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Nonleptonic decays of chiral solitons and a possible resolution
of the S-wave/P-wave puzzle
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We calculate the nonleptonic weak decays of hyperons in the Skyrmion model of baryons. The
weak-interaction chiral Lagrangian is that known from kaon decay, providing a zero-parameter
description of the decay amplitudes. In the S waves the PCAC (partially conserved axial-vector
current) relation is verified, but the magnitude emerges as a factor of 3 too small, probably indicat-
ing a slow convergence of the chiral expansion. In the P waves, new and important terms are found
which are not included in standard analyses. These modify the PCAC treatment of hyperon decay
and can provide the resolution of the long-standing S-wave /P-wave puzzle.

I. INTRODUCTION

The theory of weak nonleptonic decay remains one of
the least understood aspects of the low-energy weak in-
teractions. While the weak currents are believed to be ac-
curately given by the standard Weinberg-Salam model,
there remains the difficulty of obtaining hadronic matrix
elements of the weak Hamiltonian. Some progress has
been made through use of the quark model, ' which yields
fairly reasonable predictions for hyperon S-wave ampli-
tudes, but which fails for kaon decays and has difficulty
explaining hyperon P-wave matrix elements. The quark-
model approach, however, does not possess the chiral-
symmetric properties of real matrix elements involving
pions. We are therefore limited to the extent with which
we can probe nonleptonic decays.

The recent development of a chiral-soliton model for
baryons (i.e., Skyrmions ' ) provides a new "theoretical
laboratory" with which to explore nonleptonic decays. In
this paper we examine the weak decays of the chiral soli-
tons and find that they do in fact provide new informa-
tion previously unavailable in the quark model.

The program for the study of Skyrmions involves the
use of effective chiral Lagrangians. It is the strong-
interaction portion of the Lagrangian which dictates the
structure of the soliton itself. Within the context of the
present paper what is more important, as we review
below, is that we know to a certain extent the chiral La-
grangian which leads to AS=I kaon decays. In Skyr-
mion models it is this same Lagrangian which can also
yield hyperon decay amplitudes. This presents us with
the exciting possibility of predicting hyperon decay solely
in terms of kaon decay. Unfortunately, at the simplest
level of approximation, we find that this program does
not work very well.

When applied to Skyrmions, the weak chiral Lagrang-
ian will produce both S-wave and P-wave amplitudes.
Gne aspect of this topic, the "D/F ratio" in the S-wave
amplitudes, has previously been discussed by Bijnens,
Sonoda, and Wise. We look more closely at the magni-
tude of the S waves, including quartic Lagrangians, and
extend the analysis to the P waves. It is the P-wave am-

plitudes which contain new terms which are most often
neglected in standard treatments of the subject, and. which
we feel have important implications (see Sec. III).

The low-energy behavior of the strong interactions can
be described by an effective Lagrangian involving the
pseudoscalar fields P'= m, K,g,

2

L„= Tr(B XB"X+)+—, Tr[(a+bA )(X+X+)]st

+ 0 ~ ~

with

X=exp(ik, .g/F„), F =94 MeV, (2)

where we have not exhibited terms with higher numbers
of derivatives. The precise nature of L„will not be very
important in our study.

The dominant weak interactions are those with a
SU(3) octet behavior under left-handed chiral

transformations, while being a singlet under right-handed
transformations, i.e., (8t, , 1~). We shall neglect the small
bl'= —,

' (27', lz ) effects in this paper. Chiral Lagrangians
can also be written to describe the (8r, lz ) interactions

L =g Tr(A6B&XB&X+ )+g'Tr(A6B&Xt)&X+BQB"X+ )

+g "Tr(A6B„Xt)Q+t)"XB'X+)+ (3)

Here a discussion of the terms which we have not written
is very important. The leading term with two derivatives
is the usual "Cronin" Lagrangian which by itself does a
good (=25%) job of describing kaon decays. There is
clear evidence in K~3m. data (the so-called quadratic
terms in the Dalitz plot) for quartic Lagrangians, i.e.,
those with four derivatives. An excellent (=10%) fit to
the overall magnitude, slopes, and quadratic terms of
K~3tr, and the magnitude of K~2m can be obtained
with'
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g =3.6)& 10 m

g'=g/(0. 51 GeV)

g"=g/(0. 76 GeV)

