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Structure of axionic domain walls

M. C. Huang and P. Sikivie
Physics Department, University ofFlorida, Gainesville, Florida 32611

(Received 19 February 1985)

The structure of axionic domain walls is investigated using the low-energy effective theory of ax-
ions and pions. We derive the spatial dependence of the phases of the Peccei-Quinn scalar field and
the QCD quark-antiquark condensates inside an axionic domain wall. Thence an accurate estimate
of the wall surface energy density is obtained. The equations of motion for axions, photons, leptons,
and baryons in the neighborhood of axionic domain walls are written down and estimates are given
for the wall reflection and transmission coefficients of these particles. Finally, we discuss the energy
dissipation by axionic domain walls oscillating in the early universe due to the reflection of particles
in the primordial soup.

I. INTRODUCTION provided the post-inAation reheating temperature T„h„,
is less than the temperature Tp& —u at which the Up&(1)
quasisymmetry is restored.

(ii) The problem is also cured (regardless of inflation) in
axjon models with N =1. ' N js a model-dependent
integer given by the formula '

A few years ago, it was pointed out that axion models'
have a spontaneously broken discrete Z(N) symmetry
and hence domain walls. ' Since then, many properties
of these axionic domain walls have been discussed in the
literature. However, no detailed account of their internal
structure has so far been given. It is the purpose of this
paper to fill this gap. Let us begin, however, by giving a
brief review of the known properties of axionic domain
walls.

First, domain walls can be a cosmological disaster. '

In many circumstances, causality requires that there be at
least on the order of one domain wall per horizon. A
domain-wall-dominated universe expands like R —t,
where R is the cosmological scale parameter and t is time.
The requirement that our universe not be domain-wall
dominated today imposes the constraint 0.(10 GeV,
where o is the surface energy density of the domain walls.
This constraint applies to any domain walls which have
survived till the present epoch in the standard cosmologi-
cal model. The surface energy density of axionic domain
walls has been estimated ' to be of the order of

(1.2)N=Xtf~f
f

where the sum is over all colored Dirac fermions, the Qf
are their Peccei-Quinn charges, and the tf are their color
anomalies (i.e., Tr[ Tf, Tf ) = 2 tf5, where the Tf are the
SU'(3) generators for the color representation to which f
belongs}. In N =1 models (without inflation or, if infla-
tion occurred, with T„h„,& Tpq u), the axionic domain
walls appear with finite size of order the horizon

tQcD 10 sec at that time. They are closed or bounded
by axionic strings, ' the second variety being much more
abundant than the first (closed) variety. ' The probability
of having an axionic domain wall of size much larger than

tQcD is exponentially suppressed. ' As a result of their
tension, which equals in magnitude their surface energy
density, the domain walls oscillate at near the speed of
light. In so doing, they dissipate energy in the form of
gravitational radiation. The corresponding exponential
decay rate is of order

cT f~rn~u

1 U-Ga=
6X10 sec 10' GeV+grav

Hence the domain walls will decay away on a time scale
of order rs„„or less. It is one of the purposes of this pa-
per to discuss other possible sources of energy dissipation.
The cosmological domain-wall problem is also solved -in

axion models where N ~ 1 but Z(N) is a subgroup of the
gauge group or of an exact global symmetry group. " In
these models, the cosmological scenario is similar to that
of N =1 models.

(iii) Finally, it is possible that Z (N) is broken down ex-
plicitly to the identity by very small, as yet unknown,
forces which completely lift the degeneracy among the N
vacua. ' In that case, the true (i.e., lowest energy) vac-

where f and nt~ are the pion decay constant and mass,
and u is the magnitude of the vacuum expectation value
(VEV) that spontaneously breaks the Up&(1) quasisym-
metry of Peccei and Quinn. ' The axion is the pseudo-
Nambu-Goldstone boson concomitant to this spontaneous
breaking of the Upo(1) quasisymmetry. ' Present con-
straints from laboratory axion searches, stellar evolu-
tion, and cosmology imply that the most likely range of
values of U is 10 GeV (U ( 10' GeV. The axionic
domain walls first appear in the early universe at a tem-
perature TQcD 100 MeV (tQCD 10 sec) when QCD
instanton effects explicit/y break Upo(1) +Z(N). Since-
U &~10 GeV, some mechanism must be present to rid
the universe of axionic domain walls before they dominate
the energy density.

