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In the construction and classification of the possible state vectors of a limited number of boson
modes, the use of subalgebras of invariant operators can simplify the procedure. The subalgebra of
all the invariant operators (invariant subalgebra) and the subalgebra generated by the invariant-pair
operators (invariant-pair subalgebra) are both considered. The invariant-pair subalgebra has the de-
cisive advantage of allowing the easy evaluation of matrix elements. The construction problem is re-
duced to. the problem of constructing the invariant-pair-free states, and a general procedure for

determining these states is presented.

I. INTRODUCTION

In the treatment of systems of interacting fermions and
bosons, a “static” model of the system has often served as
a useful guide to some properties of the full dynamical
system. For example, the static model of the pion-
nucleon system has the Hamiltonian

3
H= [ o(k)3a] (k)a(k)dk
1

3
—g [okv ()3 mlar(k)+af(k)]dk (1.1)
1

that describes the interaction of the isospin-1 pion field
whose annihilation operator is a; (k) with a static source
that represents the nucleon. The source has spin and iso-
spin %, but does not recoil, that is to say, the static source
has just the four states with spin and isospin projections
++, rather than the three-dimensional continuum of
states for each spin-isospin projection that a dynamical
source would have. Similar static models have been used
to treat the gluon part of hadronic state vectors in quan-
tum chromodynamics' and the interaction of two sources
of meson field.2 The strong-coupling polaron® and the in-
teraction of a nonlinear scalar field with a static source*
have also been treated in corresponding approximations;
in both of these cases the interaction with the source is
Abelian [no noncommuting operators like the o and 7 in
(1.1D)].

In general, the low-lying spectrum of static models in-
volves only one or more modes of the boson field, that is,
if the boson field is decomposed® into an “external” part
a.(k) and an “internal” part a;, (k) that consists of one
or two orthonormal modes,

«a(k)=amdk)+audk),

(1.2)
lor2

ain(k)= 3, 4;¢;(k),

i=1

then the low-lying states lie mainly in the internal sub-
space of the full Hilbert space, the internal subspace being
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defined as the subspace that is generated by just the
internal-mode creation operators A; and the source
operators like o and 7 acting on the bare source state.
Within the internal subspace, the Hamiltonian is
equivalent to an internal Hamiltonian. For example, in
the static model of the nucleon, where a single p-wave
pion mode is predominant, the internal Hamiltonian is

3 3
Hiy=3 SIWAL 45— Vro(ds,+4])].
A=1i=1

(1.3)

This paper is devoted to the problem of constructing use-
ful state vectors in the internal subspace. Of course, the
specific state vectors depend on the particular system
under consideration, but some general principles can be
used to simplify and systematize the process.

The complications arise because each state vector
should’ evidently be chosen to belong to a particular ir-
reducible representation (irrep) of the invariance group
(IG) of -the Hamiltonian, since the Hamiltonian does not
connect states belonging to different irreps of its invari-
ance group. In the pion-nucleon static model of (1.3), re-
ferred to in the following as the PNSM, the IG is the
group of rotations in space and rotations in isospin space,
and a state vector that belongs to an irrep is a state vector
that is an eigenvector of the total angular momentum of
the source and pion field and of the total isospin of the
source and pion field. An irrep I contains d (I) states that
transform among themselves under the action of the
operators of the IG; it is useful to consider the d (I) states
in the irrep I as a single “irvec” v!. An irvec belonging to
the I irrep will also be called an I state. In the PNSM, an
irvec contains the (2J +1)(27T + 1) substates belonging to
its total angular momentum J and total isospin 7. The
IG as an abstract group determines the rules for coupling
irvecs to form states that belong to a definite irrep. When
irvecs v! and w” are coupled to form the states belonging
to the irrep K, the resulting irvec will be written {v/,w’}%.
In the PNSM, the irvec coupling coefficients are products
of two Clebsch-Gordan coefficients, one for angular
momentum and one for isospin.

