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Taking into account the electroweak breaking effects, some multiply charged monopoles were
shown to be stable by Gardner and Harvey. We give the explicit Ansdtze for finite-energy, nonsingu-
lar solutions of these stable higher-strength monopoles with eg= 1,%,3. We also give the general
stability conditions and the detailed behavior of the interaction potentials between two monopoles
which produce the stable higher-strength monopoles.

I. INTRODUCTION

Since the discovery of the ’t Hooft-Polyakov-type
magnetic-monopole solutions in grand unified theories
(GUT’s), various aspects of the monopole have been stud-
ied.! Most studies of monopoles in GUT’s, however, have
concentrated on monopoles with unit Dirac charge
g =1/(2e), since monopoles with multiple Dirac charge
are considered as unstable and would decay into single
monopoles.

Stability of a monopole under non-Abelian fluctuations
was studied by Brandt and Neri? and by Coleman.! The
analysis for GUT monopoles was usually made under the
simplifying assumption that the grand unifying group is
broken directly to SU(3),®U(1).,, so that outside the
monopole core the only long-range interactions are color
and electromagnetism.>~® The stability condition of
Brandt, Neri, and Coleman was applied to the asymptotic
color fields.

Stability of monopoles with higher magnetic charge

was reanalyzed by Gardner and Harvey.” They took into .

account electroweak breaking effects in their investigation
of multiply charged monopoles. Outside the monopole
core and for r <1/My,, where My, stands for the mass
scale of electroweak breaking, monopoles should satisfy
the Brandt-Neri-Coleman (BNC) stability condition with
respect to SU(3).®SU(2), rather than just SU(3).. They
found in the SU(5) model that the double, triple, quadru-
ple, and sextuple (eg =1,3,2,3, respectively) monopoles
are stable for a range of mass parameters of the Higgs
fields. Once these multiply charged monopoles are known
to be stable, the next problem is to construct the explicit
Ansdtze for the finite-energy, nonsingular solutions for
these monopoles. The self-dual solutions for eg =1,3,3
in the Prasad-Sommerfield (PS) limit® were obtained by
Gardner.® Stability of the multiply charged monopoles,

however, is due to the short-range attractive force pro-.

duced by the Higgs-boson exchange between two constitu-
ent monopoles so that it would be desirable to obtain the
Ansdtze applicable outside of the PS limit.

In this paper we construct the explicit Ansdtze for the
finite-energy, nonsingular solutions of multiply charged
monopoles with eg =1,3,3. These monopole fields are
spherically symmetric under L+ T (Ref. 10), where T are
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the generators of an SU(2) embedding, and were studied
previously with different BNC conditions.> The stable
monopole with eg =2 is known to be spherically asym-
metric.” There have been many works to obtain axially
symmetric and/or general solutions of multiply charged
monopoles in the PS limit.!! In order to obtain the Ansatz
for eg =2 outside of the PS limit, however, we need dif-
ferent techniques and do not consider it here.

The organization of the present paper is as follows.
First we rederive in Sec. II the result obtained by Gardner
and Harvey that some of the multiply charged monopoles
are stable if we take into account the short-range force
due to the Higgs-boson exchange. We give the general
stability condition by taking into account the BNC condi-
tions for SU(3).®SU(2);. The stability condition is ob-
tained so that the interaction energy between two mono-
poles is attractive and the resulting bound state with
higher magnetic charge is stable against decaying into
lower-charged monopoles.” We also give the detailed
behavior of the interaction potentials between two mono-
poles which produce the bound monopoles with
eg =1, %,2,3. In Sec. IIT we construct the explicit Ansdtze
for monopoles with eg =1,%,3 by making the singular
gauge transformation on the Dirac string potential ob-
tained for 1/My <<r <<1/My,, where My is the mass
scale of the GUT breaking. Section IV is devoted to a
short discussion on the spherically asymmetric monopole
with eg =2.