Several such mechanisms are available.
(i) Inflation will cure the axionic domain-wall problem
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(T& ) =odiag(1. , —1, —1,0)5(z) . (1.4)

A domain wall is gravitationally repulsive in the sense
that an observer hovering next to a domain wall is repelled
with an acceleration

P=2mG~o, (1.5)

where G& is Newton's gravitational constant. This
dramatic departure from Newtonian gravity is, of course,
due to the very large tension in the wall. The unique ex-
act solution to Einstein's equations for a planar domain
wall has been obtained.

Axionic domain walls also have unusual electromagnet-
ic properties. ' These are due to the coupling of the axion
field to the electromagnetic field

uum will take over at a time of order cr/b, ~ after the
QCD phase transition, where b,Pi is the difference in en-

ergy density between the true vacuum and the next lowest
energy (false) vacuum. After the true vacuum has taken
over, the cosmological evolution is analogous to that of
X = 1 models: the domain walls have finite size (of order
o/EA ) being bounded by axionic strings (N walls to a
string), these structures oscillate thereby dissipating ener-

gy at the rate given by Eq. (1.3) or at a larger rate if other
dissipation mechanisms are important.

Domain walls are unusual sources of gravity. ' ' The
stress-energy-momentum tensor of a thin domain wall in
the x-y plane is

across such a wall. The tool used is, of course, the low-
energy effective theory of pions and axions. For the pur-
pose of clarity, we study first, in Sec. II, a very simple ax-
ion model: QCD with two quark flavors (u and d) and a
Up@( 1 ) quasisymmetry. In Sec. III, we generalize our re-
sults to arbitrary axion models. In Sec. IV, we obtain the
equations of motion for various particles (axions, photons,
electrons, nucleons, . . .) in the neighborhood of an axionic
domain wall. We use these to estimate the energy dissipa-
tion of axionic domain walls oscillating in the early
universe by reflection of particles in the primordial soup.
Finally, in Sec. V, we summarize our conclusions.

II. THE STRUCTURE OF AXIONIC
DOMAIN WALLS

For the sake of simplicity, we discuss in this section
QCD with two quark flavors only. The Lagrangian is

, G„'„G'—I'+qi yl'D„q + ,
' B„ptB"—P

0 2

(K;JqL;qg)—Q+H. c. ) —V(P P)+ Gp„G'"",
32~'

(2.1)

where q =(d ) and i,j = 1,2. The general case is discussed
in Sec. III. The potential V in (2.1) has the form of a
Mexican hat which has an unstable minimum at the ori-
gin and hence

u Xa
FpvF (tx ]37 )

8~ v
(1.6)

Nlq =Ave

(2.2a)

(2.2b)

The strength of the coupling' given in Eq. (1.6) holds in
grand unified theories where the unrenormalized value of
the electroweak angle is sin 0 =—', . a is the axion field
before mixing with the pion has been taken into account.
It follows from (1.6) that there is an extra electric
current

J
a Xa -p

2m- v
(1.7)

for magnetic monopoles (of magnetic charge g) in a back-
ground axion field a. The current is also nonvanishing
when the axion field is space-time varying and there is a
background electromagnetic field. In particular, axionic
domain walls become electrically charged when traversed
by magnetic flux, whereas an electric field parallel to an
axionic domain wall induces a current density onto the
wall. The results of Ref. 17 must be modified, however,
because the mixing of the axion with the g and the m was
not properly taken into account there (see Sec. IV below).

In this paper, we will be mainly concerned with the
internal structure of axionic domain walls. We will derive
the spatial dependence of the phases of the Peccei-Quinn
scalar field and the QCD quark-antiquark condensates

on the right-hand side (RHS) of Maxwell's equations.
This current has several interesting consequences. It gives
rise to the Witten dyon charge

a Xa

where mq is the "current" quark mass matrix and K is
the matrix of Yukawa couplings in (2.1). There is a
Peccei-Quinn Up&(1) quasisymmetry in (2.1) and hence
we expect

0=0—arg detmq (2.3)

to vanish in this theory. We will see below that this is
indeed so. We will also verify that this theory has two
vacua (X=2) as is to be expected on the basis of the gen-
eral arguments given in Refs. 9 and 12.

