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This is a continuation of three recent papers in which the quantum relativistic rotator was defined
and analyzed as an extended model for hadrons. En this paper, an analogy is established between the
quantum relativistic rotator and the covariant noncanonical treatment of Rohrlich's version of the
quantum relativistic string (when the latter is restricted to its lowest mode of excitation). It is shown
that the models utilize identical techniques in their basic construction which result in many similari-
ties between the two, regardless of the fact that they ultimately account for the hadron spectrum in

two distinct manners.

I. INTRODUCTION

The interpretation of the excitation spectrum of the
dual resonance models' as a vibrating relativistic string
has led to an attractive phenomenological model for the
internal structure of hadrons. The geometrical descrip-
tion of the string was originated by Nambu who general-
ized the action of a relativistic point particle to a system
of one-dimensional spacelike extension. As a consequence
of reparametrization invariance of the string action,
quantization can be carried out only after a specific choice
of gauge has been made. It is standard practice to utilize
this freedom of reparametrization invariance by imposing
the orthogonal gauge which, although it linearizes the
Euler-Lagrange equations of motion, leaves an arbitrari-
ness in the string-time (evolution) parameter. It therefore
becomes necessary to impose a further condition in order
to specify the system uniquely. For the conventional
treatment of the relativistic string in the orthogonal
gauge, quantization is carried out by specifying the evo-
lution parameter through the application of the null-plane
coordinates (null gauge) which results in a positive-
definite Hilbert space in 26 space-time dimensions with a
tachyonic ground state.

Various authors have proposed that it might be pos-
sible to arrive at a more physically attractive result by ap-
plication of an alternate quantization procedure, i.e., char-
acterization of the evolution parameter through a gauge
other than the conventional null-like choice. Among
these alternate procedures, Rohrlich's center-of-mass ap-
proach is quite appealing.

Rohrlich introduced a technique which quantizes the
relativistic string while circumventing the unphysical re-
sults of the conventional string model by fixing the evolu-
tion parameter through the application of a timelike
gauge in the center-of-mass frame (Rohrlich's string
model). The basic results of this quantization procedure
are (a) Lorentz invariance in four-dimensional space-time;
(b) the Hilbert space is made positive-definite (no ghosts)
by imposing a constraint on the indefinite Hilbert space
which holds either as a condition on the physical state
vectors '"' or as an operator expression "(which depends

on whether the commutation relations are consistent with
them); (c) linearly rising Regge trajectories; and (d) a mass
spectrum that contains an arbitrary additive constant
which can be made strictly positive (no tachyons). The re-
sulting spectrum of the string is explained in terms of
arbitrary-dimensional harmonic-oscillator states (where,
for the special case of the lowest mode, the spectrum is a
result of the excitations of a three-dimensional oscillator
at rest).

On the other hand, the model of the quantum relativis-
tic rotator (QRR) [defined and analyzed in a series of
three recent papers, Refs. 8(a), 8(b), and 8(c)] explains the
hadron spectrum in terms of infinite "towers" which con-
sist of an arbitrary number of rotational states. The
model is specified by a Hamiltonian which is obtained by
imposing a (first-class) constraint on the second-order
Casimir operator of a de Sitter SO(4, 1). The constraint
relation leads to an experimentally verifiable "rotatorlike
mass-spin spectrum while the relativistic Hamiltonian is
used to determine the dynamical structure of the QRR.
Theoretical justification" for the QRR is established
through the methods of group contraction where, in the
elementary contraction limit (length parameter R-ao),
the model reduces to the description of a structureless rel-
ativistic mass point and, in the nonrelativistic contraction
limit (velocity of light c—+ oo), it reduces to the descrip-
tion of the nonrelativistic rotator. The resulting theory
for the QRR is relativistically covariant in four-
dimensional space-time without the appearance of ghost
states or tachyons.