II. STABLE MONOPOLE WITH HIGHER
MAGNETIC CHARGE

In this section we rederive the result obtained by
Gardner and Harvey.” Although there is no essentially
new addition to their result, we give the argument in de-
tail which leads to the stable monopole with higher mag-
netic charge and derive the general stability condition
summarized in Table II. We also describe in detail the
behavior of the interaction potentials between two mono-
poles which produce the stable multiply charged mono-
poles.

We consider the SU(5) grand unified theory. The SU(5)
symmetry is broken via SU(3).®SU(2),®U(1)y of color
and electroweak symmetry down to SUQ3),® U(1)e,. As

1539 ©1985 The American Physical Society



1540 ‘ S. MIYAMOTO, HIKARU SATO, AND S. TOMOHIRO 32

claimed by Gardner and Harvey, for r <1/My, but out-
side the monopole core, monopoles should satisfy the
BNC stability condition with respect to SU(3).®@SU(2), .

A. General solution to the BNC condition

Outside the monopole core one can define a charge ma-
trix Q in terms of the Dirac string potential Ap given by

1—cosf ~
=Q0—————¢ , 2.1
AD“‘Q 7 sinf ¢ ( )

where Q is a 55 matrix of SU(5). We choose the gauge
such that the upper 3X3 corner of Q represents SUQ3),,
the lower 2X2 corner represents SU(2);, and U(1l)y is
represented along the diagonal. Since the unbroken sym-
metries are SU(3),®SU(2),®U(1)y for r <1/My,, Qisa
linear combination of the generators Y, of color hyper-
charge, T} of SU(2);, and Y of weak hypercharge:

Q=75(nY +nT} +ngY,), 2.2)
where -

Y=d1ag(—%,—%,—%,%,%) , (2.3a)

Y, =diag(§,+,—+,0,0), (2.3b)

T} =diag(0,0,0,+,—3) . (2.3¢)

The constants n,n3,ng are determined by imposing the
Dirac quantization condition and the BNC stability con-
dition. Equations (2.2) and (2.3) read

Ng—An hng—n
6 ° 6 ~

Q =diag

n+2ng n+ny n—nj
T 6 7 4 O 4

(2.4)

The Dirac quantization condition, exp(4miQ)=1, implies

n—ng=3p, n—n3=2q,
(2.5)
nj,ng=integers ,

with integer p,q.

Further constraints are obtained by the BNC stability
condition for fluctuations due to the non-Abelian radia-
tion. For SU(2);, the stability condition is n3=0,1 [—1
is SU(2),-gauge-equivalent to -+ 1], and for SU(3),,
ng=0,+1. Thus we obtain six combinations of (n3,ng).

(i) n3=xng=0,1. Equation (2.5) tells us that
3p =2q +(0 or 2) so that p must be even, p =2m. In this
case we obtain n=6m +ng and the charge matrix
amounts to

v+ 2By 2.6)
2 2 e

ng

Qo= >

3m +

Since the coefficient of Y is equal to eg, we obtain
eg =(3m +ng/2) for this type of monopole.

(i) n3=0,ng=+1 or n3=1,ng=0. In this case
3p=2g+1 and p must be odd, p =2m +1. The charge
matrix (2.4) reads

ng+3 n n
0= |3m+—2 Y+—=T}+—y, (2.7a)
2 2 2
and
ng+3
eg= |3m + 82 (2.7b)

In Table I, we tabulate all possible types of monopoles
which satisfy the Dirac quantization condition as well as
the BNC stability conditions with respect to
SU(3), xXSU(2), .