To obtain the vacuum structure of the theory defined
by (2.1), we will study its low-energy limit, i.e., the low-
energy effective theory of pions and axions. Let us first
set 8=0 in (2.1) by a Uz(1) redefinition of the quark
fields. The QCD quark-antiquark condensates have the
form

(2.4)

where p is an energy of order the QCD scale A', U is a
2X2 special unitary matrix ( U U =I,detU = 1),
s (7T] F2 1T3) are the pions, and f =93 MeV is the pion
decay constant. In (2.4) we have used the experimental
fact that the QCD condensates do not break CP invari-
ance spontaneously. In our phase convention where 0=0,
CI' would be violated spontaneously if there were an
overall complex phase factor (i.e., det U&l) on the RHS
of (2.4).

The low-energy effective theory of pions and axions is
given by the chiral Lagrangian



1S62 M. C. HUANG AND P. SIKIVIE 32

F,rr= f —,'Tr[(B&U) (B"U)]+u —,'(B„e' )t(B"e' )

—p u Tr(KUe' +H.c.), (2.5)

(i) a+5=0, ao ———1,

(ii) a+6=m, ao —+1 .
(2.9)

i n -vlf
where, as before, U =e and the axion field is
a = —nU. The last term is the VEV of the Yukawa in-
teraction term in (2.1). We have used (2.2a) and (2.4) and
we have replaced (qL;q&JP) by (qr;qzj )(P). Since the
Yukawa couplings are so small, this is a very good ap-
proximation. The first two terms in (2.5) are the kinetic
energy terms for the axion and the pions. Using a
SUL(2)XSU~(2) XUv(1) redefinition of the quark fields,
we can put the K matrix in the form

E„O
X =e' (2 6)

where K„and K~ are rea) and positive. The phase 5 can-
not be rotated away' by a Uz(1) redefinition of the quark
fields since we have already used that freedom to set 0=0.
Using (2.6) and

iw ref 77 .~ . 'it
~U=e =cos +i&"csin

mu ++u v, mg = +ECRU (2.10)

are real in the quark phase convention where 0=0. Thus
0=0. The straightforward analysis of small oscillations
about the minima yields the physical pion and axion fields
(i.e., the mass eigenstates) and their masses

p md —mu f~
m'ph», ——m' +, a, m = (qq)(m„+m~),

my +mg u f
(2.1 1)

m& —m„ f f m 4mmz
apPy~ =Q—

m~+m„u u (m„+m~)

The theory thus has two vacua (K =2) as promised ear-
lier. The promise of Peccei and Quinn [that 8=0 as a re-
sult of the UpO(1) quasisymmetry] is also redeemed since
iz = —5 (mode ) and hence the quark masses

=ao+ia r with (ao) +a a=1

the Yukawa interaction energy can be rewritten as

—W» =2p u[ ao(K„+K~)cos(iz+5)

+a 3 (K~ —K„)sin(a+ 5)] .

(2.7)

(2.&)

From now on we will set 6=0 by absorbing it into a
redefinition of a. An axionic domain wall in the x-y
plane is a path [a(z), U(z)] satisfying the boundary condi-
tions

+~0, U~ —1 as z~ —~,
(2.12)

One readily verifies that —Wr has two minima located
at

a~~, U~+ I as z~+ oo,

and which minimizes the wall surface energy density

T

dz ~ + Tr +(qq) (m„+m~) cosacos +1
JZ 4 dZ dZ

+(m~ —m„)sina(n 3)sin (2.13)

(2.14)

where (qq) =2p . Let y=
~

n
~
If . When the domain wall is crossed from z = —oo to z=+oo, y varies from nto 0.

whereas a varies from 0 to m. Because (m~ —m„)sinasiny is everywhere positive, & 3= —1 and hence m& ——rr2 ——0 all
along the path. Hence

2+~ u diz fm dyo = dz + +f m [(cosa cosy+ 1)—g sina sing]—oo 2 QZ

where we have introduced

my —mg =0.3 .
my+ mg

= —sina cosy —g cosa siny,

1 d y = —cosa siny —gsina cosy .
m ~ cgz

The corresponding equations of motion are

(1—g') d'a
m Jz

(2.15a)

