= ln
Pl~ Pl~

2 2pl = —m
2 2pl g —m~g

pl g ln4
2Pl

2m

2

4
Pl~ g—m, ln
Pl~

—(mx —m )(mx +m ~ —mz —m )+(m= —mz )(m, +m, —mz —m= )
2 2 2 2 2 2 2 2 2 2 2 2

2
2 mK—mK ln

2m~ 2 2Pl K~ —Pl ~~

2
mK

Pl K I ln
Pl ~~—m ~ ln

2Pl~ Pl~
(A3}

2 2
mp 2 m=

mp ln —m= ln
m~ m~

2 2pl — —mP
2 2m ~ —m

m ~ ln2

2Pl 2

2
m~g

N* 2Pl~

The explicit expression of the single dispersion integral in Eq. (31}is
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f(s)=—
2m-

2, S 2 S
m 1n —m= Inm'

p

2 2m — —mp
2 2m g m~g

S 2
2

—m g ln
m 2m

m„'ln
4m.

S S
2

—m~ 1n
m~ mlt., 2 2

mit-, ~ —m ~
m ln2 S 2

2
—m~ 1n

m~~ 2
mlt-

(gl+g2)+ 2
s ln

6m 2
mp

2 2m ——mp
2 2m ~Q m~

ln
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2s 1n

24~
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2 2

2 2mit., ~

2my~
1n

m~~

(g I+g2)s +(2g I 4g—z)m, '+
6m.

I /2
4mp

1n
(1—4m' /s)'~ —1

(1—4m~ /s)'i +1
—(m~ ~m= )

2 2

2 2m= —m p
2 2m g —m~g

(gl+g2)s +(2gI —4g2)m~„
1—

6~

1/2
m~g

1
(1—4m „ /s)'~ —1

(1—4m, /s)'~ +1

—(m, ~m, )—2 2
N

g S —m~ 1—
4

1/2
4m (1 —4m /s)'i —11n, ~(m„+-em~ )

(1—4m /s)'~ +1

2

m& —m2 2

2 2m Jt",

S —m
4 77

4m (1—4m„ /s) —1
2 2 1/2

1 — 1n +(m ~mz ) .
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(A4)
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