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The finite-element (collocation) method enables us to construct discrete time-lattice quantum sys-
tems that accurately approximate continuum quantum systems. The discrete quantum systems so
generated are fully consistent quantum-mechanical systems in their own right. This paper gives a
comprehensive treatment of such quantum systems. We examine various finite-element schemes,
construct the effective lattice Hamiltonian, and calculate eigenvalues. Numerical results are ex-
tremely easy to obtain and are very accurate.

I. INTRODUCTION

A recent series of papers' proposed a new approach
to quantum field theory on a lattice. This approach con-
sists of formulating a completely consistent quantum
theory in which the field operators are defined on discrete
lattice sites in space-time instead of on the space-time
continuum. The field operators in this theory satisfy
difference equations (instead of differential equations)
whose solution exactly satisfies canonical equal-time com-
mutation relations at the lattice sites. In the limit as the
lattice spacing h approaches zero, the solution to the
discrete theory approaches that of the continuum theory.
We emphasize that the lattice is not just an artifice for the
approximate evaluation of functional integrals; rather, for
every value of h we have a fully consistent quantum
theory in which time is a discrete parameter.

Coven a continuum quantum theory it is not easy to
construct the analogous discrete theory, the equal-time
commutation relations are not ordinarily satisfied. (The
differencing schemes usually used in the Monte Carlo
evaluation of functional integrals lead to inconsistent
quantum field theories. ) To find a consistent discretiza-
tion procedure, we use the finite-element (collocation)
method. In Refs. 1—3 we used the siinplest finite-
element procedure, in which the finite elements are linear.
The results we have obtained so far are very satisfying.
We have applied the method in both quantum mechanics
and quantum field theory and we have applied it to both
boson and fermion theories. For the case of fermion
theories we have shown that the differencing scheme is lo-
cal and unitary, and chiral invariance is preserved ia the
massless limit, yet there is no fermion doubling. We
have succeeded in formulating an Abelian gauge-invariant
set of difference equations, and we have used this ap-

proach to solve the massless Schwinger model. We have
successfully computed the chiral anomaly in this model;
the value of the chirai anomaly in discrete space-time
differs from the value of the chiral anomaly in the contin-
uum by a relative error of order X, where X is the
number of spatial lattice sites.

The purpose of this paper is to present an organized
and systematic discussion of discrete time quantum-
mechanical systems. (In a second paper we intend to ex-
tend this discussion to quantum field theories. ) In Sec. II
we discuss the use of an rth-degree polynomial finite ele-
ment and show how to discretize on a time lattice the
Hamilton's equations of quantum mechanics. We prove
that a consistent discrete quantum mechanics requires
that the continuum equations of motion be imposed at the
Gauss points (zeros of the rth-degree Legendre polynomi-
al).

The relative error between the exact continuum result
and the solution obtained by using N rth-degree finite ele-
ments is X " when the Gauss points are used. In Sec.
III we illustrate the phenomenal accuracy of rth-degree
finite elements by examining some simple nonlinear dif-
ferential equations.

In Sec. IV we show that linear finite elements have a
number of advantages: First, the discrete operator equa-
tions can be easily converted from implicit to explicit
form; second, from the explicit form of the operator
difference equations we derive a closed expression for the
transfer operator U (the unitary time evolution operator
that advances operators forward in time by one lattice
step). The effective Hamiltonian for this discrete lattice
system is A =(1nU)/(ih). The Hamiltonian A has a
Taylor expansion in powers of h, A = g„oA2„h ",
where A o is the Hamiltonian for the analogous continu-
um theory. It is interesting to note that as h ~ 00,
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U~H, where H is the parity operator.
Finally, in Sec. V we address the difficult question of

how to use the solution to the discrete lattice theory to
determine the spectrum of the Hamiltonian for the under-
lying continuum theory. Promising approaches are dis-
cussed which give excellent numerical results.

II. CONSISTENT DISCRETIZATION
OF QUANTUM MECHANICS

Throughout this paper we will consider quantum-
mechanical systems defined by a continuum Hamiltonian
of the form

0 = +V(q) .
2

Hamilton's equations for the operators p and q are

(2.1)

(2.2)

and

p=f(q»
where

(2.3)

f(q) = —V'(q) (2.4)

is the force. Equations (2.2) and (2.3) define a time-
evolution problem, where, in quantum mechanics, the ini-
tial condition takes the form of an equal-time commuta-
tion relation

[q(0),p(0)]=i . (2.5)

By virtue of Hamilton's equations, the operators q and p
satisfy the canonical equal-time commutation relation for
all times:

[q(t),p(t)]=i . (2.6)

y'=+(y) .