(4)

II. ANALYSIS

The Skyrme model of the baryons involves a soliton
solution

iF(r)r.x

In this paper we will use these values to explore the weak
decays of Skyrmions. However it must be pointed out
that this parametrization is not unique. At the level of
four derivatives there are many more Lagrangians in addi-
tion to the two which we have listed. Other linear com-
binations of other Lagrangians can provide an equally
good fit to kaon physics, and one does not have enough
information to uniquely determine the. coefficients of all
quartic Lagrangians. See Ref. 5 for a more detailed dis-
cussion of this effect. Nevertheless we will adopt Eq. (3)
as a trial description of the weak interactions. This will
certainly be sufficient to justify our rather negative con-
clusion in Sec. III about- the numerical reliability of the
predictions of this approach. Our analysis is presented in
Sec. II, to which we now turn.

where

U =exp(iA, .Q/2F ) . (10)

It is this form which is used to explore the weak interac-
tions.

Before considering S-wave and P-wave transitions
separately, we should mention the "semiclassical" approx-
imation which is associated with the fact that the solitons
are slowly rotating. In this approach, the lowest order
consists of neglecting all time derivatives acting on the
field X. In the next order one time derivative appears,
and so on. There is no convergence scheme, however, as-
sociated with the number of spatial derivatives. Any
truncation thereof is essentially a dynamical assumption.
Whether or not such a truncation provides a reasonable
approximation depends ultimately on the success a
description like the Skyrme mode1 attains in reproducing
various weak and electromagnetic properties of the
baryons.

At this point we introduce the A,B amplitude of
nonleptonic S-wave, P-wave decays, respectively, in
8(p, A, )~8'(p', A, ') +~(q),

u(p', A, ')(A+By5)u(p, A. ) .

In the limit of small momentum, Eq. (11) reduces to

0 1
(5)

AXt(A, ')X(X)— Xt(A, ')o"qX(&),
2M

(12)

which we will abbreviate, following Ref. 6, as D,b(A)
with a=F,I,I3 and 6=1,—,',S,. Schnitzer has shown

how to add pions and kaons to this system in a manner
consistent with the soft-pion theorems. This leads to the
final form for the chiral matrix,

X=U A(t)XoA '(t)U (9)

to the strong-interaction Lagrangian. The functional
form of F(r) depends on the details of the quartic terms
in the Lagrangian. For the ansatz (5), the static Lagrang-
ian is the same for both the SU(2) and SU(3) cases (only
the part depending on collective coordinates changes).
Thus the soliton radial profile is the same for each, so we
shall employ F(r) as determined in Ref. 4. The baryonic
collective coordinates are found by allowing slow rota-
tions of the soliton

X=A (t)X A o'(t)

with A being an arbitrary time-dependent SU(3) matrix.
The wave functions for the J= —,

' baryons have been given

by Guadagnini. Using the conventional SU(3) labels

~
Y,I,I3) the wave functions are given by matrix ele-

ments of the SU(3) octet rotation matrices defined by

i
Y,I,I3)

(Y,I',I; ~D"'(W)
~

Y,I,I, )
~

Y',I', I'3) (7)

r, r, r,'

for a rotation by an SU(3) matrix A. A state with quan-
tum numbers F,I,I3, and z component of spin S, has the
wave function

PY I I S (~) ~( Y I~I3
I
D'(~)

I
1 —' —S.)

where M is the average baryon mass, M=(M+M')/2
and terms of order p (M' M) /M, p—/M, etc., are
neglected. Equation (12) provides us with the prescription
necessary for extracting the A, B amplitudes in our calcu-
lation of soliton nonleptonic transitions.