1520 ©1985 The American Physical Society



32 BOSON SUBALGEBRAS AND CLASSIFICATION OF BOSON . . . 1521

The essential feature of the PNSM that allows further
progress is the fact that both the angular momentum and
the isospin are each the sum of a source part and a pion
part. Formally, in the static models enumerated above,
each generator of the IG is the sum of a source term and a
boson term. In such cases, it follows directly that a gen-
eral I state of a system of bosons interacting with a static
source can be (but need not be) written as a sum of terms,
each of which belongs to definite irrep of the source part
of the IG and to a definite irrep of the boson part of the
IG, that is, each term is of the form {®’,3X}7 where =¥
is a K irvec of the source and @’ is a J irvec involving
only boson creation operators A T, While the Hamiltonian
is diagonal in the irrep index I, it is, of course, not neces-
sarily diagonal in either J or K. In the PNSM, there is
only one irrep for the source, so that the Hamiltonian is in
this case trivially diagonal in the source irrep; it is not di-
agonal in the pion irrep J. It is assumed that the states
3X of the source are known. If boson operators belonging
to different modes of the Bose field (that is, to distinct
irvecs) are present, the states ®’ can be further reduced to
terms that mvolve the coupling of states, each of which
involves A" operators for a single mode of the field.
Hence, the problem of cataloging the states of the system
reduces to the problem of cataloging the states ®’ of a
single mode of the Bose field.

Besides just a list of the states, any computation involv-
ing the boson states will require some matrix elements.
One set of required matrix elements is the matrix of the
unit operator, or, equivalently, an orthonormal choice of
the boson states. The second set of required elements is
the matrix of the operator 4 T, From these two sets, other
needed matrix elements can be derived. This cataloging
problem is the analog for Bose systems of the familiar
problem of classifying the states of N fermions in a single
shell. In the fermion case, the number of particles, that is,
the number of particle creation operators, is fixed, so that
only states with a fixed number N of fermions are re-
quired.

II. SIM?LEST EXAMPLES

The creation operator for neutral scalar s-state bosons
is invariant under the IG of the Hamiltonian; it belongs to
the O irrep of dimension d(0)=1. (In general, an invari-
ant operator is one that belongs to the O irrep of the IG.)
The normalization of the creation operator A4 ' is specified
by v

[4,411=1.

Then in this well-known case, the orthonormal states are
given by

(2.1

[n)= —(A*)"Q 2.2)

where n is any non-negative integer and () will always be
used to denote the boson vacuum,
AQ=0. (2.3)

The only nonzero matrix elements of the oberator AT are

(n+1]AT|n)y=n'" 2.4)

The case of a vector mode is nearly as simple. In this
case the operator AT is a three-vector, corresponding to an
isovector scalar s-state boson or a neutral scalar p-state
boson. It belongs to the 1 irrep with dimension d(1)=3
of the IG, so it is convenient to use the notation

Af=c', 2.5)
with normalization specified so that
[Ai,AJ:r]=8i'j . (2.6)

Call the quantum number J-spin, which can be angular

-momentum or isospin. The states of this mode can be

classified by total J-spin, which takes on all non-negative
integer values. The dimension of the J irrep is
d(J)=2J +1. For fixed value K of the J-spin there is a
minimal irvec | K,0) with K creation operators C!; the
normalized irvec | K,0) can be defined recursively by

10,0)=0,
' 2.7

| K,0) = {Cl, | K—1,0)k-1}X

1
VK
Every other K irvec is obtained by applying the
invariant-pair creation operator P',

3
pl=tc.c=13cic!,
1
(2.8)
=N+73,
to the state | K,0). Since the state | K,0) has each of its
pairs maximally coupled to J-spin 2, it follows that

P|K,0)=0.

[P,PY1=3[4-4,4 4T |=aT 4+ 3

(2.9

With the commutation relation just given, it is easy to see
that the complete orthonormal set of irvecs of the three-
vector mode is given by

172

(K+3)
: (P*y|K,0) ,

— (2.10)
q(K 45 +g)!

|K,Q>=

where K and g both run over the non-negative integers.
The state | K,q) has J-spin K and is an eigenstate of the
boson number operator N=4"4 with eigenvalue K +2g.
The matrix elements of the operator 4' in this basis will
be evaluated below in a more general context.