It is the purpose of this paper to show that the basic
construction of the QRR bears a remarkable resemblance
to that of the covariant noncanonical treatment of the
Rohrlich string "which results in many similarities be-
tween the two hadron models (when the latter is restricted
to its lowest mode of excitation). A brief review of the
QRR is given in Sec. II where the basic quantum-
mechanical observables of the model are introduced as
well as their defining algebraic relations. After the rela-
tivistic symmetry of the QRR is established, an SO(4, 1)
substructure is introduced which supplies a relation that
breaks the symmetry thereby providing the model with a
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nontrivial (rotatorlike) mass-spin spectrum. A first-class
constraint is then imposed upon the substructure which
supplies the model with a relativistic Hamiltonian which
is used in Sec. III to obtain the QRR equations of motion.
Here a solution to the QRR's particle position equation of
motion is obtained which contains a ~-independent con-
stant of integration which plays the role of an arbitrary
"center operator" (which is not equivalent to the center-
of-mass position). It is shown in Sec. IV that if this in-
tegration constant is identified to be the Finkelstein center
operator, then we are automatically placed into a timelike
center-of-mass gauge equivalent to that used by Rohrlich
in his treatment of the relativistic string. The similarity is
investigated further in Sec. V where the algebraic struc-
ture of the two models is compared on both the "external"
and "internal" levels. In Sec. VI the structure of the QRR
is recast in terms of its fundamental mode operators and
the resulting relations are compared with those of the
Rohrlich string. It is also shown that a ghost-elimination
condition exists for the QRR (identical to that for the
Rohrlich string) which is a direct consequence of the
specific definition of its "relative" position operator; i.e,
the operator which is responsible for the spatial extension
of the QRR. A summary of the basic results is given in
Sec. VII.

[Pp,Jp ]= i(g„P—p g„pP ), —

[P„,P ]=0,
(2.1b)

(2. lc)

where the total angular momentum decomposes into orbi-
tal Mz and spin S& parts:

(2.2)J„„=Q„P QP„+S„=M —+Sp„.
The properties of the position operators Q„are defined by
correspondence to the nonrelativistic theory and therefore
satisfy

[ Q„,P.]=—ig„.1,
[Q„,Q.]=o .

(2.3a)

(2.3b)

Since the Q& and P& are assumed to commute with the
S&, we also have

II. QRR HAMILTONIAN VIA CONSTRAINED
MECHANICS

The model of the QRR was defined in Ref. 8(a) as a
one-dimensionally extended object capable of performing
rotations and global translations in Minkowski space
whose dynamics is obtained through the quantum analog
of constrained Hamiltonian mechanics. ' The relativistic
symmetry of the extended object is expressed by the Poin-
care group, H p J (which determines the "external"

O' PV

space-time symmetry) together with the spectrum-
generating" group, SO(3,2)i s (which is the "internal"

O' PV

symmetry group). The Poincare group is generated by the
observables momentum P& and angular momentum J&
(with p, v=0, 1,2, 3) which obey the following commuta-
tion relations [gz ——diag(1, —1,—1, —1)]:

[Jpvr Jprr ] (gpp vcr +gva pp g povp gvp 'prr )

(2.1a)

[J„.Q, ]= (g.,Q„—g„,Q. ) . (2.4)

[r„,r„]=—is„. .

(2.5b)

(2.5c)

The relativistic symmetry described by Eqs. (2.1)—(2.5)
contains a substructure which plays the central role for
the QRR. By defining

B„=P„A,b„M—=P„+—
t Jpp, PP]pe~ (2 6)

(where bz is the Finkelstein center operator, '
A, = l/R is

the inverse radius of a micro —de Sitter space and
P„=P„/M with P„P"=M ) it can be shown that the
physical angular momentum J& and the 8& form a de
Sitter SO(4, 1)ii J . The central role that thisO' PV

SO(4, 1)s J plays comes from the fact that its second-
P PV

order Casimir operator:

A2
A, Q=B B"— J J"

P 2 Pv (2.7)

commutes with every element of the relativistic symmetry
and is therefore an invariant of the extended object whose
irreducible representations are characterized by the eigen-
values a of Q. [In the following we shall restrict our-
selves to the principal series representation of the group
SO(4, 1) (Ref. 13) which requires, a )—', —s(s+1).] Sub-
stituting the definition of B„into Eq. (2.7) gives

A, Q=P P"+A, , —A. W = A, —a
P (2.8)