A. S-wave decays

We insert the ansatz Eq. (9) for X into the weak La-
grangian of Eq. (3). In view of the semiclassical approxi-
mation, only spatial derivatives are taken. For S-wave
emission of a pion, no derivatives of pion fields can ap-
pear in the Lagrangian, i.e.,

a, X U.W(t)a, X,W -'(t) U. .
S wave

(13)

g Tr(A, 6B„XBi'X+)

becoming

—g Tr(A6B;XB;X+ )

and employing Eq. (9),

—g Tr( U~A 6 U~A BtXor)i XoA t
)

(14)

(15)

(16)

which after some algebra (see the Appendix) yields for no

emission,

It is of interest to exhibit terms in the weak Lagrangian
which contain zero or one pion field. Accordingly one
need expand U to no further than first order.

As an example, upon performing these operations on
the first (i.e., "quadratic" ) term of Eq. (3), we obtain
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2g, 2 SIn F
D6s (A ) —D7s (A )

(17)

f dALs wave= D7s(A)I(r),wRve
3 2F (19)

where

,z 2sin F
r 2

2sin F
g

I Fl
r 2

'2

gg g4 4F, sin F
r 2:—I+I'+I" .

To determine S-wave amplitudes for individual transi-
tions, all that need be done is to determine the relevant
baryon-to-baryon matrix elements of D78(A) and also per-
form the radial integral of the quantity I(r),

Xt(A.')X(k)A(a~I3m )

4~ -, &P
I
D78(A)1~ &

3 0
drr I(r)

In Eq. (17), the SU(3) representation matrices D(A) are
given by [see also Eqs. (7) and (8)]

D~b (A) =—, Tri,,A Ab A (18)

Explicit calculation demonstrates that the relation be-
tween 368 and D78 is such as to put the terms containing
zero and one pion field in the correspondence expected in
the soft-pion limit. This is of course precisely what we
would expect in a chirally invariant description such as
the one used here.

Concentrating on the terms containing one pion field,
we find for the angular integral of Eq. (3) the form

f(sokton) = —3.2 && 10

f(expt) = —9.2&& 10

d(soliton) = 1.9 X 10

d ( expt) =3.8 && 10

(22)

This comes about not because the individual terms I,I',I"
are each too small but rather because there is considerable
cancellation between I and I' in Eq. (20). That is, it is the
relative phase of g and g' [see Eqs. (3) and (4)] which is
crucial to this conclusion. How reliably is this relative
phase known? Recall that it is deduced from K~3vr data
in Ref. 5. We have restudied the analysis of this paper
and stand by its conclusions.

B. I'-wave decays

A full treatment of the P wave am-plitudes must include
baryon and kaon pole terms. As usual, these are propor-
tional to single-particle matrix elements of the parity-
conserving weak Hamiltonian. Self-consistency of our
calculation would demand that we determine these from
the meson and soliton sectors of the chiral model defined
by Eq. (3). However, in a phenomenological analysis of
the P-wave amplitudes, it is known that the baryon poles
dominate the kaon poles. ' Since the soliton-to-soliton ma-
trix elements of Hg' are a factor 3 too small, we expect
that the P waves cannot satisfactorily be explained either.

But this is not the whole story in the soliton model. It
turns out there exists yet another contribution to P-wave
decays arising from a "contact" term. Thus the full P-
wave amplitude is as depicted in Fig. 1. To see how the
contact term arises, we proceed analogously to the work
just described in Sec. IIA, except now focusing attention
on terms having one derivative acting on a pion field.
Such interaction terms would naturally vanish in the
soft-pion limit which perhaps explains why they have not
been heretofore (at least to our knowledge) considered.

Upon substituting the ansatz (9) into Eq. (3) and in-
tegrating over solid angles, we obtain after a tedious com-
putation

The former is considered in the Appendix. For the latter,
note first that convergence is not a problem. As r~ aa, it
is simple to show F(r) —r, so that the asymptotic
behavior of r I(r) for the three terms in Eq. (20) is,
respectively, r, r ', and r

Results of the model turn out to be decidedly mixed.
We verify the result of Ref. 6 that the SU(3) structure of
the model amplitudes is fld= ——,. The reader should
realize that the analysis of Ref. 6, where this result first
appears, holds for all orders in the number of spatial
derivatives. The model described here is a subcase of this,
being based on a linear combination of two and four spa-
tial derivatives. The prediction fld = ——, is of course in
reasonable accord with experiment; the empirical ampli-
tudes are well fit by fld= 2(Ref. 1). However the-
magnitude of the predicted S-wave amplitudes turns out
to be small by roughly a factor of 3:

(23)

where we consider m. emission only and

P —wave
B B B' B'

K

+B' e

FIG. 1. The diagrams which contribute to P-wave hyperon
decay. The last diagram is the contact interaction described in
the text.
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J,(r) =g D6, (A) F'+ (1+cosF)+ [D6,(A)D3s(A)+D3, (A)D6s(A)] F'—+ (1—cosF)
2 slnF 2 2 sinF

r 3 r
2

+ig' F'~+2 sinF sin2F+2 sinF

+'EgjkD6j(A)D3k(A) ( 1 +2 cos2F —cosF)2F'+ 6 sin2F —4 sinF
r

ig "[D—7,(A)(C —,E)——2Eg kD6j(A)Dgk(A)E], (24)

where

C = —, (4 cos2F—+cosF+ 5)F' + —,sinF(1+ 5cosF) +2 sin F(2 cos2F+ cosF+ 3)1
F&2 F' Ssin FcosF
r r 3r

(25a)

F12
E=(1—cosF+ 2 cos2F)F' +2 sinF(1 —cosF)

F' 4sin FcosF+2 sin FcosF cos2F
~ +

r r
(25b)

The contact contributions to the B amplitudes are found by doing the radial integral for r J(r), taking its B~Bm ma-
trix elements, and finally referring to the correspondence in Eq. (12). A simplified form for the contact contribution to
the 8 amplitudes corresponding to ~ emission along the 3 axis is given by

B«&«~« —— gRp I0.34D6s(A) —2.94tesjkD6j(A)Dgk(A)+ 1.31[D (6')Dp (A8)+Dye(A)D (6As)]]
8m M

contact (26)

where the dimensional quantity Rp ——1 fm arises from the
radial integrals, and the baryon-to-baryon matrix elements
of the D,J ( A ) representation matrices remain to be
evaluated. Upon doing so, we obtain (in units of 10 )

tribution displayed in Eq. (27). That is, a soliton model
based on a different choice of Lagrangian than the one
given in Eq. (3) could generate even larger contact contri-
butions than the ones found here.

Contact Experiment

B(Ap)
B(r+)
B(:-p)

4 1

2.3
0.6

—15.8
26.6

—12.3

for several representative cases.
Observe in Eq. (26) the presence of both antisymmetric

and symmetric combinations of D matrices. These imply
that B, „„„contains terms transforming as an antidecup-
let and 27-piet, respectively, in addition to the usual octet
contributions. Unfortunately the complexity in structure
of the P-wave I.agrangians makes it impossible to reach a
conclusion good to all orders in spatial derivatives as was
obtained for S-waves in Ref. 6. Of course, the spin struc-
ture of the P-wave amplitudes is correctly reproduced.
For example, the sign of the amplitude changes for pion
emission along the 3 axis when we reverse the direction of
the soliton 3 component of spin. Finally, what about the
magnitude of these contact contributions? Given the dif-
ficulty of the model in describing the S-wave amplitudes,
it is hard to be definitive about this. However, it wou1d
appear to be safe in concluding that they are non-
negligible. For example, a modification of the relative
phases among the three g,g', g" contributions could make
the A—+Km' twice as large as the already important con-

III. CONCLUSIONS

Our analysis of the nonleptonic decays in a model of
baryons as solitons has been instructive in several regards.

First, it reflects on the potential of the simplest soliton
models for being phenomenologically useful descriptions.
Recall that the analyses of Refs. 4 and 5 regarding the
strong-interaction sector were generally positive. In Ref.
5, the meson and baryon channels were found to be simul-
taneously describable in an acceptable manner, albeit
within the rather large error bars occurring in existing mm

data. Reference 4 considered a number of nucleon observ-
ables and found qualitative agreement with experiment in
most cases. However the axial-vector coupling was found
to be too small by a factor of 2. The prediction
fld= ——,

' in Ref. 6 for the SU(3) structure of 5-wave
amplitudes to all orders of spatial derivatives (and zeroth
order in time derivatives) lent further credence to the soli-
ton approach. The calculation described here must be re-
garded as a failure of the soliton picture, but it is impor-
tant to interpret this finding in a careful manner.