B. Multiply charged stable monopoles

Monopole fields consist of gauge fields and Higgs
fields. The SU(5) symmetry is broken down to
SU(3),®SU(2), ®U(1)y by the vacuum expectation value
(VEYV) of the adjoint Higgs field @ at the mass scale My.
Twelve of the adjoint Higgs fields are absorbed by the
Higgs mechanism to give superheavy masses to the X and
Y gauge bosons. Another twelve physical Higgs bosons
are the octet of SU(3), with mass myg, triplet of SU(2),
with mass m; and singlet with mass m,. In the SU(5)
limit, we obtain m;=2myg. These Higgs bosons are very
heavy compared with the mass scale of the electroweak
breaking so that we assume My <<mg,m3,mg<<My
(Ref. 12). The symmetry is further broken down to
SU@3),®U(1)., at the mass scale My by the Higgs field
H which transforms as 5 of SU(5). Since we are consider-
ing the region, 1/ My <<r << 1/My,, we neglect the effect
of the fundamental Higgs boson H (Ref. 13).

Now let us try to make a multiply charged monopole by
bringing two monopoles together. We consider two
monopoles separated by a distance r <<1/My,. Two
monopole charges are given by

(2.8a)
(2.8b)

Q =1(nY +n;T; +n5Y,),
Q'=5(n'Y +n3TL +n3Y,),

where generators T?' and Y. in Q' may differ from T}
and Y, in Q by an SU(3).® SU(2); gauge transformation.

For r <<1/My,, the SU(3).®SU(2),®U(1)y may be
considered as an unbroken symmetry and massless gauge
bosons are gluons and electroweak gauge bosons. Mass-

TABLE 1. Monopoles which satisfy the Dirac quantization
and the BNC stability conditions for the SU(3), and SU(2); sub-
groups. The columns under Y, T3, Y, denote the coefficients of
the corresponding generators in the charge matrix Q.

Type eg Y T Y.
I 3m 3m 0 0
I 3m45 3m 45 + .
I 3m +1 3m+1 0 -5
v 3m+3 3m+3 + 0
v 3m 42 3m 42 0 -+
VI 3m+5 3m+5 T -
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less gauge-boson exchange gives an interaction energy, 4Tr(QQ")=nn'Tr(Y?)+nyns TH(TETE')
V(P guuge=Tr(QQ") /(ar) , (2.92) e Tr(X X)) (2.90)
The interaction energy due to the Higgs-boson exchange
with amounts to
|
V(r)g=—[nn'Tr(Y?) exp(—mor)+nsn’ TH(TETE') exp(—msr)+ngny Tr( Y, Y. ) exp( —mgr)]/(4ar) . (2.10)

In the Prasad-Sommerfield (PS) limit® in which the Higgs bosons are massless, the gauge-boson exchange potential is
exactly canceled by the Higgs-boson exchange potential. The two-monopole system is neutrally stable in this limit. Out-
side of the PS limit, however, for r >>1/m; the monopoles orient themselves so as to minimize the gauge interaction en-
ergy, Eq. (2.9a). Since we are interested in binding of two monopoles and not of a monopole-antimonopole pair, we have
nn'>0 and n3n3 >0 from Table I, so that

T}'=diag(0,0,0,— +,3) . 2.11)
Furthermore, for ngng >0 the minimum of the potential occurs for the gauge orientation given by
Y, =diag(+,—%,+,0,0), 2.12)

and when ngng <0, the minimum occurs for ¥, =Y.
The interaction energy of the two-monopole system turns out to be

1—exp(—myr) 1—exp(—msr) 1—exp(—mgr)

Vir)= Z:a nn' pr 0 —-8%n3n'3——%.——3———~—1—1;[n8n§Tr(YcYé)|~—p—r~—-8—. (2.13)
l

The first term of the potential is repulsive and other two (ii) my <<my,mg. Here attractive singlet Higgs boson
terms are attractive. The potential at r~1/My~0 exchange will cancel repulsive U(1)y-gauge-boson ex-
amounts to v change for r<<1/my. The dominant terms are the
5 1 second and the third terms in Eq. (2.13), so that the net
V(0)= a——monn'— Tm;n;;n'g, force can be attractive. In this case we expect stable mul-
@ @ tiply charged monopoles. In Figs. 1—4, we illustrate the
—ng | ngny Tr(Y,Y.)| . (2.14) potential betw}een two monopoles for total magnetic
4a charge eg =1,5,2,3. As is shown, for small K =mg/m
Now let us consider the following two cases. the potentials become repulsive. Figure 3 shows the po-

