PHYSICAL REVIEW D

VOLUME 32, NUMBER 6

15 SEPTEMBER 1985

Angular momentum and wave functions in monopole and related potentials

Prasenjit Saha
Department of Physics, Indian Institute of Technology, Kanpur, India
(Received 4 September 1984; revised manuscript received 29 March 1985)

In a three-dimensional context, it is shown how wave functions may be chosen from among the solutions
of the Schrédinger equation in a consistent way without demanding single valuedness, but by imposing an
invariance condition on the domain of certain given linear operators. This leads to multiple-valued wave
functions in certain situations, but disallows unquantized monopoles and ‘‘unusual’’ angular momentum

eigenvalues.

This work is an application of Sturm-Liouville theory to
the problem of solving the Schrédinger equation in a certain
family of vector potentials. We will demonstrate a con-
sistent precedure for selecting wave functions from solu-
tions of the Schrédinger equation without imposing single
valuedness. This leads to an angular momentum eigenvalue
spectrum in which ‘‘anyonic’’ eigenvalues (that is, ones
which are discrete but neither integral nor half-integral) do
not occur. It also yields the Dirac quantization condition for
monopoles. The wave functions are, in general, multiple
valued, but in ‘‘familiar’® situations such as that of an arbi-
trary central (scalar) potential they remain single valued.

The procedure for obtaining wave functions arises in the
following way: We assume that a dynamical variable £ de-
fines a mapping of the space of physical states on itself
—what is to be emphasized is that .Z is defined on the en-
tire domain of physical states, and that its range space is
contained within that domain. More picturesquely,

Z|any state) = |a state) . (1a)

Assuming that physically acceptable wave functions ¢ are a
subset of square-integrable functions, we must have

& ™ square integrable . (1b)

Given an algebraic operator - (corresponding to some
dynamical variable), (1b) is taken as a necessary condition
for the physical acceptability of any .

Note that the operator £ need not be bounded—||-£"y|]
can be arbitrarily large, but it must be finite.

For any three-dimensional angular momentum M it is
condition (la) (with M +=M, +iM, for &) which forces
quantization into an integral or half-integral ladder.! We
will show that, for the particular (algebraic) angular
momentum operators we study, condition (1b) also decides
whether the ladder is integral or half-integral. (Since an ar-
gument based on M + has meaning only in three dimen-
sions, one cannot make from it any assertions about strictly
two-dimensional systems—the essential distinction has been
carefully considered by Goldin and Sharp.2)

The question of angular momentum quantization (both in
two>* and in three dimensions®6) is at present a very
controversial one. At issue is whether physical significance
is to be attached (in the light of the correspondence princi-
ple*) to the anyonic angular momentum eigenvalues (first
given for two dimensions by Wilczek?®) and which choice of
angular momentum operator is the correct rotation genera-
tor (in two and in three dimensions). In this context, the
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results obtained by imposing (1b) are of some interest.
Our position is the following: The kinetic angular
momentum operator, with a monopole g present,

L=rx(—-iV—-eA)—put @

(where w=eg), is manifestly gauge invariant, and L? com-
mutes with the Hamiltonian. [Neither of these is true for
the canonical angular momentum operator Lg,=r
x(—iV).] Furthermore, L is clearly analogous to the
classical conserved vector rxmv— uf. We therefore assert
that it is meaningful to write the solution in terms of simul-
taneous eigenfunctions of H, L2, and L,. It does not, how-
ever, follow that L must be the generator of rotations; in
fact (in agreement with Jackiw and Redlich?), the wave
functions which we calculate are consistent only with the in-
terpretation of L,, as rotation generator.
The vector potential involved is

A4,=0, A,=0, eA¢=—Xﬂ9— ) (3)
r sinf
where u is a constant pseudoscalar and X is piecewise con-
stant in 0. In particular, a Dirac monopole would be given
by
—glcosd+sgn(6—6,)1]

Ay= .
¢ r sin@ @

0o=0 or m represents a string monopole; other values
represent the monopoles used by Wu and Yang.” The
Aharonov-Bohm flux® (a 8-function flux tube along the z
axis) corresponds to the case (u =0, X = const).

An essentially equivalent potential has been studied by
Roy and Singh,® but (as will be seen presently) their as-
sumption of single valuedness leads to results very different
from ours.

The operator L of (2) has

- ;9 _
L, latb X, (5a)

tig

Li=e i-——a——cotoL,-——,-”‘——] , (5b)
. 96 sin@

which satisfy [L,,L +1= *L + and [L;,L_}=2L,, and

-1 9l. 8 L2+ u?+2uL, cosd
L2=—18 lsng 0 | 4 6)
sing 96 | 96 ] sin’0 (
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The Hamiltonian [with an arbitrary V' (r)] is

1| gy 2ie 24 .2\ 4+ V
H 2m[ Ve+ 7 sind A¢+e A¢ (r)
=~1——[~1—P,2r+-12—(L2—-;A2) +V(r) . ¢))
2m| r r

Clearly, H, L?, and L, all commute, and we look for simul-
taneous eigenfunctions ¢ such that L,y=my,
L =1(I+ 1)y, Hy=E¢y. In view of (la) and (1b) we
will assume that m is allowed eigenvalues from —/to /in
integer steps. (Here L is not necessarily the total angular
momentum; but since it is quantized and conserved in-
dependently of any other angular momentum, our discus-
sion is decoupled from considerations of the ‘‘return
flux”.%)

¢ is now separable into R (r)Y(cos8)expli(m+Xx)e]l.
We will continue to look upon the wave function as an ordi-
nary function, rather than as a section. If we do treat it as a
section (as in Wu and Yang’), some of our statements
about the wave function will have to be modified, but the
difference is not important for the present discussion.