Specifically we are referring to the Lagrangian of Eq.
(3) which contains three terms, one quadratic in the num-
ber of derivatives and two which are quartic. As we have
mentioned, this truncation in the number of spatial
derivatives is a dynamical assumption necessary to make
the model mathematically tractable. Given the energy
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range explored for physical baryons (masses as large as 1.3
GeV), there can be no justification based solely upon
chiral symmetry for this approach. Moreover, as we have
also mentioned, even at this level of truncation the model
is not unique. It is quite possible to employ two different
quartic Lagrangians, whose coefficients could be fixed
from K—+3~ data, and which could in principle render a
superior fit to the hyperon decay amplitudes. Unfor-
tunately this would not be very assuring for it would im-
ply an overly sensitive dependence on the choice of "basic
Lagrangians" at the quartic level.

The reader should not confuse our negative conclusion
regarding the soliton model based on Eq. (3) with the con-
vergence of the "semiclassical approximation" mentioned
in Sec. I. The latter refers to the number of time deriva-
tives whereas the truncation assumption mentioned above
pertains solely to spatial derivatives. Indeed, based on the
successful prediction in Ref. 6 of the f/d structure for
the S-wave amplitudes, it seems likely that inclusion of
more and more Lagrangians with larger numbers of spa-
tial derivatives would ultimately yield a successful model
of hyperon nonleptonic physics. Evidently, such a series
in the number of spatial derivatives converges more slow-
ly than one might have hoped.

On the positive side, the model contains a hint regard-
ing the resolution of the S wave/P w-ave puzz-le in nonlep-
tonic hyperon decay. Recall' that the standard PCAC
(partially conserved axial-vector current) analysis of weak
hyperon decay results in both the S-wave and P-wave am-
plitudes being described by the same set of baryon-to-
baryon amplitudes. The analysis is based on the soft-pion
theorem which states that 8—+8'm -amplitudes are related
to those of 8—+8' when the pion's four-momentum van-
ishes, a statement that is a consequence of PCAC. For
the P waves the 8 +8' amplitude v—anishes [in the SU(3)
limit] and this leaves only the baryon poles to be included
in the standard analysis. Thus PCAC predicts

iim &B~'~H."IB&= ' &8'~H„"~8&,q„P 2'
(28)

Bir
~
HPc

~ 8
lim &8'm )H~ ~8&= g

q~ 0 poles m& —mz-

+(8~8') .

+(8~8') . (29)

This is consistent with the soft-pion theorem, Eq. (28),

lim A„„„„(q)=0,
q —+0

(30)

but nevertheless is a major modification of the standard
analysis if A„„„„is large on shell. Viewed in this light,
the flaw of the standard analysis lies not with PCAC, but
with the assumption that terms which vanish as q„~0
are not important.

A proposal which is similar in spirit has been made in
Ref. 10. The suggestion of these authors, however, differs
from ours in that they place the momentum variation in
the S-wave amplitudes, while the I'-waves retain only the
pole contributions. The Skyrme model in the semiclassi-
cal-approximation has no momentum variation in the S
wave, although it is possible that some is generated if one
goes beyond the semiclassical limit.

Actually, Georgi and Manohar" have suggested from a
phenomenological viewpoint that a solution such as ap-
pears in the Skyrme model must occur. Their reasoning is
based on an analysis of (non-soliton)-baryonic chiral La-
grangians. Chiral Lagrangians without derivatives would
yield predictions equivalent to the standard analysis.
However there are four additional contributions to
baryonic chiral Lagrangians which involve a derivative on
the pion field. These would yield a momentum depen-
dence analogous to our contact term. Although these
chiral Lagrangians have no predictive power (aside from
isospin relations) for P wave transitio-ns, they do antici-
pate the presence of nonpole terms such as those found in
our work. If PCAC is to be valid in hyperon decays,
these new features must be the resolution of the S-
wave/P wave puzzle. I-t remains to be seen whether fur-
ther thought and study can extend our findings into a suc-
cessful quantitative description of hyperon decay.

