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Simple approach to tunneling using the method of finite elements
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We use the method of finite elements to solve the operator field equations for a simple quantum-
mechanical model of tunneling. For the case of just one finite element we can express the tunneling
in terms of a Borel transform. We obtain excellent numerical results for short times.

I. INTRODUCTION

In a recent paper' it was argued that the method of fi-
nite elements may be used to obtain directly an approxi-
mate solution to the operator equations of a quantum
theory. Given an approximate solution to these equations
one can try to obtain such quantities as the energy levels
or the Green's functions of the theory. The purpose of
this paper is to investigate a very simple and natural way
to use the finite-element solution to the operator equa-
tions, namely, to solve quantum-mechanical tunneling
problems.

As discussed in Ref. 1, the method of finite elements
gives an approximation to the operators p (t) and q(t) as a
chain of linear approximations. We consider a sequence
of time intervals of length h. On the nth interval,
(n —1)h & t &nh, we introduce a local variable x defined
by

t =(n —1)h +x
so that 0 & x & h and we approximate p (t) by the linear
function

Equations (4) and (5) together constitute a time-evolution
problem: given p(0) =pz and q(0) =qo, the objective is to
calculate p (t) and q (t). We do this by computing p„and
q„, where n =tlh. As the lattice spacing h becomes
smaller p„and q„become better approximations to p(t)
and q(t).

The operators p„and q„satisfy the difference equa-
tions

qn+] —qn pn+ l +pn
h

' 2

p'n+ 1
—pn, I'n+1+ qn

h
'

2
(7)

Equations (6) and (7) are obtained by substituting the
linear approximations to p(t) and q(t) in (2a) and (2b)
into the Heisenberg equations (4) and (5) and evaluating
the results at the midpoint x =h /2.

Equations (6) and (7) are implicit equations for p„+l
and q„+l in terms of p„and q„. Solving for q„+ l and

p„+ &
explicitly we have

4q'n 2pn

X Xp„, 1 ——+p„—(0 &x & h)"J
and q(t) by the linear function

q„ i 1 ——+q„—(0&x &h) .X X

(2a)

(2b)

4 4
&

q'n pnP+l= —P —„q+„8 +

where

(9)

In these expressions, q„and p„are approximations to the
exact operator functions q(t) and p(t) evaluated at the
time t =nb.

The Heisenberg equations for the Ha~iltonian

II = + V(q)
2

(3)

g(x)= V'(x)+ x4

is a function which contains all of the dynamics of the
theory. A simple property of (8) and (9) is that the com-
mutation relations are exactly preserved:

are [qn+1 pn+l]=[qn pn]= ' '. =[qa,pO]=t ~ (10)

and

q=p

p= —V'(q) .

In this paper we consider a Harniltonian with a quartic
potential well that exhibits tunneling:

p Vl Q,
'

2 2 q (~mq —5)(~inq —9) .
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s'
+approx = +

2 2

The energy levels for H»~„„ in (13) lie at

E„=(n + —,
' )maV 45, n =0, 1,2, . . . .

(13)

(14)

Thus, the (false) ground state lies at —', maV 5. If we wish

to confine exactly N false states we must choose the

Here m is a parameter having dimensions of mass
(length ') and a is an adjustable constant that fixes the
height of the barrier. In terms of the dimensionless vari-
able z =v m q the potential is

V= z (z —5)(z —9) .
2

(12)

This potential has been chosen so that its maximum
and minima occur at rational values of z: V has a
minimum (position of the false vacuum state) at z=O and
another minimum at z = —", (position of the true vacuum
state); V has a maximum (barrier) at z=3 (see Fig. 1). At
z =—,', the depth of the well is V = —'»' m a
= —105.47ma and at z=3, the height of the barrier is
V=54mo. . Near z=O the potential is approximately
harmonic:

height of the barrier appropriately:

NV5
18

(15)

To observe tunneling we compute the order parameter
Q(t) = (0

~
q(t)

~

0), which is the expectation value of the
position operator q (t) in the Gaussian false-vacuum state

j
0). The function Q(t) takes a value 0 at t=O and, as

tunneling proceeds, tends to increase. Q(t) is a measure
of how much of the state has penetrated the barrier at
time t. In this paper we obtain the one-finite-element ap-
proximation to Q (t) and compare our results with numer-
ical tunneling data obtained by computer.