III. WHY SUBALGEBRAS?

So far, everything has been simple, straightforward, and
well known. The first interesting case is that of p-wave
pions, whose creation operator belongs to the (1,1) irrep of
the IG; that is, the creation operator AT=C!"is a three-
vector in isospin space and a p-wave three-vector in coor-

‘dinate space, with

[Ari,A];1=85,8;; - (3.1)

Now the states are eigenstates of the isospin T and the an-
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gular momentum L (7L irvecs). For classification pur-
poses, they will also be chosen to be eigenstates of the

~
IG-invariant boson number operator N,

33
N=4a"u4=3 I 4f4;, 3.2)
A=1i=1

so that a state will be written |N,T,L,a) where a

represents other indices necessary to completely character-

ize the state. The state | N,7,L,a) belongs to the TL

irrep of the IG. The orthonormal states with N =0,
N =1, and N =2 are simple enough; the full list is

IO’O’0>=Q>
1,1,1)=Cc!'q, 3.3)
|2TL)__‘/§{C“C“}TLQ TL =00,11,02,20,22 ,

where the restriction on the 7L values or N =2 follows
from the fact that the two identical C'! operators must be
coupled symmetrically. Note that while the state |2, 0 0)
is related to the state | 0,0,0) in the same way that P tQis
related to Q in the simple isovector case, the state |2,1,1)
is not simply related to the state |1,1,1).

The key properties here are ccrtam features of the alge-
bra generated by the operators AT and 4. Some aspects

of this algebra are treated elegantly in a paper by Fried--

man, Lee, and Christian,® referred to as FLC in the fol-
lowing. Let an invariant operator constructed from At
operators alone (without A operators) be called an IC-
operator (invariant C-operator). FLC shows that in the
(1,1) case there are three independent IC-operators; let a
set of three independent IC-operators be [R,,R;,R,],
where R; is of degree i in C!! (that these degrees are ap-
propriate follows from FLC). It follows that a general O
state (or 00 state) can be written as f(R,,R3,R4)Q, where
f is a polynomial in its variables. It can also be shown
that a general 11 state (FLC showed that there are no 01
states or 10 states) can be written in the form

3
S fv(Ry,R3,R,) | N,1,1)
N =1

where the states | N,1,1) for N=1 and N =2 are given
in (3.3), the state |3,1,1) is an appropriately chosen 11
state with three creation operators, and the fy are again
polynomials. The states | N,1,1) in this resolution satisfy
the conditions

R} |N,1,1)=0, N=1,2,3, j=2,3,4 (3.4)

so that they are “invariant free.” These resolutions lead
to the idea that a general 7L state can be written in terms

of a finite number of invariant-free TL states
| Ny, T,L,a) in the form
3 fa(R3,R3,R) | No,T,Loa ) 3.5)
a

where the f, are polynomials in the R;. The number of
independent invariant-free states is one and three for the
cases 00 and 11, respectively. The problem of listing all
the states can thus be reduced to the problem of listing
just the invariant-free states.

In more general terms, some of the operators in the
algebra generated by the AT and 4 operators belonging to
a single irrep are invariant operators; the algebra of the in-
variant operators is evidently a subalgebra, the “invariant
subalgebra,” of the full algebra, and the classifications of
the type of (3.4) and (3.5) are based on the use of those ele-
ments of this invariant subalgebra that are composed of
AT operators alone, together with finite sets of invariant-
free irvecs.