(2.15b)

To gain intuition about the solution to these nonlinear
equations, it is useful to think of the mechanical analog in
which z is time, and a and y are the coordinates of two
particles in linear motion. These particles have mass
(1—g )/m, and 1/m, respectively, and interact
through the nontranslationally invariant potential
V(a, y) = —cosa cosy+ g sina sing. The simplifying
feature of this problem is that the first particle is much
heavier than the second one (m~ ))m ). Hence one
can in first approximation neglect the motion of the first
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V(a,y)
'V(a )

FIG. 1. The potential V(o.,y) for the coordinate y for the
following fixed values of a: 0, m/4, m/2, 3m/4 m.

set equal to 0.3.

00
2

FIG. 2. Thhe effective potential F {ao) for the hase a of t
Peccei-Quinn scalar field in X =2in = axion models. g'=0. 3.

tany = —g tana .

In first approximation thus

yo —tan '( —g tanao),

(2.16)

(2.17)

1 —g dao
ap cosyp —g cosap slnyo

2 sinap cosap

(cos ap+g sin ao)'

Equation (2.18) was obtained by replacing b

o a rom ap are at most of order m /m
Hence (2.17) is a ood a rg approximation indeed. Equation

admits the first integral of the motion

1 —g dao z
2

2

+(cos ap+g sin ap) = 1 . (2;19)
L

(2.18)

The effective potential

1"(ap)=—(cos ap+g sin a )' = V(o = ao yo(ao))

is displayed in Fi . 2. E'g. . quation (2.19) was integrated b
g [ap(z), yp(z)] path is displayed incomputer. The resultin ~cx z

e y

ig. 3.
Be ore going on to a discussion of thisBe or

'
n o is result, we want

[a(z), (z) is b e
ou ow good our approximation [a (z) ( )'

,y ]
'

y estimatmg the deviations of y from yp.

is
I.et y=yp+yi. Equation (2.15b) for a=ap and y «y

particle on the time scale over which the se de secon particle
igure isplays the potential V seen by the

second particle for successive f' d 1 fixe va ues or" a between 0
and m. While a varies from 0 to m

t 0 Th' '
p

'
to m, y must vary from m

y remains near the maximum ofo . is implies that

V
Indeed if y moves too ffar away from the maximum of

, y will start to row exg ponentially over a time scale of

R
order m ' and will fail to reach 0 when cz reaches ~.

emember that o, vvaries over a time scale of d
e maximum of V for given a occurs at y

=(cos ap+g sin a ) y

0-6

Z= fAn Z

FIG. 3. The spatial dependence of the phase ao(z) of the
Peccei-Quinn scalar field and the phase yo(z} of the
quark-anti uark c

Oz o t e CD

% =2. /=0. 3.
on ensates across an axionic dc omain wa .

1 dyo
m~ dz

(2.21)

y& must go to zero at z = —oc and z =
t th RHSofE. 2q. ( . ) est ih e t origin
yi ——0). The second term is of order m /m

3). Obviousl y y, must remain smaller than O(m, z/m 2)

domin
ot erwise the first term on the RHS Eq. (2.21) will

ominate over the second one and 'll f '
ail to reach 0 at

A»o ai ——a —ap&O(m '/m ' aso, m~ ' as can be seen

4

Figure 3 shows that axionic domain walls have

point out that this result does not hold in the isos in s m

found that if
»»ngular and our analysis must be mod'f' d

/=0, the pion field varies from m to 0 over a
length scale of order [m (m /m )i

s i varies rom 0 to m over a length scale of or-
a

Using our solution a (zo z) yo(z)] we can calculate the
energy per unit surfac:e of the axionic do
stitutin a a

'
nic omain wall. Sub-

g ap and yp for a and y in Eq. (2.13) we find
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o=v2f m u f dao[1 —(cos ao+g sin ao)' ]' 1+0 =2.16f m u for /=0. 3 . (2.22)

It should be kept in mind that the corrections to 0. due to
the finiteness of m z and m z [we assumed m z

——m z
——ao

upon writing down (2.5)] are much more important than
the O(m, /m ) corrections.