[where W=(P&P") 'W with W—= —w„w" and w„
2 ~pvprr

To obtain our quantum relativistic Hamiltonian, the
methods of constrained Hamiltonian mechanics are ap-
plied. The constraint for a quantum relativistic mass
point,

N—:PpP~ —m =0 (2.9)

(where the eigenvalue m characterizes the mass point),
shall be replaced with the constraint imposed on the
second-order Casimir operator of SO(4, 1)s J, Eq. (2.8):

PV

e=—PPPP —A,2W+A, 2(
4

—a2) =0 (2.10a)

(where a is the eigenvalue which characterizes the QRR).
The symbol =0 signifies "set weakly to zero" since the
constraint has nonvanishing commutators and one must
evaluate all commutation relations prior to imposing the
constraint. The constraint relation %=0 taken between
the canonical basis vectors

~ pss3) leads to the mass for-
mula [see Ref. 8(b)]

The spectrum-generating group SO(3,2)r s is generatedP' PV

by the spin part of angular momentum S& and the Her-
mitian vector operator I

& which obey the following set of
algebraic relations:

[Spv~Spcr] = —i (gppSvrr+gvrrSpp gprrSvp gv—pSp )

(2.5a)
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m = A, (a ——,
'

) + A, s (s + 1) (2.10b)

(where the spin s has either the spectrum s = —,', —', , —,', . . .
or s =0, 1,2, . . . ).

Following the rules of constrained mechanics, the QRR
Hamiltonian may be expressed as

frame in which the center of mass is at rest, i.e.,
P& ——(1,0,0,0); and (ii) the rest frame in which the particle
position is at rest, i.e., Q& ——(1,0,0,0). As a consequence
of the forms for dp and Xp, we have the following opera-
tor identities:

A =P@=(tp[PqP" A, W—+A, ( 4
—a )] (2.11) P XP =O=P XP

p p (2.18a)

k= —&zw"=(P. l ) ——„ (2.12a)

which gives the following in an irreducible representation
[see Ref. 8(b)]:

[where P is an unknown velocity parameter which is to be
determined by specifying the evolution parameter
through a specific choice of gauge (see Sec. IV)].

We now restrict ourselves to those irreducible represen-
tations of SO(3,2)r s which contain only a discrete sum

I I v

of irreducible representations of the SO(3, 1)s subgroup.
pv

These are the Majorana' representations for which

(which identifies X„,as the spin tensor since in the proper
Lorentz frame, X;0——0) and

dpPP =O=dpP P (2.18b)

(which requires the relative position operator to be space-
like). From this information and Eq. (2.17) we have that
Xp is the angular momentum with respect to the ordinary
rest frame while Sp is the angular momentum with
respect to the particle-position rest frame.

In addition to the P„and d&, we also define the dimen-
sionless particle-position operator:

irrep
8' = (s + —,

'
) ——,

' =s (s + 1) (2. 12b)
Qq ——Q~M (&MQ„) . (2.19)

Some consequences of Eq. (2.3a) and this definition are
(where s =spin=0, —,', 1, —,', . . . ). Using Eq. (2.12a), we

may write the QRR Hamiltonian, Eq. (2.11), in the fol-
lowing alternate form:

A "=P[P P"—A, (P I) +A, ( ——a )] (2.13)

which is valid only in the Majorana representation and is
the form of the QRR Hamiltonian which shall be used in
Sec. III to determine the equations of motion.

We assume that the system center of mass and particle
position are separated in space thereby providing the
QRR with a spatial extension. Therefore, the center-of-
mass operator' is expressed as

[ Q„,M] = iP„,—

[Qp, M '] =iPpM

[QI Q.l i(=QUIP. QP—„»
[Qq, P,]= i (g„, P—„P ) . —

(2.20a)

(2.20b)

(2.20c)

(2.20d)

Introducing the dimensionless center-of-mass operator

Yp ——YpM, (2.21)

and using Eq. (2.14) we have that the center of mass may
be written in dimensionless form as

~~ =Q~+d~ (2.14)
~~ =Q~+ "~ (2.22)

where dp is the relative position operator which is direct-
ed from the particle position Q„ to the center of mass. It
is formally defined as'