In the case of a single vector mode, the mvanant
subalgebra is generated by the operators P and P'of 2.8).
In the present (1,1) case, an invariant-pair creation opera-
tor can be defined again by

~iC-C=+ 2 }‘,c,{}cM ,
A=1i=1
(3.6)

(PP =4[4-4,4"4"1=4"a4+5=N+7%,

but in this (1,1) case, the algebra generated by the opera-
tors P and P' is distinct from the invariant subalgebra;
clearly, it is a subalgebra of the mvarlant subalgebra. Call
the subalgebra generated by P and P the “invariant- -pair”
subalgebra or IP subalgebra. The simplicity of the vector
or 1 case is due to the identity of the invariant subalgebra
and the IP subalgebra.

IV. CLASSIFICATION ACCORDING
TO THE INVARIANT-PAIR SUBALGEBRA

For any irvec of creation operators, there is a corre-
sponding IP subalgebra. Let the irrep of the IG to which
the irvec of the creation operator 4 1 belongs to denoted F
(for fundamental), and, for ease of notation, write
AT=CF; the irvec CT consists of v=d(F) operators.
Choose the operators 4, so that

[Ag,A5]=5,5- 4.1)

The IP subalgebra is generated by the operators P and PT,
where

v
P'=3c.c=33cics,

1

4.2)
(PPN=t{A- 44" aT=a" a4 LR 12,
and where the boson number operator is now
A v T
N=aTu=34l4,. 4.3)
1

Let an IPF irvec (IPF for invariant-pair-free) with N
mesons be defined to be an irvec | N,a) that has no in-
variant pairs and therefore satisfies

P|N,a)=0,
(4.4)
N|N,a)=N|N,a) .
Then it follows that, just as in the 1 case, the set of irvecs

formed by adding invariant pairs to a given normalized
IPF state | N,a ),
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v
—_ 1
‘N+ > 1 ‘
|N,a,q)=

(P |N,a), @.5)
q!

N+%_1+q !

forms an orthonormal “ladder” based on the IPF state
| N,a). Moreover, it is very easy to see that

(M,a,p |N,b,q)=8,,8y n{M,a |N,b), (4.6)

so that a complete orthonormal set of states can be ob-
tained from a complete orthonormal set of IPF states; the
listing problem has been reduced to the problem of listing
just the IPF states. In the matrix element of (4.6), as in
all matrix elements considered in this work, it is implicit
that the same irvec substate [any one of the
d(M,a)=d (N,b) substates] is used on both sides of the
matrix element; the IG ensures that matrix elements be-
tween substates with differing “m values” vanish, and

Of course, there are in general many more IPF states
than there are invariant-free states. On the other hand,
the IPF states have the overwhelming advantage that con-
struction of the pair ladders (4.5) is straightforward and
the simple relation (4.6) holds for them; no similar simple
construction exists for the states in the ladders based on
invariant-free states, nor is there any simple way of deriv-
ing orthonormality relations. The main general result of
all the preceding discussion is, therefore, that while the set
of ladders based on invariant-free states has the possibility

~of shortening the classification process, the ladders based

on the invariant-pair-free states are to be preferred be-
cause they allow matrix elements to be evaluated easily.

As the main necessary example, consider the matrix ele-
ments of the creation operator AY or CF. Let | M,K)
and | N,L) be IPF states belonging to irreps K and L,
respectively, of the IG, and | M,K,p) and | N,L,q) be
formed from | M,K) and | N,L) by the process of (4.5).
From the commutation relation of Pand 4",

therefore only matrix elements between substates with [P,A T] =4, 4.7)
identical m values are ever considered. This convention
avoids an extra trivial set of Kronecker deltas throughout. it follows that
]
0, p>1
(MK |PPAT|N,L)= {M,K |4 |N,LY8yn_1, p=1 (4.8)
(MK |AT|N,L)8pn 41, p=0.
It is also straightforward to see that
v
p! M+ 5 1+p|!
PPP|MK)= (PTY-9|MK), p>q
(p—g)! M+§—1+p—q !
=0, p<gq. 4.9)
From these it follows easily that the only nonzero matrix elements of the operator AT are
172
M+ -‘21 —1+p
(M,K,p |AT|M —1,Lp)= — | (MK |af|M—1,L),
M+4+—-—1
2
2 (4.10)

(MKp | A [M+1,Lp—1)= |—L—

ML
+2

so that all matrix elements of A" are simply related to the
IPF-state matrix elements of 4'. The ease of evaluation
of this matrix element demonstrates the usefulness of the
IP subalgebra.