III. THE GENERAL CASE

phase of the Yukawa coupling responsible for the mass of
fermion F. Upon integrating out a heavy fermion F, the
value of 8 is renormalized to 8 (5F—+QFa)tF. Hence,
after all the heavy fermions have been integrated out, the
effective value of 8 in the low-energy theory for the u and
d quarks is

We outline here how our results generalize to arbitrary
axion models. From the general considerations of Refs. 9
and 12, we expect the number of vacua to be

8 =8 g (5++QFa)tF

=8 5 (—N ——2)a, (3.3)

& =X&ftf
f

(3.1)

i (5p+ QFa)
mp ——[mF )e (3.2)

where a is, as before, the phase of the Peccei-Quinn field,
Q~ is the Peccei-Quinn charge of fermion F, and 5~ is the

The sum is over all colored Dirac fermions. In a given ax-
ion model, let us first integrate out all colored fermions
heavier than the u and d quarks, i.e., IFI =s,c,b, t, . . . .
The masses of these heavy fermions can be written in the

OITIl

where b, =—+F 5FtF and where we have used (3.1). The u

and d quark-antiquark condensates align with respect to
this value of 8',

&q' q, &=~'( "'
3Uk —i8'/2

J (3.4)

where q =(d). Equation (3.4) states there is no spontane-
ous violation of CP in QCD. As before, the value of a is
determined by minimizing the Yukawa interaction energy
of the u and d quarks.

& Kk~qLkqttjg+H. c. ) =p u Tr(KUe' '+H c )..

=2p u [cos(a+5——,
' 8')cosy(K„+Kd )+sin(a+5 ——,

' 8')siny( j& 3)(Kd K„)], — (3.5)

cos(a+5 ——,
' 8')cosy = —1 . (3.6)

where we have followed the steps of Sec. II using Eqs.
(3.4), (2.2a), (2.6), and (2.7) with y=n/f The m. inim. a
are such that

d quark masses are
i (ak+5)=K~ue and hence

8= —g arg(mf )tf
f

i (a&+5)m„=E„ue and md

Substituting the expression (3.3) of 8' in terms of a into
Eq. (3.6), one finds that the solutions are y =rr with

=8—[6+(Ã —2)ak ]—2(ak+ 5)

=8—( b. +25) —Xak =0 (mod2m ) . (3.8)
a = (8 b, 25+ 4—n ir)— —

and y=0 with

a =—(8—b, —25+2'+ 4n m ),
N

where n is an integer in both cases. Substituting these
values into Eqs. (2.2a) and (3.4), one finds that there are
(indeed) K vacua, characterized by the VEV's

&4)k ——ue' ",

One readily verifies that with an appropriate choice of the
colored fermion phases, one can set 8=0, make all
colored fermion masses real, and have real quark-
antiquark condensates as well.

Let us adopt the phase convention where 0=6=5=0.
The low-energy effective theory of pions and axions is
now given by the chiral LagraIlgian

a„aa"a+ Tr[(a„U)ta~U]P 4

3 j —~ (aj +5)
&qijqw &k= —V 5,e

(3.7)

—p3u Tr(KUe' ~ +H. c.), (3.9)

with

ak =—(8—b, —25) + for k =0, 1, . . . , iii' —1 .1 2mk

CP is conserved in each of these vacua. Indeed the u and

where the last term is obtained from (3.5) by substituting
8'= (N —2)a [see Eq. (3.3)]. A—n axionic domain wall in
the x-y plane is now a path [a(z),y(z)] from [0,~] at
z = —oo to [2n/N, O] at z =+ oo, which minimizes the
surface energy density
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r

0'= +" u da
dz '

2 dz

2n' dy
2 dz

+f m„cos cosy+1 —/sin siny
Xu Xa

(3.10)

Comparison with Eq. (2.14) makes it clear that the results of Sec. II can be immediately generalized to arbitrary axion
models by the replacements a~a'(N/2)a and u~u'=(2/N)u. Thus, in the general case, the axionic domain-wall path
is given by