An initial condition,

y(o)=yo,

(2.7a)

(2.7b)

The finite-element method provides a simple means of
converting a differential equation into a difference equa-
tion. Let y(t) satisfy a first-order ordinary differential
equation in t:

We continue this procedure, obtaining subsequent approx-
imations y2,y3, . . . to y(2h), y(3h), . . .. After N steps,
we obtain y~, the N-finite-element approximation to
y(T).

To find the sequence of approximations
y&,y2,y3, . . . ,y& it is necessary to determine the r+ 1

coefficients ak on each interval. However, the procedure
is quite ambiguous. If we impose the differential equation
d times on the nth interval, then it is necessary to impose
r +1—d joining conditions (continuity, continuity of the
first derivative, continuity of the second derivative, . . . ) at
t =(n —1)h. On the first interval, there are no joining
conditions at t=0; rather we must impose r +1—d initial
conditions, in which the values of y(0),y'(0),y'(0), . . . ,
are specified. These values are obtained by successively
differentiating the differential equation (2.7a) and substi-
tutirig the initial value (2.7b). We say that as the number
of joining conditions increases the approximation becomes
stiffer.

In one extreme, the stiffest approximation, the differen-
tial equation is imposed once on the interval, and in the
other extreme, the floppy approximation, the method we
will use in this paper, the differential equation is imposed
r times, and we require that the approximation only be
continuous.

A. Failure of the stiff approximation

We do not use a stiff approximation in this paper be-
cause it is forbidden by quantum mechanics. For a
quantum-mechanical system with operators p and q the
rth-degree finite-element approximation is given in terms
of the expansions

p(t)= g ak(x/h)",

T

q(t)= g bk(x/h)",
k=0

where 0(x (h. While we could determine the coeffi-
cients ak on the nth interval from those on the (n —1)st
interval, attempting to determine the coefficients on the
first interval, even in principal, leads to an inconsistency.
This is because the coefficients ak are operators.

We illustrate this problem by a simple example for
which r= 2. On the first interval we represent

is given and the goal is to find y (T). We divide the inter-
val (O, T) into N intervals of length h where Nh =T On.
the nth interval, (n —1)h &t &nh, we introduce a local
variable x defined by and

X Xp(x) =po+ai +a2— (2.10)

x =t (n —l)h—, (2.8) X Xq(»=qo+bi
h

+b2
Q

2
(2.11)

so that 0&x &h. We then approximate y(t) on the nth
interval by an rth-degree polynomial of the form

oa(x/h)". If we can determine the coefficients ak
on the first interval, we then have a good approximation
to y (t) on that interval. In particular, we have an approx-
imation yi to y(h):

b) 2b2+ a=go+a&a+a2a (2.12)

For the sake of complete generality we impose the dif-
ferential equations (2.2) and (2.3) at ah and /3h, respective-
ly, where 0 & a,P & 1 are as yet undetermined:

k=0
(2.9) a& 2a2

h
+

h
P=f(qo+biI3+»P') . (2.13)
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Next, we impose the initial conditions. The condition
(2.5) reads

I

in the first finite element. Since p (0)=po and q (0)=qo
we have

[qo&po] =' . (2.14) ~o =Po~ bo =9'o

[q (0),P(0)1=[q„~,]=0,
[q(0),p(0)]=[bi po]=0.

(2.15)

(2.16)

There are two more commutator conditions that follow
from the equations of motion (2.12) and (2.13):

We also impose two more commutator conditions which
we obtain from the continuum equations at t=O:

and the continuity conditions at t =h are

~i =p] —po~ bi =qr —
Qo .

Is there a choice for a and P such that (2.21) and (2.22)
together with the equal-time commutator at t=O, (2.5),
imply that [q&,p&]=i? Equations (2.21) and (2.22) yield
the following commutators:

[b~+2ab2, po+aa&+a aq]=0,
[a +|2Pa 2q +oPb~+P b2]=0.

(2.17)

(2.18)

[qi —qo po(1 —a)+pea]=0

[qo(1 P)+—qi13 pi —pol =o .

(2.23)

(2.24)

The five commutators, (2.14)—(2.18), are kinematical in
nature; they make no reference to the dynamical content
of the theory, which is embodied in the function f.