There is also a group-theoretic language’ that describes

(MK |4 |M+1,L),

the processes that give Egs. (4.5) and (4.10); the group is
SU(1,1). I feel that the use of SU(1,1) complicates the
description of the action of the invariant-pair operators
unnecessarily; however, this is a matter of taste to be left
to the reader.
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Note that the IG determines the coefficients U;(K,L)
in the relation

(K| {T, | LY}E=UK,LYKL | {TT, | K)}E)*, @411

where J is the adjoint irrep to J and TV is the adjoint of
T’. When irreps J and L can combine to give irrep K
(and therefore J and K can combine to form L), the
U;(K,L) satisfy

Uy (K,L)UJ(L,K)=1. (4.12)
It follows from (4.11) that the matrix elements of the
operator A4 can also be derived from (4.10).

For the irreps available for bosons (but not for fermion
irreps), it is always the case that J=J; in the following, J
and J will not always be distinguished. The identity of J
and J is responsible for the invariance of CF-C¥ in the bo-
son case, since the invariant-operator combination is al-
ways really T7- V7.

In the case of a single vector mode (1 case), the value of
U;(K,L) is

d(L)

Us(K,L)=s;xr 4K

"y (4.13)

where J, K, and L are J-spins, and

syxp=(—1)/ +K-L (4.14)
In the (1-1) case, the symbol J in U;(K,L) stands for two
spins (isospin and spin), and U;(K,L) is the product of
two factors of the form of (4.13).

V. PROCEDURE FOR DETERMINING
THE IPF STATES

In the general F case, the orthonormal IPF states for
N=0and N =1 are

10,0)=0Q,

(5.1)
|LFy=Ccfa,
and the matrix elements of the creation operator that in-
volve these states are

(1,F | {CF,]0,0)}F=1. (5.2)

Now suppose that all the IPF L states | N,L,a) and the
matrix elements of the creation operator,

DYsRa={(N,K,a|{CF,|N—1,L,B)}¥, (5.3)

are known for N=1,2,...,M; the following procedure
determines the IPF K states for N =M -1 and the M to
M + 1 matrix elements of the creation operator.
Consider the states {CF , |M,L,a) }K. Clearly these K
. states have M + 1 bosons, but they are not IPF states. In
fact,

P{CF,|M,L,a)}¥={4, |M,L,a)}X. (5.4)

The right-hand side of (5.4) is obviously an IPF state with

M —1 bosons and can therefore be written as a superposi-
tion of such states

{4, | M,L,a)}¥ EXL[,KB]M——IKB) (5.5)

where the coefficients X f{, Kp are

Xl xp={(M —1,K,B| {4, | M,L,a)}X
=Up(K,L)(Dg7a)* (5.6)

and the recoupling coefficient Ux(L,K) is given in (4.11).
The second line of (5.6) shows that the X coefficients de-
pend only on the known matrix elements. Since

M+¥—

PPT|M —1,K,B)= >

tM_lyK,B> ’

(5.7

it follows that for fixed irrep K the states

|M +1,K,(L,a))={CF, | M,L,a)}¥

. Pf
— 3 Xloxs| M —1,K,B)
M—{—;-——l B

(5.8)

are (M + 1)-boson IPF states.

All that remains is to choose an orthonormal basis that
spans the space generated by the states | M +1,K,(L,a));
the states | M +1,K,(L,a)) can then be expanded in
terms of these basis states, which are the states
| M +1,K,B):

|M+1,K,(L,a))=3Di% kg | M +1,K,B), (59)
B

where the appearance of D here follows from the relation
(M +1,K,8|M+1,K(L,a))
=(M +1K,B|{CF, | M,L,a)}¥. (510
The two ways of evaluating
(M +1,K,(L,a)| M +1,K,(J,y))

give the equation to be satisfied by the D parentage coeffi-
cients:

%DﬁstD%z, xk8=0l sy
={CF, | MLa)}¥t{CF, | MJy)}¥

Ug(L,K)Ugp(J,K)
- " EDKB La DRG Ty -
M+ 3‘ —1

(5.11)
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TABLE I. Independent IPF states.