For the r and 6 dependence

2
r—g—z—(rR)+[2m(E— V)rrt+ur—I1(I+1)JR=0 , (8)
r
24 .2
(1=x)Y" = 2%V + 1(1+1)—l"—i—§4§“xf—”’ﬂ Y=0,
9
with x=cosf in (—1,1).
The 0 part of L + is (with D =d/dx)
(1-x2)V? tD+f‘—‘l—iﬂ2x~ (10)
—x

Solutions for (9) can be written down conveniently using
Rodrigues’s formula. A general Rodrigues formula is

F,=e~"2Dn(Snew) , (11

with S quadratic or less, (S'+ w’S) linear, e” positive and
integrable in the (finite or infinite) interval [a,b], and
e¥=0 at gand b.

The F, then satisfy a Sturm-Liouville eigenvalue equation

F'+S'F—($w?S+\)F=0 , 12)
where
A=3n(n+1)S"+(n+ 1) (w'S+w's') . (13)

The F, are orthogonal and complete in [a,6] and e~ %2 F,
is a polynomial of degree n.°
Because we already have (/4 m) and (! —m)=integers,
all the Y (/,m, u) may be written as
tu/2
1— x]

1—x2) m2
( x*) 1+x

DlEm

tu
(1—x2)'%f—§] ] 14

which is square integrable if and only if
(15a)

(15b)

(I £+m)=integer >0; [=|u]| ,

+(m+u) and * (m — ) integral if > 0
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[upper and lower signs in (15a) and (15b) relate to the ones
in (14)].

{If (1a) and (1b) were not imposed, and m were anyonic
with ¢ single valued, two cases would arise— (i) for
|m| > lu| thé upper and lower signs would yield two sets of
solutions with the eigenvalues / being m dependent, and (ii)
for [m| < |ul, m and u would interchange roles in (14),
(15a), and (15b) and / would be u dependent. Note that u
need not be quantized; because of this, Roy and Singh have
suggested the possibility of unquantized monopoles within
flux tubes.f]

Now we are ready to impose (1b). It is easily verified
that, with the upper sign, L+ augments m by 1, and with
the lower sign L_ diminishes m by 1. If (m+u) or
(m — p)=integers, then repeated application of L, or L_
will eventually yield an m which violates the conditions
(15b), which in turn means that (1b) is violated. Thus,
both (m+pu) and (m—pu) must be integers, so that L,m, u
must be either all integral or all half-integral.

To normalize the Y(/,m, ) the necessary constant factor
is

1 u+Pazmre |7

U= U+ £ m)! ’

(16)

and it can be evaluated by first taking the m =/ case (which
is simple) and then using induction with L _.

These eigenfunctions Y (now identical for upper and
lower signs) are exactly those obtained by Fierz!® for the
pure monopole (Xx=u) case; he derived them from the
physical requirement that the L + should act as raising and
lowering operators.

The radial equation (8) is easily dealt with. At least for
V(r) going as 1/r, r?, or 0, one can obtain both energy
eigenvalues and radial eigenfunctions from the w =0 case,
simply by replacing / by [(/+ $)2—u2]V2— L 1t is worth
mentioning that since /= |u|, if w=0 there is no s-wave
solution. It is known from very general considerations that
there can be an s-wave solution only if j=s.’

The simultaneous quantization of ,,m,u (as either all in-
tegral or all half-integral) was first obtained by Fierz!® (for
the X=u case) by imposing a rotational-invariance condi-
tion due to Pauli.!! [This remarkable connection between
the quantization of angular momentum and of Dirac mono-
poles has a curious semiclassical parallel: ‘If the classical-
field angular momentum is required to be quantized, then
the Dirac quantization condition (2u =integer) follows.!?]
The wave functions Fierz calculates (and with which the
ones here agree), turn out to be single valued, although this
is not put as a requirement. But rotational invariance is not
applicable for more general X, whereas (1b) can still be
used; and in general the ¢ calculated here are multiple
valued. However, the quantization of /m,u remains the
same. Incidentally, Dirac’s original argument for the quan-
tization condition!® requires the single valuedness of the
wave function; his later work includes a derivation from the
correspondence principle.!

This brings us to the question of the observability of the
Aharonov-Bohm effect. With our assumptions, there is no
effect on the quantities with classical-mechanical analogs
(kinetic angular momentum and energy). But the wave
function itself is changed. An Aharonov-Bohm flux given
by a constant X [so that formally A=WV (x¢)] simply multi-



1592

plies the wave function by exp(iX¢), just as if it were an
ordinary gauge transformation; this can produce a shift in
interference fringes, for example, and hence be observable.
Before concluding, we mention that an interesting analogy
exists between Dirac monopoles and quantized vortices in a
superfluid.’® So even if discussions of Dirac monopoles are
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of questionable value, the results may be applicable else-
where.

Many thanks to G. Vemuri for some translation work,
and to Dr. J. K. Bhattacharjee for help with Eq. (9), and
much more.
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