(i) mg>>ms3,mg. When 1/mg<r<<1/ms, 1/mg, the tential between two eg =1 nllonopoles. 3The potential for
dominant contribution comes from the first repulsive another combination (eg =7)—(eg=7) is deeper than
term in the potential (2.13). The net force between two this for the same K value. Figure 4 is the potential for
monopoles is repulsive. We therefore do not expect stable (eg =%)—(eg =3 ) combination.

multiply charged monopoles in this case. The condition for the attractive potential is ¥ (0) <O.
Vi
I Var2
| k=12
o 5
r \
- 5 o 1 1
1 2 r
K=10
-10 -5 1
-15
-10 f
FIG. 1. The interaction potential between two eg =+ mono- -
poles for K =myg /m0=%, 1,10. In this and in the following fig- FIG. 2. The potential between two monopoles with eg =+
ures the vertical axis is in the unit of m/(24a) and the horizon- and eg =1, which can produce the bound monopole with

tal axis is in the unit of mo™". eg =% for K > 3.
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We list the possible combinations of two-monopole sys- f 3 i ; i
tems in Table II. We note here that type I monopoles =S §‘ Qo %
with eg =3m cannot make stable bound states with S g
another monopole and are omitted from the table. 25
The monopole with a specified higher magnetic charge ;g £
may be produced in several ways by the different com- g = 0
binations of two monopoles. If every pair of two mono- (O~ o)
poles has the attractive potential, the resulting bound g & - v e
monopole with higher magnetic charge would be stable. ?a""é + = +
On the other hand, if some pairs of two monopoles have S 'E > TE‘ x E
repulsive potential, it would be unstable. As an example 825 + 5 +
let us consider the monopole with eg = % From Table II, a @ E o 8
. N 1) Py
we see that this monopole can be made out of either (III)- gz i ;‘ i
(IV) or (I-(V) combination with m =m'=0: 5 ; 0 O &
5 2
(eg=7)=(eg=1)+(eg=7), (2.152) £ 3
=
8
=(eg=+)+(eg=2). (2.15b) 5 g -
8 9 >
The potential between (III)-(IV), i.e., the combination in s § X
Eq. (2.15a) is repulsive while Eq. (2.15b) is a stable com- - E wle Vo
bination if K =mg/my>10. We can produce the eg =3 =Y B
. . 1 _8 N ] S < S
monopole by combining the eg =~ and eg =2 monopoles o= &8 ¢ &
i 5 o + & +
together. The resulting eg =5 monopole, however, would o g £ = g
25 |71
=
% 25 | v ¥
B
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FIG. 4. The potential between two eg =5 monopoles, which ES 3 — -
becomes attractive for K > —1-;— £ = =

(6m +1)X6m'+5)<2K /5

(3m+1)3m'+2)<K/5

Unstable

(3m +1)3m'+1)<K/10

3(m+m')+4
2m +1)(6m'+5)<2K /5

eg =

z
7

(m+m')+

eg =
Unstable

3(m+m')+3
2m+4+1(2m'+1)<2K /15

eg =

v

eg =

I(im+m')+4
(3m +2)(3m’'4+2)<K/10

eg =

3(m +m')-|j%
(3m +2)(6m’'+5)<2K/5

eg=3(m+m')+5

VI

(6m +5)(6m’'+5)<8K /5
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be unstable and would decay through the channel of Eq.
(2.15a). Strictly speaking, stability of the eg =3 mono-
pole depends on its mass. If the eg =3 mass, Ms »2 i
lighter than the sum of masses of the decay products, it
would be stable. The monopole with eg ==, however, is
not spherically symmetric and we do not have any reliable
estimation for its mass, although in the PS limit
Ms,,=5M,,, and it is neutrally stable in this limit.