[a(z),y(z}]= —ap(z), yp(z)
2

(3.11)

where [ap(z), yp(z)] is the solution for N =2 obtained in Sec. II. The axion mass and the physical pion and axion fields
(i.e., the mass eigenstates) are given by

f~m~ (m„md)'~

fPlg +Pld
(3.12)

o o Nf Nf~ p
~ppys ~ +g— ~, a pby2 U 2

The surface energy density of axionic domain walls is given by

cr= f m u dap[1 —(cos ap+g sin ao)'~ ]'~ =4.32f m u —for /=0. 3 . (3.13)

IV. REFLECTION AND TRANSMISSION
BY AXIONIC DOMAIN WALLS

Using our knowledge of the structure of axionic domain
walls, we can discuss their transmission and reflection
coefficients' for ordinary particles, in particular, axions,
photons, electrons, and baryons. As was mentioned in the
Introduction, the reflection of particles in the primordial
soup may be relevant to the evolution of domain walls in
the early universe. The era of axionic domain walls (if
ever there was such an era) begins at about 10 "sec. The
particular situation of interest to us is the one in which in-
flation did not occur at temperatures below the Peccei-
Quinn Up&(1) symmetry-breaking transition at tempera-
ture of order u. In N =1 models, the domain walls have
finite size of order the horizon ( —10 lightsec) when
they appear. They are bounded by strings or closed. They
oscillate and radiate gravitational energy. Using the
quadrupole formula (l is the size of the domain wall, co

the frequency at which it oscillates)

at the speed of light. The lifetime may be shorter than
given in Eq. (4.2} if there are other important sources of
wall energy dissipation. The emission of radiation in the
form of axions (or other massive particles) is not an im-
portant source of energy dissipation because
co-I ' «m, . For the same reason, the emission of pho-
tons is presumably also unimportant because photons
have an effective mass in the primordial soup given by the
plasma frequency co» (4n.an, /m, ——)'/, where m, is the
electron mass and n, is the electron number density. At
least for early times (r & 10 sec), cop~ &&co-l '. On the
other hand, the reflection by the oscillating domain walls
of particles in the primordial soup could be an important
source of wall energy dissipation and it will be discussed
in detail here. The conclusions are summarized in Sec. V.

Axions

Consider small oscillations in the axion and pion fields
about the static axionic domain-wall solution

d(crl )

dt
——G(ol ) co ——Go l

grav rad

one expects the lifetime

(4.1)
2a(x}=
N ao(z)+at(x), y(x) =yp(z)+y&(x), (4.3)

~s„„-(Go) '-6X 10 sec
&OIo Gev

(4.2)

In Eq. (4.1) we have set co-I ' because the wall oscillates

where ap(z) and yp(z) are the solutions obtained in Sec. II.
Using the chiral Lagrangian (4.9) and the results of Sec.
II, one obtains the equation of motion for the small oscil-
lations

B&B"y&———m (cos ao+g sin ao)'~ y, —m z—,a&,
(cos ao+k sinzao)'~

02 2

B„&~a)———,(cos ao+g' sin ao) a,—,—.. . , , y, .y 2 2 . 2 I/2
P

1 g,2 1 —g N (cos ao+g sin ap)'
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For an axion of energy much less than m h 8„, one as @«m and hence

(cos ap+ g sin ap)

m a
2

(cos ap+g sin ap)' 1—
p2 2 4 4

2
sin ciao

—cos cxo

(cos ap+g sin ap) (co +g2 2 2 cocos ap sm ap)

(4.5)

Hence an axion of energy cp in the neighborhood of an ax-
ionic domain wall obeys the Schrodinger-type equation

1/2 '

l lp exp —1+ tp p~(t)tp

0
(4.10)

cp a = —V a + V, (z)a2 — 2

with the potential

(4.6) 4wher'e Io-to-10 sec is the initial size of the walls.
Using Eq. (4.8), one finds

g sin ap(z) —cos ap(z)

[cos ap(z)+g sin ap(z)]
(4.7)

pa(tp)tp
=-1 .

CT

(4.11)

which we have displayed in Fig. 4. This potential has a
bound state (a -dap/dz) at au=0. Thico= . is zero mode corre-
sponds to a translation of the domain wall in the z direc-
ion. The axion transmission and reflection coefficients

solving (4.6). For ru
'

g . . &~m„ the energy is much larger than
co «m~

the depth of the potential well and reflection is exponen-
tia y suppressed. (This general result f 11 f
we - nown WKB analysis. See, for example, Ref. 20.)