Inserting Eq. (2.17) into Eq. (2.2) and using Eqs. (2.19)
and (2.21) we have

Pv Pv
Jp —Spv 2 SpvM

(2.15a)
Jpv =Xpv+ YpPv YvPp

Xpv+ YpPv —YvPp (2.23)

dp ——Sp P

The commutator of two d p's is

(2.15b)

[d„,d ]= i (S„,+d,P„—d„P ), —(2.16)

which suggests the definition of a new operator:

and is responsible for the extension of the QRR. We may
write Eq. (2.15a) in an alternate form by introducing the
dimensionless relative position operator dp ——dpM which
gives

III. QRR EQUATIONS OF MOTION

To obtain the time derivatives for the observables of the
QRR, the quantum analog of constrained Hamiltonian
mechanics will be used. Therefore the derivatives with
respect to the evolution parameter ~ are evaluated using
d 6/dr=—6= i [P,A —] prior to imposing the con-
straint, Eq. (2.10a). Using Eq. (2.13) for A (i.e., ~ @),
the following ~ derivatives are obtained:

(3.1a)

Xp ——Sp +d Pp —dpP (2.17)
d„=s„.p = —yx I P r, r„—(P r)p„l (3.1b)

The form of Eq. (2.17) implies that we must distinguish
between two types of rest frames: (i) the ordinary rest

(where P& ——0 has been used),

I „=Pl. IP r,d„), (3.lc)
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Qp —— 2—$pp+PA, IP.I",I „(P—I )P„]M ', (3.1d)

,and, using Eq. (2.14),

Y~
—— 2$—pp . (3.1e)

Using the commutation relations of Eq. (2.5) and the defi-
nition for d@, Eq. (2.15b), we may write Eq. (3.1d) in the
following alternate form:

QP
—— 2$P—P+2$ (P I )I„M

A. W g A.—2$ (P I ) P~ iP d—
P . (3.2)

An explicit r-dependent expression for the QRR parti-
cle position Q„(r) may be obtained by directly integrating
Eq. (3.2) with respect to the evolution parameter r:

Q„(r)= 2$p„r—+2/A, f I ~(r )d r
M

(PI)—2/i[, Pqr i P I—dq(r)dr+De

(3.3)

d(r)= —2/A, (P.l )I q(r)+2/A, (P I ) P„

+if' dP(~) . (3.5)

We are now in a position to evaluate the second ~
derivatives for I z(r) and dz(r). From Eq. (3.4) we obtain

(where D„ is a r-independent constant of integration).
%'e must now obtain explicit ~-dependent expressions for
I z(r) and d&(r). From Eq. (3.1c) it follows that

I"p(r)= 2/A, (P I")dq(r)+i/A, I p(r)

—IPiP(P. I")Pq (3.4)

(where the definition d„=d~M was used). We also obtain
from Eq. (3.1b) that

The solutions to the second-order differential equations
for I „(r) and d&(r) may be written as

(p. l )p if' [1+2(P I')]rg
P p

e
—$A, [—1+2(P.l )] gp (3.10)

if' [1+2(P I )]rg
P

iyg2) 1+2(p.1 )]~gI

p j e (3.11)

Substituting these expressions into the QRR particle posi-
tion, Eq. (3.3) gives

Q (r) = q —2pp r+ ei&" [)+2(P r)]rQ
P P P p

—i/A~[ —1+2(P I )] g
M P (3.12)

Q„(r)=qq 2$P„~ —dp(r) . — (3.13)

IV. TIMELIKE CENTER-OF-MASS GAUCHE

The form of Eq. (3.13) suggests that an agreement with
the original definition of the QRR center of mass, Eq.
(2.14), may be obtained by allowing

Y„(r)=q„2$P„~— (4.1)

(where q„ is a ~-independent constant of integration).
The precise form for q& expressed in terms of the Poin-
care generators is obtained by first examining the Finkel-
stein center operator, b„=b„M '=M 'b„, where

bq ———
I JP„,PPI .