The monopole with eg >3 always has the channel
which includes the type-I monopole, eg =3m. Since the
type-I monopole cannot have attractive potential with any
other monopoles, the monopole with eg >3 would be un-
stable and would decay by emitting the eg =3m mono-
pole. In the PS limit, mass, M, , of the multiply charged
monopoles with eg =n /2 is just nM, ,, so that the multi-
ply charged monopoles are neutrally stable in this limit.
The monopole mass outside the PS limit has been studied
for the spherically symmetric solutions,'* and stability of
the spherical monopoles with eg =1,5,3 has been con-
firmed by estimating those masses.” Note that stability of
the monopoles with eg = 1,-;—,2,3 does not depend on
monopole masses. They are always stable provided that
the adjoint Higgs masses obey the suitable stability condi-
tions.

II. ANSATZE FOR MULTIPLY
CHARGED MONOPOLES

Outside the monopole core but r <<1/My,, the mono-
pole fields in the Dirac string gauge are expressed as

1—cosf »
AD‘—Q r sinf ¢ ’ (3.13.)
®y=(P®)=a diag(1,1,1,—3,—3), (3.1b)

where @ is the adjoint Higgs field of SU(5). In order to
obtain the monopole fields inside the core we must
transform Eq. (3.1) into string-free, nonsingular form.
This is achieved by the singular gauge transformation

D=ADA"!, (3.2a)
A=AApA~'+iAVA~!, (3.2b)

Then A and ® give the asymptotic form of the finite en-
ergy, nonsingular monopole solution. The Ansatz for the
fundamental Higgs field H inside the core is obtained by
considering the electroweak breaking to SU(3).® U(1).y,
for r >1/My, with the BNC condition with respect to
SU(3),. Since this is treated previously,” we do not in-

clude it here and concentrate our discussion on the adjoint”

Higgs field. We also neglect the effect of the
SU(Q2); ®U(1)y breaking to obtain the Ansatz for ® since
we are in the region of r << 1/My,.

The monopole fields for eg= 1,-;—,3, satisfying the
BNC conditions for SU(3),®SU(2); turn out to be spheri-
cally symmetric under L+ T, where T are the generators
of an SU(2) embedding. The stable monopole with eg =2,
however, amounts to spherically asymmetric.” The spher-
ically symmetric monopoles with multiple Dirac charge
have been studied under the different conditions.>!> In
what follows we shall construct the explicit Ansdtze for

eg = 1,—;—,3, which obey the BNC conditions with respect
to SU@B).®SU(2),. The self-dual solutions for
eg=1,%,3, in the Prasad-Sommerfield limit have been
obtained by Gardner.’

(i) eg =1. This is a type-III monopole in Table I. The
charge matrix Q is given by

Q =+ diag(—1,—1,0,1,1)=—T}5 ,
where T; (i =1,2,3) are the SU(2) generators defined by

3.3)

0 0 o 10 0 —0oy
Tl=%OOO,T2=éOOO,
g 0 O o 0 O
(3.4)
g, 0 O
T3=% 0 0 0 |=+diag(og0,—0y).
0 0 —oy

Here o; (i =1,2,3) are the 2XX2 Pauli matrices and o,
denotes the 2 X2 unit matrix. The Higgs field (3.1b) can
be written as

®y/a=1+T;—3T,%. (3.5)
We shall make the gauge transformation (3.2) with
A(6,¢0)=exp(—iT3¢)exp(—iT,0) exp(iT3¢) .
The gauge-transformed fields amount to
®/a=1+3(T%)—3(T%)?, (3.6a)
=(EXT) . (3.6b)

Thus the nonsingular, finite energy monopole solution is
obtained in the following form:

D=o(r)+ (T (r)+(TT)¢y(r) , (3.7a)

A=(?><T)L:-r—,(—rl , (3.7b)

with the boundary conditions for r — o0:
do(r)—a, ¢i(r)—>a,
¢,(r)——3a, K(r)—0.