II. THE FALSE-VACUUM STATE

The false-vacuum state
~

0) is the lowest eigenstate of
H„~~„„in (13). In the coordinate-space representation

go(x) = (x
~

0)

For the purpose of this paper we take N= 1 and H in (12)
becomes (see Fig. 1)

2

H = P + z'(z —5)(z —9) .
2 648

2.6-

V in units of m

is the initial (t=O) wave function in the false vacuum.
Since H,~~„„has the form

approx (17)

'2 02

we see that fo(x) has the Gaussian form

e roe ~/2— (18)

Is

Comparing (17) and (13) and using (15) gives the value of
the frequency

co=5m/6 . (19)

The wave function at time t, g(x, t), can be found by
solving the Schrodinger equation in coordinate space sub-
ject to the initial condition g(x, O)=go(x). Thus, in the
Schrodinger picture the order parameter Q(t) takes the
form

Z
IO

J g*(x,t)x P(x, t )dx
(&)= I g'(x, t)g(x, t)dx

(20)

x=7.5

FICx. 1. The potential V(z) in units of m [see (12)]. In this
graph a= V 5/18 so that the potential confines exactly one un-

stable state where energy is Sm /12=0. 417m.

The tunneling calculation in this paper consists of start-
ing with the Gaussian wave function t/ro(x) in (18) which
is centered around the false vacuum at x=O and studying
the time evolution of Q(t). The frequency of "tunneling
attempts" at the barrier wall is given by co/(2n ). As the
wave function penetrates the barrier into the deeper
right-hand well, Q (t) grows monotonically from its initial
value Q(0)=D. However, the wave packet in the deeper
well then reflects off the right-hand wall of this well and
can penetrate the barrier causing a subsequent decrease in
Q(t). Thus, there are two frequencies of tunneling at-
tempts, one from the left and one from the right. As time
passes Q(t) will fluctuate roughly in the range between 0
and —,' indicating that there is some probability density in
both wells. [If we were to replace the right-hand wall of
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the deeper well by a straight horizontal line starting at the
absolute minimum at z =—', , then Q(t) would just grow
monotonically with time. ]

Let us reexamine the problem more formally. The
commutation relations for qo and po allow us to construct
in the usual way a complete set of Fock states

i
n) at

time t=0. We introduce raising and lowering operators a
and a~ by

m a —at
(21)

2p t

(8) with n = 1 we obtain

49'n 2pn
(O~q, ~Q)=2(og ' + 0). (26)

g '(x) = g P„x",
n=G

where

(27)

To compute the right side of (26) we expand g
' in a

Taylor series:

(22)

[a,a "]=1 . (23)

qo —— (a+a )y,
2m

where a and a t satisfy the standard commutation relation

4q. 2S n

h

4=a
h~ &5m

. &5m t 4 v'3 i v'5m
hv'3 h' &5m

2=Po =— (a +a —aa —a a),
2y'

2

qo
——~ (a +at +aat+ata)2'

so

y is an arbitrary parameter which we fix by choosing the
state

i
0) to be the false-vacuum state.

To determine y we compute the expectation value of
H,z~„„ in (13) with u =~5/18 in the state

i
0):

Using the identity

(()
i

e'~~~++~ i
i
0) —e~ ~&i&

where A and 8 are c numbers, we obtain

(0
i
(Aa +Ba ) "i 0) =

n

(28)

(29)

(0
i
H.„,.„ i

0) = 1 25@
2 j44

(24)

Of course, the state
i
0) is not an eigenstate of the ex-

act Harniltonian H in (11). However, the difference be-
tween (0

i
H,~~„„ i

0) and (0
i
H 0) is very small:

bE =m/120. Thus, bE/Eo is exactly 2%%uo.

III. ONE-FINITE-ELEMENT CALCULATION
OF Q(t)=(oiq(t)i0)

To observe tunneling we determine how the expectation
value of q(t) in the state

i
0) evolves with time. Using

I

n

Demanding that the expectation value of H,~~„„ in the
false vacuum be Eo ——5m/12 gives

(25)

(0
~

(Aa +Ba) "+'
i
0) =0 .

Hence, using (27) and (29) we have

48 5m

(o io)=2 g p n! 2
(30)

(2n)! 2 "1 2 "

we have

This is a divergent series if (27) has a finite radius of
convergence. However, we can express the sum in (30) as
a Borel transform. Using

2 96 lorn(oiq, ~o =~ g p,„
=0

dt e
—ttn —1/2

0

96 10m

5mh 3h
+

'n

1 dte 96 10m

5mh 3h
+

]./2 '

+g
96 10m+

5mh4 3h'

1/2 I

2 ~, g &/2 &
48 5ltldxe g 5 +

5mh 3h

' 1/2'

(31)
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FIG. 4. Plot of the solution of (34) for y(s) as a function of s

for (a) T=3 and (b) T=4. When T & T(( ——V 864/95=3. 02 the
curve becomes multiple valued. The ambiguity is removed by a
Maxwell construction which produces a single-valued convex
curve. The integration in (33) is over the solid curve and ex-
cludes the dashed curve.
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FIG. 2. Plot of the solution to the cubic equation in (34) for
y(s) as a function of s for {a) T=O, (b) T=1, and (c) T=2. At
T + 0, y (s) is a straight line, but as T increases, y (s) ap-
proaches y=0 for s & 0 and curves away from y=0 for s & 0.