soft-pion limit. Nevertheless in the Skyrme model it is a
quite large contribution to the physical amplitude. The
correct analysis of the P waves would be

g...-&8 ~H ~8&
& 8'rr

~
Hg

~

8 & =A„„„„(q)+g
poles mg —my~~

The appearance of the same set of parity-conserving
8~8' amplitudes in both channels leads to predictions of
the magnitude of P wave amplitudes. -Despite the firm
foundation of PCAC, such a treatment fails by about a
factor of 2 when applied to the experimental amplitudes.
This is the S wave/P wave puzz-le, which-has been around
since the 1960s.

In order to accommodate the data one must either ex-
plain why SU(2) X SU(2) PCAC is broken by such a large
factor or find the flaw in the standard analysis. The
Skyrme model has PCAC being respected, and contains a
new ingredient which allows PCAC to be consistent with
experiment. This is the new nonpole "contact" contribu-
tion found in the P waves. The contact term is one which
is explicitly proportional to qz,

' hence it vanishes in the
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APPENDIX: DETAILS OF THE CALCULATION

In the following we describe two numerical aspects of
our calculation, viz. , evaluation of radial integrals and
determination of matrix elements involving the time-
dependent SU(3) matrices A (t).

As explained earlier the S-wave and P-wave amplitudes
describing nonleptonic transitions of solitons are given in
terms of certain radial integrals. The integrands typically.
involve functions of the soliton radial profile F(r) [see
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F(r)= '

Eq. (5)] along with its radial derivative F'(r). An analytic
form of F(r) does not exist; rather, F(r) is determined nu-
merically as the solution to a nonlinear differential equa-
tion. It is known that F(0)=m and F(r)-Ar as
r~ oo. A plot of F(r) for 0 & r & 3 fm appears in Ref. 4.
We found an excellent fit to this plot was given by

m 3.65—r+1.285r (r & 1),
0.62/r (r ) 1),

and

Db;(A)D,q(A)fljb =fbajDjb(A) .

Less obvious are (a = 1,2,3)

f8klflaj dajk ~ (5ja~kg+~kat3j 8)2 v3

and

(A5)

(A6)

where r is in units of fm. The representation of Eq. (Al)
formed the basis of our numerical work.

Another important component in extracting specific
predictions from the soliton model involves trace
theorems associated with the collective coordinates A (t).
The simplest such relation, given in Eq. (18), is all that is
needed in computing S-wave amplitudes. More compli-
cated expressions are encountered in the P-wave sector.
In particular we found (i = 1,2,3)

Tr[kb(AA, ;A A3AAgA —AAgA A3AA, ;A )]

=4V 3l [ ,
'
D7;(A) el—k;Dbl(A—)D3k(A)] (A2)

Tr[kb(AA, ;A A3AAgA +AAgA A3AA'A )]

=4@3 —,
'
Db;(A) + [Db;(A )D38 (A )

3

v3
f8kldjla (fkja ~kja ) .

2
(A7)

( Xt ) D83(A)
~
At)

Equations (A6) and (A7) follow from a numerical analysis
of the SU(3) f, d coefficients.

Finally there is the matter of taking matrix elements of
the D matrices between baryon states of specified spin
alignment and flavor. This is an entirely straightforward
procedure. Products of two D matrices are reduced by
means of the corresponding Clebsch-Gordan series and
the group integration utilizes the orthogonality property
of the D matrices. For example, consider the matrix ele-
ment (Xt

~
D83(A)

~

&t). &8 a shorthand for the se-
quence Y,I,I3 of SU(3) labels, we employ K:—(1,—,', ——,

'
),

g =—(0,0,0), and m = (0,1,0). Then we find

+Dbg (A )D3;(A )] I dA Dxa'x0(A)Dxa 0(A)D x0(A)

The proof of Eqs. (A2) and (A3) rests upon several ancil-
lary results. The reader should have no difficulty in
demonstrating

8 8 8 8 8 8n
0 0 C 0 0 0K g K,i m K K

Db;(A)Daj(A)d Jb db jDjb(A)—— (A4) (A8)
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