2M
(4.2)

Using the form of J z given by Eq. (2.2) along with the
dimensionless quantities, Qz and P„, we may write Eq.
(4.2) as

where q„, 3&, and B„are r-independent constants of in-

tegration. Using the fact that d& ——d&M, we may rewrite
Eq. (3.12) in the following equivalent form:

I P(r)=2/A, (P I )d~(v)+i/A, I „(r), (3.6)

where the fact that (d/d~)(P I )=0 has been used. By
substituting Eq. (3.5) into Eq. (3.6) and using Eq. (3.4), we
obtain the following nonhomogeneous equation for the
second r derivative of the SO(3,2) vector operator I „(r):
I P(r) —2ipk, I"q(~)+[4/ 1, (P I ) —p 1, ]I (r)

=[4/ k"(P I ) —P A, ](P I )P . (3.7)

From Eq. (3.5) we find that

b„=b„M=——, I QP(~)p„—Q„(r)PP+SP„—(r),P P] (4.3)

or

b„=Y„(~) P„(P.Q(~))+i ,—P„, — (4.5)

= ——, I QP(&)p~ Q„(r)PP,P P
I +d„—(r), (4.4)

where the definition, d& ——S&&I'~, has been used. Using
Eqs. (2.14) and (2.20), Eq. (4.4) may be written as

YP(~) =b„i , P„+P„(P—Q—(~)). (4.6)
d„(r)= —2/A, (P I )I &(~)+i/A. d&(r), (3.8)

which, after substitution of Eq. (3.4) and using Eq. (3.5),
becomes

In dimensional form with Y&
——Y&M, b& b&M, and——

Qq ——QPM:

d„(r) 2iit)Ad„(r)+[—4P A, (,P I ) —P A, ]d„(r)=0 . Y&(z)=b& i "+P„(P——Q(r)) . (4.7)

(3.9) Equations (4.1) and (4.7) imply that
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qp 2—/PE r =bp —i —" +Pq (P Q(r) ) .2m
This expression may be written as

Pq(P Q (r) )= 2$P—~r+i "—+q~ b—
q2 M

(4.8)
Q„(r)= Y„(r) d~—(r),

where

Y~(r) =b„+Ppr .

(4.19)

(4.20)

=Pp(P. Y(r)), (4.9)

where we have used the definition of the center of mass,

Y& Q~+.——d&, and the orthogonality relation, P d =0.
We now evaluate Eq. (4.9), at r=0:

i —"+q~ b~ P—~ (P ——Y(0) ) .
2 M

(4.10)

From Finkelstein's center operator, Eq. (4.3), it may be
shown that

A A 3 PpP.b=i or P —(P b)=i2 P 2 M
(4.11)

We may now substitute this expression into Eq. (4.10) to
obtain

qp b„+P„(—P b) =P„(P Y(0) ) . (4.12)

Also, from Eq. (4.1) evaluated at r =0 we have that

Yq(0) =qp or Pp(P Y(0))=Pp(P q),
which is consistent with Eq. (4.12) if and only if

(4.13)

(4.14)

With this identification, Eq. (4.9) becomes

P„(P Q(r)) = 2$P„r+P„(—P b), . (4.15)

where we have used Eq. (4.11). In the center-of-mass
frame, where P& ——(1,0,0,0), Eq. (4.15) gives

Qo(r) =bo+r (in center of mass),

if and only if

1

2M '

(4.16)

(4.17)

which agrees with Rohrlich's timelike center-of-mass
gauge-fixing procedure for the string-time (evolution) pa-
rameter [see Ref. 7(c)]. The particular value for the previ-
ously undetermined velocity P, given by Eq. (4.17), was
also obtained in Ref. 8(a) where one imposed, Y Y= 1 and
used Eq. (3.1e).

Therefore as a consequence of determining an explicit
form for the constant of integration q& we have (i) ob-
tained a timelike center-of-mass gauge which specifies ~
as the proper time and (ii) obtained a value for the previ-
ously undetermined velocity parameter P. In this particu-
lar gauge, we therefore obtain the following general ex-
pression for the QRR particle position [from Eq. (3.13)
and using Eqs. (4.14) and (4.17)]:

We have now arrived at a form for the particle position,
Q&(r), which agrees with the original assumption of Eq.
(2.14) and which also coincides with Rohrlich's treatment
of the quantum relativistic string [where the relative posi-
tion operators for the two models are related by
d&(r)~ P(—r); the particle position operators by
Q&(r)~x "(r); and the center-of-mass operators by
Y„(r)~Q"(r) ].