For this quantum system to be internally consistent,
(2.14)—(2.16), the analogs of the three equal-time commu-
tators, must hold again at t =h; that is

[qo+b'~+b2 po+ai+a2]=i
[qo+b)+b2, a)+2a2] =0,
[po+ai+a2, b~+2b2] =0 .

(2.19)

(2.20a)

(2.20b)

We can show that if (2.20) is assumed to hold, then (2.19)
holds so long as a+P= l. However, (2.20) does not hold
in general unless a =. 1 and P= 1, which implies the failure
of (2.19).

This kind of demonstration can be given for any stiff
approximation to a quantum system. Thus, on the basis
of quantum-mechanical consistency we reject any kind of
stiff finite-element scheme in which more than a single in-
itial commutator is imposed.

Furthermore, even if a consistent stiff approximation
could be found, we would prefer not to use it, because it is
not as accurate as the floppy approximation; a maximally
stiff approximation yields a relative error of X "between

y (t) and y~. On the other hand, for a floppy approxima-
tion, the relative error between these two quantities is
+—2p

Combining the three commutation relations (2.5), (2.23),
and (2.24) does indeed yield [q~,p&]=i provided that a
and P satisfy the constraint

a+P= 1 . (2.25)

Having shown consistency with quantum mechanics on
the first finite element, it follows on all finite elements by
virtue of the continuity condition on p(t) and q(t) at the
boundaries of adjacent finite elements, t =nh.

In this paper we are primarily interested in the sym-
metric choice a=13= —,', where the equations of motion
are imposed at the midpoints of the finite elements. Any
other choice for a and P breaks time-reversal symmetry
and leads to numerical approximations which are not as
accurate as in the symmetric case. We will return to this
point in Secs. IV and V.

2. Case r=2

X X
P(x)=Po+~& h+&2

h

Here we impose the equations of motion (2.2) and (2.3)
twice on each finite element. In view of our above re-
marks with regard to symmetry and numerical accuracy,
we will restrict our attention to the symmetric case where
both of the equations of motion are imposed at the same
points x =a~h and x =a2h.

On the n = 1 finite element we have

B. Consistency of floppy approximation

The failure of the stiff approximation discussed in the
previous section is not very surprising and it is all the
more remarkable that the floppy approximation is suc-
cessful. We begin by examining the case r= l, using the
notation of the preceding section.

1. Case r=1

Imposing Eqs. (2.2) and (2.3) at t =ah and t =Ph,
respectively, yields [here q&

——q(lh), p~
——p(lh)]

X X
q(x) =qo+bi „+b2-

h

Imposing (2.2) and (2.3) at x =a&h and a2h gives

b) 2b2+ 0.
&

——PP+a] O. &+a20.&

Q] 202

h
a, =f(qo+b, a, +b,a, '),

bI 2b2
2 PO+ 1 2+ 2 2

(2.26)

q i —9'o

h
=po(1 —a)+pea

p] —po
h

=f(qo(1 —13)+q iP)

(2.21)

(2.22)

Q) 2Q2+ a2=f(qo+bia2+b2a2') .

From these equations we obtain the kinematical com-
mutators:
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[po+a 1~1+a2~1 bi +2b2+1]=0

[a 1 +2a2cx1 qo+ b 1 col+ b2cx1'] =0

Ipo+a1~2+a2~2 b1 +2b2~2]

[ai+2a2a2 qo+bia2+b2a2 ]=0.
By adding these commutators we can prove that

[ql pl]=[qo,po]=i
if and only if ai and a2 are given by

1 1 1 1~2= + ~
This is the condition for quantum consistency.

(2.27)

(2.28)

showed that a lattice discretization of the Schrodinger
equation preserves orthonormality of the wave functions
only if the lattice points lie at the Gaussian knots.

III. FINITE-ELEMENT METHOD
FOR CLASSICAL EQUATIONS

Using quantum mechanics we have determined in Sec.
II the type of finite-element method to be used, namely,
that we work at the Gaussian knots. The purpose of this
brief section is to illustrate the astounding accuracy of the
finite-element methods.