Let us now estimate the energy dissipation of axionic
domain walls by reflection of axions in the r'

be
up. e energy ensity of axions has been estimat d tae o

' 3/2

( ) 1() 9f 2 2 0 sec
10' GeV

(4.8)

d(ol )

d ~ lo — pa(t)l, —
reAection

(4.9)

n egra 1on ofwhere I is, as be ore, the domain-wall size. I t t'

e omain wall itselfese axions are almost at rest. The domain
moves at re ativistic but not ultrarelativistic speeds.
Hence the axion reflection coefficient is of order 1 and

The energy-dissipation rate (1/o)p, (t) due to reflection of
axions is much more important than the rate (Gcr) of dis-
sipation into gravitational waves at early times. However,

universe's expansion, the dissipation rate due to axion re-
ection decreases in time. In "invisibl "

e (u(10 GeV), dissipation into gravitational
waves begins to dominate at t=3. 101 sec (for u=10'

(4.2)].
eV and determines the wall's ultim t 1'f ' E .a e i ctime q.

Photons

The low-energy effective theory of photons, axions, and
pions is (4.9) augmented by

r

a 1Na 1

8 4 f
lHel e a ] 37 The strength of the a yy and 7r yy' cou-

p ings given in Eq. (4.12) result from the usual trian le di-

g s. n he case of the a yy coupling strength' one
e usua triang e di-

'
n current in suc a waymust take care to choose the axion c t

'

t at it oes not have a color anomal ' E
olds 1f there is grand unification with the unrenormal-

ized value of the electroweak angle s' e =—'. Mng e sin ~ = —,. Maxwell's
equations now have the form

V, tz)

V E+—PB =0

VXE+ =0,
Bt

(4.13)

VX B——PE — E+—PB =0
Bt

V B=O,
where

FICx. 4. The effective potential V, (z) seen by an axion in the
neighborhood of an axionic domain wall. /=0. 3.

Na
2u f (4.14)

If there is a static don. ain wall in the x-y pl thpane t en
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P(» = —&o(z) —yo«» (4.15)

where ap(z) and yp(z) are the domain-wall solutions ob-
tained in Sec. II.

To study what happens when a photon (or any other
particle) is incident upon a planar domain wall, one may
assume that the photon's wave vector k is perpendicular
to the plane of the wall. This is because a domain wall is
invariant under Lorentz boosts parallel to the wall sur-
face. Using such a boost one can always go to a frame of
reference where the particle is incident normally upon a
static planar domain wall. Let us place ourselves in that
frame then and let us use the axial gauge A z=0. One
readily obtains the following equations for the gauge
fields A+ ——A +iA~,

d d~
(4.16)

dZ 7T Z

where co is the energy of the photon (/I+ -e ' '). Equa-
tion (4.16) shows that photons of opposite helicity see po-
tentials which are the same in magnitude but of opposite
sign. The width of the potential is of order m, whereas
its height or depth is of order (aco/m)m, . The reader may
wonder whether there is the possibility of a photon bound
state (co &0) which would imply a rearrangement of the
domain wall when electromagnetism is switched on. Ac-
tually, there is no such bound state, as can be seen from
the energy density derived from (3.9) plus (4.12),

2

A = —(E E+B 8)+—I 1 Ba + —(Va)2 2 at
2

d(o.l ) 2 & 2 22——pl —— m Tla
y reflection

(4.19)

One readily verifies that (4.19) is negligible compared to
(4.1) and (4.9).

Fermions

In the neighborhood of an axionic domain wall, the
Dirac equations for electrons and nucleons are, respective-
ly,

(4.20)

i ( i /2)y&r3eo/f
N (v

after which Eqs. (4.20) become

where we have assumed that the electron has unit Peccei-
Quinn charge (in grand unified theories this will usually

be the case) and where piv ——( ~» ) with p =proton,
n =neutron. In the equation for nucleons, we have
neglected the quark-current contribution to the proton
mass. The Dirac equations for other fermions are
straightforward variations on (4.20). It is useful to per-
form the change of variables

i(1/2)y5a/u
e e e

1 B%

2 Bt
+ —,

' (Vn. )'+ V(a, ~) . (4.17) 1
i y&a„m', + —(y"a a)y, q,'=0,

2U

2

m, T for T»m, .2 2

~2
(4.18)

For "invisible" axion models (u&10 GeV), T»m, at
those times t &~g„, when the domain walls have not yet
dissipated into gravitational radiation. Hence

The PE B term does not contribute to A and hence the
energy of a domain wall plus a photon is always higher
than that of the domain wall alone.