As usual, we insert the Ansatz (3.7) into the energy func-
tional and minimize with respect to the radial functions to
get the equations for ¢;(r) and K (7).

(ii) eg ==. This is a type-IV monopole and the charge
matrix is given by

)

MBS

Q=diag(—7,—7,— 7,1,
=I,—T;, (3.8)
where
I, =diag(0,+,—+,0,0)

and

T;=diag(+,1,0,—1,—3) .
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We define the SU(2) generators I; and T; such that their
third components are I3 and T3. Since I; (j=1,2,3)
commutes with Q and @,

[1;,Q1=0, [I;,®]=0, (3.9

we can transform Eq. (3.1) to a spherically symmetric
form under L+T. Such a transformation is given by

A(6,6)=g(6,)0~1(6,4) , (3.10a)
g(0,8)=exp(—iT3¢) exp(—iT,0) exp(iT3¢) , (3.10b)
0(0,9)=exp(—il;¢) exp( —il,0) exp(il ;) . (3.10c)

Following the standard method to obtain the spherically
symmetric monopole solution,'® we find

A=—i—’f><[T—I(?)], (3.11)
where I(T) is defined by
ID)=AIA!. (3.12)

In order to obtain the gauge transformation of ®,, we
express

Dp/a=14+5T;—BT52—3T3+5T54, (3.13)
so that we get v
®/a =1+45(T1)— (TP —(T%)
F5TR . (3.14)

The explicit form of the gauge field is obtained by Eq.
(3.11), where we must express I(T) in terms of T. A sim-
ple computation yields

1 1 29 42 1 3 54
Iy=—5— 5T+ 513" 4+5T3°— 5T,

=X(T3) (3.15)
and
I+={Y(T3),T+}, (3.16a)
with
¥(T3)= o =(1-2T; —4T3) (3.16b)
Following Goldhaber and Wilkinson, !¢ we obtain
I®)=X(TTR+{Y(T?), T—(T?)} (3.17)
and
I8)X?={ ¥(T49), Tx?)
D (12T D —4T 92, TxH)} .

T a2

Thus the Ansatz for eg =3 amounts to

A=

‘lh—l

{Ko(r)+(TD)K (1) +(T2)K,(r),2XT} ,

(3.19a)

(3.18) -

D =¢o(r)+ (T (r)+(TF)py(r)
F(TDVP3(r)+ (TR Py(r) ,

where the radial functions obey the following boundary
conditions for r— oo:

(3.19b)

1 1 1 1
KO(r)—"z_4‘/§, 2‘/2, Kz(r)——>‘/-2- s

do(r)—a, $i(r)—>5a, ¢(r)——La,

Kl(r)—>

$3(r)——Fa, ¢r)—5a .
(iii) eg =3. The charge matrix of this monopole reads
Q =diag(—1,—1,—1,2,3)=1,—-T, , (3.20)
where the SU(2) generators I and T are defined such that
I;=diag(1,0,—1,4+,—+), (3.21a)
T;=diag(2,1,0,—1,—-2) . (3.21b)

The generators I satisfy the condition (3.9) for the spheri-
cally symmetric solution. The gauge transformation re-
quired to obtain the symmetric solution has the same
form as Eq. (3.10) where the new generators I and T are
substituted for the old ones. ‘

In order to obtain the explicit Ansatz, we express I(T) in
terms of T. This time I; can be written as

Ii=—1— 3T+ 5 T2+ 5T — 2 T3¢

=X(T3) (3.22)
and
I.={Y(T5),T+}, (3.23a)
where
i vV2—-1 5V3 1+v2 V3
Y(T3)= =5+ 2 T |Ts
1-v2 V3|,
1716 24 Ts
14+v2 V3|,
- T T . (3.23b)

Thus we get I(T) as Eq. (3.17) with X(T‘%) and Y(T-%)

obtained from Egs. (2.22) and (2.23). The Higgs field in

the string gauge can be written as
Dp/a=1-3T:—ET2— T3+ 2Ty, (3.24)