For the Hamiltonian in (11)

4 5m 3/2
g(x)= x+ (2m /x —21mx +45m'/x) .

324

+45m '/ x) (32)

for x for each value of s in the range —((c &s & ao and to
substitute these values of x for the g ' term in (31).

It is convenient to introduce dimensionless variables:
we measure time in units of 1/m

T =hm

and we let y =xv m in (32). The final result is that
Thus, to compute the integrand in (31) it is necessary to
solve the cubic equation Q(T)=(OIq, IO)=

1/2
2 f" dse-"/2y,

0.5

0.25—

where y is the root of

(33)
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FIG. 3. y=O for s &0 and curves away from y=O for s &0.
Comparison between the exact numerical value of V m Q(T)
and the one-finite-element approximation to V m Q(T). Note
that the one-finite-element approximation is no longer accurate
when T is larger than about 1.5.
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FIG. 5. Same as in Fig. 4 except that (a) T=10 and (b)
T = 00. At T = 00, y(s) =0, 3„and 7.5. The Maxwell construc-
tion forces the integration to be done on the step function
y(s)=0 (s&0, and y{s)=7.5 (s &0).
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2y —21y + 45+ y
3 2 1296

5T
1/2

648s 12 5 T
+5T 5+ 12

Q(a))= 2
J dse ' ~ (7.5)= '

. (35)
0 m

Figure 6 gives a plot of V IQ ( T) for T)0. Observe that

IV. NUMERICAL RESULTS
/

To evaluate the Borel transform integral in (33) for
Q(T) we must solve the cubic in (34) for y as a function
of s for that value of the dimensionless time T. In Fig. 2
we plot y(s) as a function of s for T=O, 1, and 2. Ob-
serve that as T increases from 0 the positive values of s
contribute more to the Borel integral than the negative
values.

The result of this calculation for Q ( T) (0 & T & 2) is
shown in Fig. 3. A comparison with the exact numerical
value for Q(T) shows that for T) 1.5 the one-finite-
element approximation ceases to be accurate. [More finite
elements must be used if we wish to compute Q ( T) accu-
rately for larger values of T. ]

What happens if we try to evaluate the integral in (33)
for values of T larger than 2? In Fig. 4 we plot y(s) as a
function of s for (a) T=3 and (b) T=4. Observe that at
T=3, an inflection point has developed at s=2.5. As T
increases, it passes a critical value at T = T0
=(864/95)=3.02 where the curve y(s) becomes triple
valued [see Fig. 4(b)]. At this point the integrand in (33)
becomes ambiguous. One way to remove this ambiguity is
to use a Maxwell (equal area) construction. This algo-
rithm consists of following the curve y(s) from s = —ac

along the lower branch until it reaches that value of
s =s*, where y(s) has a point of inflection. Then we

jump to the largest value of y(s) at s' and continue on
the top branch. (For the special case of a cubic curve this
is the "equal area" construction. ) This construction al-
lows the integration to be performed on a single-valued
and convex curve.

As T continues to increase, the sigmoidal nature of the
curve y (s) becomes more exaggerated until, at T = ao the
integration in (33) is performed over a step function:
y(s)=0 (s&0), y(s)=7.5 (s &0) (see Fig. 5). Hence, at
T = ae the integral (33) can be done exactly:

' 1/2

2 4 6 8 IO I2 I4 I6 18 20 22 24
DIMENSIONLESS TIME T= rnh

FIG. 6. The one-finite-element approximation to V m Q(T)
for T~0. Observe that as T~ oo the curve asymptotes to the
value 7.5, which is exactly the position of the true vacuum of
the potential (see Fig. 1).

the one-finite-element approximation V m Q(T) ap-
proaches the value 7.5 as T—+ oo. This is exactly the posi-
tion of the absolute minimum (true vacuum) of the poten-
tial V (see Fig. 1). It is amusing that the Maxwell con-
struction gives a result for Q(T) in Fig. 6 which would be
valid if the system were dissipative (after tunneling, the
wave function would accumulate at the bottom of the well
at z=7.5).

Of course, the exact value of Q(T) does not rise mono-
tonically with T. As T increases, the true Q(T) has
many maxima and minima that correspond to the wave
function P in coordinate space sloshing back and forth in
the potential well V in Fig. 1; as T—&ac, Q(T) oscillates
between 0 and 7.5 and does not approach 7.5." The ap-
proximate Q ( T) in (33) arises from a one-finite-element
calculation which is too simple to have the elaborate
structure of the true Q(T). However, the one-finite-
element approximation is remarkable in that as T—+ oo it
does not produce a Q(T) that behaves absurdly. Indeed
the Q(T) in Fig. 6 appears to be in some rough sense an
average over the fluctuations of the true Q (T) in a model
with a dissipative term. The approximate Q(T) remains
for a time in the false-vacuum state, rapidly tunnels to the
true-vacuum state, and then remains there for all time.
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