V. EXTERNAL/INTERNAL STRUCTURE

The. similarity between the model of the QRR and
Rohrlich's covariant noncanonical treatment of the rela-
tivistic string can be extended by comparing the algebraic
structure of the two models. Substituting Eq. (4.6) into
the expression for the total angular momentum, Eq.
(2.23), gives

A A A A
Jpv =bpPv —bvPp+ Xpv (5.1)

[where we have used Eqs. (2.20)]. Therefore, the total an-
gular momentum may be expressed as

Jp ——bpP —b Pp+X@ (5.2)

(where b„=b&M and P& P&iM h——ave been used). The
center position (i.e., origin) of the system is characterized
by b& [which is identical to the center of mass only when
r=0; see Eq. (4.20)], X@, is the spin tensor which satisfies
P&X" =0 and the Pz generate global translations. Using
the definition of the Finkelstein center operator given in
Eq. (4.2) and the commutation relations for the Poincare
group, Eqs. (2.1), we obtain the following set of algebraic
relations:

(5.3)

+i(g& P&P )X—&+i (g z P,P&)X&—
Taking note of Rohrlich's choice of metric, with
P = —M, we see that this set of relations agrees with the
covariant noncanonical set of "exterior" algebra for the
Rohrlich string [see Ref. 7(c)]. Also in agreement with
Rohrlich's results are the commutation relations of the
relative (internal) variables with the system's center-of-
mass momentum:

[P„,d ]=0, [P~,d, ]=0, (5 4)

[bp, b ]=iJp~M, [bp, P ]= i (gp P„P—), —

[b~, Xp ]=i (Xp~Pp X~/~)M, —[P~,Xp~]=0,

[X~„,Xp ]= —(g„P„Pp)X„(g„P„P)X„— —

Q„(r)=b~+P„r d„(r)—(4.18)
and the commutation relations of the relative variables
with the system's center operator:
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[b„,d„]=id„P M ', [b„,d, ]=id„P„M '. (5.5)

Equations (5.4) display the fact that the relative variables
are translationally invariant while Eqs. (5.5) show the
nontrivial mixing between the relative (internal) position

and the system's (external) center operator.
The "internal" structure for the system may be ex-

pressed by computing the commutation relations of the
relative position operators dp and de

[d~,d„]= i—Xp~
2

[d„,d„]=—iA, (g~„—2P„P )(P.I ) M +iA, I „I~ — X„~ —iA, [(P I )1+~+I „P„(P I )]MP (5.6)

[d~, d„]= i A,—Xpv[ 4 +2(P I ) ]M

which indicate a high degree of noncommutativity and
display a drastic departure from Rohrlich's set of non-
canonical commutation relations for his internal variables
where

[g'",P]=0,
[g",II']=i (g"' P"P'/P—~),

[IP,II"]=0 .

(5.7)

Y„(r)=b„+P„~,
and the relative position operator is

4 k2
dp(~) = — exp i [1+2(P —I")]r A„2M

(6.2)

The particular form of the commutation relations of
Eq. (5.6) can be shown to be a direct consequence of both
the rotatorlike character of the QRR Hamiltonian [i.e., bi-
linear in (P.I ) j and the rich structure imposed upon the
model by way of its relativistic symmetry [in particular,
the choice of the anti —de Sitter SO(3,2)z s as the spec-

O' P&
trum generating group which is responsible for the non-
trivial internal dynamics and the mass-spin spectrum].

'VI. FUNDAMENTAL MODE OPERATORS

It has been shown that an explicit ~-dependent expres™
sion for the QRR particle position may be written as

Qp(r)= b„+Pp~ d„(r), — (6.1)

where the center-of-mass operator is

We now obtain explicit forms for the integration con-
stants A& and B& in terms of the QRR variables. From
Eq. (6.1) evaluated at ~=0, we have that

Q„(0)=bp+ A„— B~

(6.4)= Y„(0)+ A„— B

where we have used Eqs. (6.2) and (6.3}. Also, from the
definition of the center of mass, Eq. (2.14), evaluated at
~=0 we obtain

Q„(0)= Y&(0}—d„(0) .