0 1 2 3 4 5 6
0 1001 101 10111 0001 101 00 1
1 111122 01111 1122 o011 11 0
2 11224 0122 113 o1 1
3 1123 012 11 0
4 112 o1 1
5 11 0
6 1
TABLE II. 1—2 parentages.
11 22 02
11 V2 V2 V2
TABLE III. 2—3 parentages with [a]=a!/%
00 11 22 33 12 13
1 31 sy [5 0 [3] 0
2 0 *[] 0 o I3 [3]
22 0 [+ 31 Bl 31 23]

TABLE IV. 3-—4 parentages. (a) T4=L4, (b) T4 <L4 with

[al=al'
(a)
00 11 22 22 33 44
00 0 5[21 0 0 0 0
2 glyl sl (41 o 0
12 0 331 1 =1 0 0
2 0 Flwl 3] [%1 231 0
13 0 0 *+[14] 2 0 0
3 0 0 31 =551 2% 2
v (b)
02 12 13 23 04 24
11 *[Z] +[2] 0 0 0 0
2 [31 331 *[3] [2] 0 0
21 0 *2[3] 0 0 0 0
22 0 * L 1 1] 0 0
13 2[&]  [4#] 23] [%] 2 (4]
33 0 0 0 141 0 [£]

1525
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By using the commutation relation of the operators C¥
and A, as well as the adjoint relation (4.11), the matrix
fo,K Jy can be evaluated in terms of the known matrix ele-
ments. The end of this section gives a few details.

With the usual normalization conventions, it is always
true that

(K,a|UF-VF|K,BY=3(K,a| (UF, |J,y)}¥
Jy

X (KB (VT | 4y)}5)* .
- (5.12)

Then the expectation value of N gives an orthonormality
relation:

3 D1t kpDlaky =M +1)8g,, . (5.13)
La

Thus, the trace of (5.11) gives
E(M + 1 ): EQZ%IfLa ’
B La

and therefore the trace of Q divided by M +1 gives the
number of independent basis states | M +1,K,[3).
The evaluation of

{(CF, | MLa)}XT(CF, | MJy)}¥

(5.14)

proceeds by first using (4.11) to obtain

(CF, |MLa)}XT(CF, | MJy)}X

= Up(K,){MJTy | {AF,{CF, | MLa)}¥})* ;  (5.15)

then

(AF(CF, | MLa)}X}’
=S U/ k(F,F,L){{AF,CF},, |MLa)}’, (5.16)
I

where the six-argument U coefficient is a recoupling coef-
ficient determined by the IG. In the 1 case, it is just the
usual 6J recoupling coefficient U (F ,F,J,L;I,K), and in
the (1-1) case it is the product of two such coefficients.
Now the relation

{ Aﬁ’cF}I=d1/2(F)8LO+S;FI

{CF AT}, (5.17)
which is valid in the 1 and 11 cases, is assumed; the fol-
lowing expressions are valid whenever the relation (5.17)
holds. When (5.17) is substituted into (5.15), the first
term gives a contribution to (5.15) that a little thought

shows must be just an overall delta function; hence
' 8.7

—_— 5.18
Ur(K,J)d (F)!/? 5.18)

U&K(F,F,L ) =

and

(CF, |MLa)}¥'(CF, | MIy)}X=8;,8, o+ S W(J,L;K,H){AF, | MLa)}H1(4F, | MIy )},
H

W (J,L;K,H)=Up(K,J)UNJ,H) I s 5
I

(5.19)

U x(F,F,L)U{ 4(F,F,L) .