One can use (4.16) to calculate the wall reflection and
transmission coefficients for photons of any energy. In
the high-energy limit (ai »m, ), the WKB approximation
tells us that reflection is exponentially suppressed. In the
low-energy limit (co&&m, ), reflection is also suppressed
because d13jdz averages to zero over the thickness of the
domain wall. When co is of order m„we expect the re-
flection coefficient to be of order a .

Thus to obtain the decelerating pressure p on an axionic
domain wall moving at relativistic (but not ultrarelativis-
tic) speed through a photon gas at temperature T, we take
the reflection coefficient to be R=a for photons whose
component of momentum perpendicular to the wall is of
order m, and R =0 otherwise. Then

—m /T2

p — m, Te ' for T&&m,~2

iy~a„m„+ (y—~a„'),y, y =o.
(4.21)

For a static axionic domain wall in the x-y plane, one sub-
stitutes a =(2u/X)ap(z) and vr =f yp(z), where ap(z)
and yo(z) are the wall solutions obtained in Sec. II. Equa-
tions (4.21) become

d CX0

iBp+iy y.B—m, y +—S, ge'=0,
dz

~ 0 df0
l 8p + l y y ' 8 —

mdiv

y +S 'r3 it/»/ =0,
dz

(4.22)

where S,= (i l4 )f y ', y ] is the z component of the fer-
mion spin. We thus find that fermions see, at the location
of an axionic domain wall, a potential well or hill, depend-
ing on the sign of their spin along the z direction. The
width and depth (or height) of this potential are both of
order m, . Hence the reflection of fermions is exponen-
tially suppressed if the fermion kinetic energy is much
larger than m . On the other hand, for fermion kinetic
energies smaller or on the order of I„the reflection coef-
ficient is presumably of order 1. In invisible axion models
(u=lo GeV), the domain walls are thus transparent to
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electrons with velocity 13& 10 and to protons and neu-
trons with velocity P) 10 . One readily verifies that, as
a result of this transparence to all but the slowest fer-
mions, wall energy dissipation due to the reflection of fer-
mions in the primordial soup is, in invisible axion models,
completely negligible compared to the other sources of
wall energy dissipation.

where l is the size of the wall and I (t) is the sum of the
decay-rate contributions from the emission of gravitation-
al waves, and from the reflection of axions, photons, elec-
trons, and baryons in the primordial plasma. We found
the most important contributions to be for 'invisible" ax-
ion models (U) 10 GeV)

I s„,„d-Go —(6&&10 sec) 10"Gev
5.2a

V. CONCLUSIONS

dl = —I (t)1,
dt

(5.1)

We have obtained a description of the structure of ax-
ionic domain walls by deriving the spatial dependence of
the phases of the Peccei-Quinn scalar field and the QCD
quark-antiquark condensates across such walls. This
description is a necessary first step in the study of many
axionic domain-wall properties. In particular, it allowed
us to obtain a reliable estimate of the wall surface energy
density and it allowed us to write down the equation of
motion for various particles (axions, photons, electrons,
baryons, . . . ) in the neighborhood of axionic domain
walls. From these equations of motion, one can derive the
wall reflection and transmission coefficients for these
species of particles. We have discussed the reflection of
particles in the primordial soup as a source of energy dis-
sipation of axionic domain walls oscillating in the early
universe, comparing it in particular with energy dissipa-
tion by the emission of gravitational radiation. The re-
sults can be summarized as follows:

p, (t)
~axion refl

—4
4

)
&

10 sec
' 3/2

(5.2b)
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The contributions from the reflection of photons, elec-
trons, and nucleons are relatively unimportant. At early
times, energy dissipation due to the reflection of axions is
much more important than dissipation into gravitational
radiation. However because the axions are diluted by the
universe's expansion, dissipation into gravitational waves
eventually dominates and determines the walls ultimate
lifetime.
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