Equating Eq. (6.4) with Eq. (6.5) yields

Bp Ap
P '

(6.5)

(6.6)

2

Q„(0)= P„+ ~ [1+2(P.I )]A„
2M

, [—1+2(P I )]B„.
2M

This form of Q&(0) may be equated with the expression
for Qz(0) obtained from Eq. (3.2) where

(6.7)

d„(0)
Qp(0)= Pp+ ~

-(P.l ) P„—(P I )1„(0)+i

From Eqs. (6.1) and (6.3) we now calculate the first ~
derivative of Q&(v ) evaluated at r=0:

+ exp i [—1+2(P I )]~ B„. to give the following equality:

i.2P&+, [1+2(P'r)]A„+ —,[—1+2(P r)]B„=P„+, (P 1)'P~ (.P r)I—„(0)+&2M

We now substitute Eq. (6.6) into this expression to obtain

I p(0) d„(0)2+'2 (6.10)

This form for A& is now substituted back into Eq. (6.6) to
yield

(P.I )P„
2

(6.12)

I p(0) d~(0)B i =—A & . (6.11)

From the orthogonality relation I'.d =0, and the expli-
cit r-dependent form of d„(r) given by Eq. (6.3), we anti-
cipate the fact that

I' A =I' A '=0
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(i.e., the mode operators are spacelike four-vectors), which
is seen to hold by analyzing Eqs. (6.10) and (6.11) using
P.d =0. Therefore for the model of the QRR we have, as
a consequence of the definition of the relative position
variables, an orthogonality relation which directly leads to
an operator identity, Eq. (6.12), ensuring the elimination
of ghost states. This method of ghost elimination is iden-
tical to that of the Rohrlich string where the application
of the timelike gauge in the center-of-mass frame
demands P.g=O which implies P a„=O, n &0, guaran-
teeing a positive-definite Hilbert space.

Using the explicit forms of the QRR mode operators

A& and 3
&

we may now write a detailed solution to the
particle position equation of motion which takes on the.
following form:

k2
Q&(r)= b&+P&r+ exp i —[1+2(P I )]r

M 2M
0

A,
2

exp i [—1+2(P I )]r A &, (6.13)

where the center of mass Y&(r)=b&+P&r and b& is the
Finkelstein center operator. This expression has the same
form as the general soluti. on to the particle position equa-
tion of motion for the quantum relativistic string where

pp
x"(o,r) =Q"+ + g e '"'cosno (6.14)

m vm „, n

[where vr is a constant of dimension (mass) ], when the
string's excitations are restricted to the lowest mode
(where n =+1) and one considers the dynamics at one
end point [i.e., o =0 where x(o, r) characterizes indivi-
dual positions along the surface with ~& & ~ & ~2 and
0&cr &I., where L is the string s length]. This similarity
becomes transparent when Eq. (6.13) is written in the fol-
lowing alternate form:

A. g

Q„(r)=b„+P„r+ exp i—
M 2M

exp in (P —I )r
M

(6.15)

(where for the QRR we must restrict the modes to n =+1
and A p) =—A„)).

The QRR mode operators may be expressed in terms of
the relative position variables by using Eq. (3.5) where

non-Hermitian QRR mode operators which are reminis-
cent of those for the creation and annihilation operators
of the harmonic oscillator (or the lowest mode of the rela-
tivistic string) where

dp(r) = (P.I")I p(r) — (P I ) P~
a" = (IP+i~P)

2K
(6.19a)

i d„(r) . —

M
(P I)

From this expression, evaluated at ~=0, we obtain
—1

d„(0)+(P.I )P„

(6.16)
a"= (II"—i~@),1

2K
(6.19b)

which (for the string model under consideration) fulfill
the following covariant noncanonical commutation rela-
tions:

+—'(P I )-'d (0) .P (6.17)
(6.20)

We now insert this expression into Eq. (6.10) to obtain

Id„(0)—iA, [(P I ) ——,]d„(0)I

2A, (P I)
(6.18a)

But the QRR mode operators satisfy the following set of
commutation relations

[A„,A ]=[A p, A „]=0,
(where we have used the fact that d&

——d&M). By insert-
ing Eq. (6.17) into Eq. (6.11) we find [A~, A, ]= —, (g„„—P„P )(P I )———Xpp'p

(6.21)

A p
———

I dp(0) +i A, [(P;I ) + —,
' ]d„(0)I .