TABLE V. 45 parentages. (a) Ts=Ls, (b) Ts <Ls with [a]=a /2

11 11 22 33 33 44 55
00 1 1 0 0 0 0 0
o [l *Ulws] 131 S[F) 0 0 0 0
02 0 * L[] 0 0 0 0 0
12 3] 2[5 2] *2[§] 0 0 0 0
22 0 T T kg T ] 0 0
22 *[47]  Flws] 131 *5l 131 3] 0 0
13 0 0 +[7] *2[42] 0’ 0 0 0
23 0 0 T 5171 + [&] 0 0
33 0 0 2121 L *+[2] R 1115] 0
24 0 0 0 * 3 34 0 0
44 0 0 0 16 1] 151 18]
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TABLE V. (Continued).
(b)

02 12 13 23~ 23 14 24 34 15 35
1 (£ 0 0 0 0 0 0 0 0 0 0
02 0 +[13] 214 [£1] 0 0 0 0 0 0 0
12 %1 171 *+ [&] *+[14] z 0 0 0 0 0
21 0 *[ 1] 0 0 0 0 0 0 0 0 0
22 0 17 2 *8[ 1o 1 *4[ %] *2[+] 0 0 0 0 0
22 0 0 0 [ %] * 212 0 0 0 0 0
13 [$]  3I5] *3[3] *[ 1 =171 571 [3] [%] 0 0 0
23 0 *3[%] % [&] 0 351 51 *3[31 [ 0 0
32 0 0 0 0 1 0 0 0 0 0 0
33 0 0 0 0 Z12] * 5 [7] 0 457 +[31 0 0
04 0 0 *[ 3] 2[&] 0 0 %1 0 0 [$1 0
24 0 0 T *[105] *[%51 [+ *3[F1 0 $I8] (31 231 3[F]
44 0 0 0 0 0 0 0 0 * 3] 0 2[2]

This completes the evaluation of the matrix fo,K Ty

VI. THE (1,1) CASE

The techniques described above have been used to
derive the parentage tables of D coefficients of (5.3) for
the case of p-wave pions, the (1-1) case. MACSYMA
(MIT Mathlab group) was used to perform the necessary

algebraic manipulations. Table I shows the number g of
independent n-meson IPF states for various values of the
isospin T and angular momentum L; this number is the
same for TL and LT. The values for n less than the
minimum of T and L are all zero and are omitted from
the table. The digits at a particular value of TL are the
values of g for n going from min(7,L) through 6. For
example, for (7T,L)=(2,3) there are no IPF states with

TABLE VI. 5—6 parentages. (a) T¢=Ls, (b) Ts < L¢ with [a]=a /2

(a)

OO 11 11 22 22 : 22 22
11 2[ ] [+7] *2[ 7] B 0 * 3[4 231
11 *9[ 1o T3] 0 * 4[] 0 *+[ 2 ¥
02 0 [+] 41 0 0 0 0
12 0 5171 0 * 211 *2[ %] Fl+] 50211
22 0 *3[+] 4[ 5] 2151 0 (] S13]
22 0 "0 *[10] [2] 0 0 0
13 0 0 0 %] [+] 2] * 5151
13 0 0 0 + 0 *3+[14] 32
23 0 0 0 +[10] *+[21] %] * 551
23 0 0 0 +r[35] *+[3] ) a4
33 0 0 0 * 7051 0 YRS B4
33 0 0 0 * 2 [6] 0 0 * (6]
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TABLE VI. (Continued).
(a)
33 33 33 44 44 55 66
22 #12] * 5[] * 5[5 0 0 0 0
22 5] $I5] Lo r] 0 0 0 0
23 *F%] F171 3125 0 0 0 0
23 3] ] *6[ 7571 0 0 0 0
33 3021 Sl 3] 721 (1] 0 0
33 3] £l=¥] * 7] %4051 ] 0 0
24 +13] *[1 * B 0 0 0 0
34 £ * 5[5 1] T lowl + $l4) 0 0
44 (%] 162 il *3[%] * 1] 2[$] 0
35 0 0 0 * L[ 2] 1% 0 0
55 0 0 0 3051 5] [$] (6]
(b)
02 12 03 13 13 23 23
11 [ *13[ 53] 0 0 0 0 0
11 & I 0 0 0 0 0
02 0 —73r] 0 [£] 351 0 0
12 *[47] 183 2[3] [+] *15[ 57 ] T 3]
21 0 * 3] 0 0 0 0 0
22 0 Ha] 0 *[7] 3] 0 *6[ 1351
22 0 2[¥] 0 3] 1[5 0 2[ >
13 2] 2] [3] *5[7] ] +[7] Tl
13 2[+7] [+] 0 *[15] e [$] *4[+r]
23 0 * 351 0 [1] [0 *3[+] * 345
32 0 0 0 0 0 L] * 4]
23 0 * 341 0 * 35 ] 4] %] Flas]
32 0 0 0 0 0 * 3] * X3
33 0 0 0 0 0 [$1 *2[ 5551
33 0 0 0 0 0 0 3]
14 0 0 *3[1¢] HE) ] 3] *3[ 7]
2 0 0 0 7071 2] +H3 5]
34 0 0 0 0 0 * 5[] +5]