Now the spherically symmetric Ansatz for eg =3 reads

3

A=% 3 (TRK,(r)EXT |, (3.25a)
n=0
4
D=3 (TE)',(r). (3.25b)

n=0

The radial functions satisfy the following boundary condi-
tions for r— oo
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17—v2  5V73
Kol —>=—"3"""43
1+v2 V3
K== =g~ +7% |-
V3 Vv2-1 14v2 V3
K=yt BO—" v 1

$or)—a, ¢i(r——3ra, g —>—Ta,

d3(r)—>—2a, dyr’—=a.

IV. DISCUSSIONS

We have examined the stability condition for non-
Abelian fluctuations with respect to SU(3).®SU(2); for
r <1/My. From this analysis we determined the possible
SU(3),®@SU(2),®U(1)y quantum numbers of monopoles
and obtained the charge matrix in the Dirac-string gauge.
Then we considered the binding of two monopoles, which
may produce a monopole with multiple Dirac charge.

Stability of multiply charged monopoles against decay
into lighter monopoles depends on masses of the adjoint
Higgs bosons. The physical Higgs bosons consist of the
color-octet, SU(2),-triplet, and SU(3).®SU(2), -singlet
bosons. If the singlet mass mg is much lighter than the
triplet and octet masses, m3 and mg, two monopoles may
be bound by attractive forces between them. The general
stability conditions for the multiply charged monopoles
were obtained.

Multiply charged solutions are, in general, spherically
symmetric or asymmetric with respect to L+T. The
smallest magnetic charge of the nonspherical monopole is
eg =2 (Ref. 7). In fact the monopole charge in this case
is given by

Q =diag(—1,—3,—+,1,1), - 4.1)

and we cannot find the SU(2) generators I and T so as to
satisfy the conditions of the type given by Egs. (3.8) and
(3.9).

The Dirac-string. potential (3.1) for eg=2 can be
brought into the string-free form by the following gauge
transformations.

(i) Since the monopole charge (4.1) is written as

0=I3+0,, (4.2a)
where

I,=diag(0,+,—+,0,0), (4.2b)

Q,=diag(—1,—1,0,1,1) , (4.2¢)

and the SU(2) generators I satisfy [I,0]1=0, we shall
make the gauge transformation defined by

A=g,"'4pg,+ig, " 'Vg, (4.3a)
with
81=exp(—il3¢) exp(—il30) exp(il3¢) . (4.3b)
As a result, we obtain
o l—cosf~ 1 ~
Al_Qlf——krsinG o+ 81 (IxT)g, . (4.4)

(ii) Now the transformed charge matrix Q; can be writ-
ten as

0,=I3-T3,
with
' 1’3 =dlag(%’—%:0;%7‘_%) ’
T3=diag(%’%;0;—%y"%) .
Since the SU(2) generators I'=7 diag(0,0,0) satisfy

[T',Q,]=0, we perform the gauge transformation (3.2b) to
A, with

A(6,4)=g;3(6,4)g,7(6,6) , (4.52)
' 82(0,¢)=exp(—il3¢) exp(—il50) expl(il3¢) , (4.5b)
83(0,¢)=exp(—iT;3¢) exp(—iT,0) exp(iT3¢) . (4.5¢)
Then we obtain the following string-free potential:
A=AA A" 14+iAVA!
1 A (10~
=7’1’><[T——I(r)—l(r)] , (4.6a)
where I(T) and I'(T) are defined by
I®)=Ag, " Ig,A7 L, (4.6b)
I'F)=ATA"!. (4.6¢c)

Note that I'(T) is a vector under L+T (Ref. 10). This is
proved by recalling [ T3,/5]=0 and [ T3 —1I5,I']=0, and
following the arguments in Ref. 10. On the other hand,
I(T) defined by Eq. (4.6b) is not a vector under L+ T, so
that the gauge field configuration given by Eq. (4.6a) is
not spherically symmetric.
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