2A, (P I )

(6.18b)

Equations (6.18a) and (6.18b) display forms for the

which does not agree with the covariant noncanonical

algebra of Eq. (6.20). Therefore, the A„and A„are not
the "usual" creation. and annihilation operators of the
harmonic-oscillator type. However, they do play a similar
role in that they serve as the fundamental ladder operators
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and using Eq. (6.21):

[3 2" ]=——(P I ) (6.22b)

Since the (P I ) have the spectrum n ( = s + —,
' for the spe-

cial case of the Majorana representation), it is evident
from Eq. (6.22a) that the basic action of the QRR mode
operators is to raise and lower spin for this particular rep-
resentation.

VII. CONCLUDING REMARKS

It has been shown that the models of the QRR and the
covariant noncanonical treatment of the Rohrlich string
utilize identical techniques in their basic construction
which result in many similarities between the two (despite
the fact that they ultimately account for the hadron spec-
trum in two distinct manners).

On one hand, we have the quantum relativistic string
which explains the spectrum in terms of arbitrary-
dimensional harmonic-oscillator states [where, for the spe-
cial case of the lowest mode of excitation, the spin spec-
trum is a result of a three-dimensional oscillator at rest,
see Ref. 7(c)]. Its relativistic Hamiltonian is obtained by
quantizing the orthogonal gauge constraint which leads to
(when restricted to the lowest mode) a linear mass-spin re-
lationship of the form [see Refs. 7(a)—7(c)]

2 2 1
m =mo +, s

CX

(7.1)

(i.e., the usual Regge trajectories). The arbitrary constant
mo is a consequence of the normal-ordering procedure
and determines the energy of the unexcited string which is
identified with the vacuum. Since the string is a physical
system (with Pz timelike), m )0 which requires mo & 0.

On the other hand, the QRR explains the hadron spec-
trum in terms of a set of infinite "towers" which consist
of an arbitrary number of rotational states [where the spin
spectrum comes from the relativistic spectrum generating

acting on spin states of the QRR.
We may clarify this fact by evaluating the commuta-

tion relations of the QRR mode operators with the (P I ):

(6.22a)

group, SO(3,2)]. The Hamiltonian for the QRR is ob-
tained by imposing a constraint on the second-order
Casimir operator of a de Sitter SO(4, 1) which leads to a
rotatorlike mass-spin spectrum [see Refs. 8(a)—8(c)]:

m =A,2(ct ——,
' )+A, s(s+1) . (7.2)

The constant A, (a ——, ) determines the energy of the
unexcited system which may be identified with the vacu-
um. The requirement that we are dealing with a physical
system implies the restriction that rn )0 which in turn
demands A, (a —

~ ) &0.
Regardless of the difference in how they account for

the hadron spectrum, we obtained the following basic ele-
ments which both models have in common.

(a) a unique specification of the system s evolution pa-
rameter r through the use of a timelike gauge in the
center-of™mass frame;

(b) an operator identity restricting the relative position
variables to spacelike oscillations only which directly
leads to the elimination of ghost states;

(c) identical "external" structures as obtained from the
covariant noncanonical algebraic relations involving the
center operators, center-of-mass momenta and spin ten-
sors;

(d) identical commutation relations for the relative posi-
tion variables with the system's center operators and also
with the center-of-mass momenta (the relative variables
are translationally invariant);

(e) both models may be expressed in terms of funda-
mental modes where for the quantum relativistic string,
a& and a& are the usual creation and annihilation opera-
tors of the harmonic oscillator type and for the QRR, the
9z and A& are ladder operators acting on the spin; and

(f) the elimination of tachyons is ensured: by the ap-
pearance of an arbitrary constant mo (due to the
normal-ordering procedure) for the Rohrlich string and by
restricting ourselves to the principal series representations
of SO(4, 1) which demands, a ) —,', for the QRR.
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