three mesons, one IPF state with four mesons, two in-
dependent IPF states with five mesons, and two indepen-
dent IPF states with six mesons.

Tables II—VI show the D parentage coefficients in con-
densed form; all D coefficients not explicitly listed can be
obtained by using the relation

N N
Drr,a=Dit1 -

In Tables II—VI, the TL values down the left side are the

6.1)

values for M — 1 mesons, and the values across the top are
for M mesons. Part (a) of Tables IV—VI gives the coeffi-
cients for Ty, =L,,, while part (b) is for unequal values of
Ty and Ly,. For states with identical values of TL, the
order is significant. To enhance readability, the asterisk
has been used to denote negative parentage coefficients.
The values in these tables extend and supersede the ones
given previously in Ref. 8; the tables of Ref. 8 include
meson numbers up to and including 4 and do not use
orthonormal meson states.
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TABLE V1. (Continued).

(b)

04 14 24 24 24 34 34
13 [ o] 3% 3051 Trl3] #l3r] 0 0
13 37 * 371 3] i3] * 1l 0 0
23 0 *3 * 30471 1] THzs] FF] $F]
23 0 +17] *5177] 3] Flsio] 3031 *3l5]
33 0 0 0 *2[ 5] (3 *[ 3] 0
33 0 0 *[ 5] irl8] wlr] * 7 t
14 [%] Tl *15[77] 0 Easd 0 0
24 0 *303] il *1r[3] 7l 5] 4[] *[r]
34 0 0 T3] 1] %] ] *3l4]
43 0 0 0 0 0 7071 F171]
44 0 0 0 0 0 *3[7] 3[7)
15 3] R *35[2] (3] * 14] 7555 ] 0 0
35 0 o0 4 0 i x1[2] *x1[2]

(®) .

15 25 35 45 06 26 46
14 *1[14] 3[7] 0 0 0 0 0
24 [2] 1 2[3] 0 0 0 0
34 0 $12] *[=] 3[+] 0 0 0
44 0 0 (4] [] : 0 0 0
15 [$] 03] o 0 [6] 3% 0
35 0 * (2] (4] 112] 0 2[5] 1)
55 0 0 0 * 2[4 0 0 +[10]

VII. SUMMARY

The use of the invariant-pair subalgebra has been
shown to provide some simplification of the process of
constructing and classifying the possible state vectors of a
limited number of boson modes. In particular, only
invariant-pair-free (IPF) states actually require classifica-
tion, since all states with invariant pairs can be systemati-
cally cataloged once the IPF states are listed. The invari-
ant subalgebra was also considered and found to be less

suitable because of the difficulty of evaluating matrix ele-
ments between invariant-free states.

A procedure for determining the IPF states has been
described and used to catalog the IPF states for up to six
p-wave pions.
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