We begin by considering the linear differential-equation
initial-value problem

y'=y, y(0)=1, to find y(1)=e . (3.1)
3. Case r=3

Now we impose the equations of motion three times on
each finite element at x =aih, a2h, and a3h. Taking

p(x)=po+aix/h+a2x /h +a&x /h

Using a simple linear finite element and imposing the dif-
ferential equation at the Gaussian point —,, we predict

yi ——3, which has a relative error of 10%. N linear finite
elements gives

and
2N+1
2N —1

1
e 1+

12N
(N~ m ) . (3.2)

ai ———,—&3/20, a2 ———,', ai ———,
' +&3/20 . (2.29)

4. The general case

The sequence of points a at which the operator equa-
tions of motion must be imposed, —,

' for r = 1; —,
' +1/v 12

for r=2; —,', —,'+&3/20 for r=3, fits a well-known pat-
tern. These numbers are the zeros of the rth Legendre po-
lynomial P„(2a 1). The first t—hree such polynomials are

P] ——2a —1,
P2 —6a 6m+ 1,
Pi ——(2a —1)(10a —10m+ I) .

These zeros are the so-called Gaussian knots or nodes
which are used to perform a quadrature integration. The
weighting of the commutators'necessary to derive the con-
sistency condition (the factor of —', mentioned above, for
example) is exactly the weighting used in Gaussian quad-
rature.

We conclude this section by reemphasizing that the
only way to preserve the equal-time commutation rela-
tions is to impose the operator equations of motion at the
Gaussian quadrature nodes. If the commutator relations
are preserved at successive intervals of time, then the
theory is unitary; that is, the transfer operator is unitary
and probability is conserved. This same point has been
observed in a totally different context by Durand, who

q(x)=qo+bix/h+b2x /h +b3x /h

we obtain six equations analogous to (2.26) from which we
derive six commutator conditions analogous to (2.27).
Once again we add the six commutator conditions togeth-
er. However, now the two commutators at x =+ah are
weighted by the factor —', . The condition for quantum
consistency is now

Next we solve problem (3.1) using quadratic (r=2) fin-
ite elements. A single quadratic finite element with the
differential equation imposed at the Gaussian points
—,
' + I/V 12 yields y 1

———,' which differs from e by
—0.14%. N quadratic finite elements gives

1

720N
(3.3)

The corresponding results for the cubic finite elements
are, for one finite element, yi ——",,', which has a relative
error of 0.0010%. X cubic finite elements gives

1
y& ——e 1+

10P 80PN6
(3.4)

We now examine some nonlinear examples. First, con-
sider

y'= —,y(0)=1, to find y(1)=v 3 .1

3'
(3.5)

A single linear finite element gives the exact answer. The
single quadratic finite element also gives the exact answer.

Second, consider

y'=vy, y(0)=1, to find y(1)= ~ (3.6)

y'= —,'y, y (0)=1, to find y (1)=2 . (3.7)

A single linear finite element gives the exact answer.
However, this is a fortuitous event. This is a good prob-
lem to illustrate the convergence rate of the quadratic
finite-element method which does not give the exact

A single linear finite element gives

yi ——(5+V 17)/4 —2.2808, which corresponds to a relative
error of 1.3%. However, a single quadratic finite element
gives the exact answer.

Finally, we consider
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answer . For one finite element we find yi ——1.999831
which has a relative error of —0.0085%. For two finite
elements the prediction for y(l) is y2

——2.000012, which
has a relative error of 0.00060%, which is consistent with
the expectation that the relative error decreases like N
(the relative error is smaller by roughly a factor of 16).

In general, the rth-degree finite-element method using
Gaussian knots gives results with relative errors which go
like N '. It is not easy to make a priori estimates of rel-
ative errors when the finite-element method is applied to
quantum differential equations. However, our experience
so far is that in quantum systems, numerical predictions
are equivalently accurate. ' Indeed the dependence of the
relative error on the number of finite elements is the same
as for classical differential equations (see Secs. IV and V).

IV. THE TRANSFER OPERATOR
FOR LINEAR FINITE ELEMENTS

For the Hamiltonian H =p /2+ V(q) the case of linear
(r= 1) finite elements is special. This is because it is pos-
sible to recast the equations (2.21) and (2.22), which give
an implicit relation between Pl, ql and po, qo, into an ex-
plicit relation, which expresses pi and qi as functions of
po and qo. On the nth finite element

X X+P.
h

(4.1)

the Hamiltonian even slightly to H =K(p)+ V(q), the
implicit relations

=K'(p„,(1—a)+p„a),
(4.8)

=f(q„ i(1—P)+q„P),

do preserve the canonical commutation relation,

)qn ~pn ]= tqn —itPn —i]= t (4 9)

A. Derivation of transfer operator

Once we have found the explicit form for the recursion
relation in (4.6) and (4.7) it is possible to find a closed-
form expression for the transfer operator U, which ad-
vances the operators pn and qn one time step. The con-
struction proceeds as follows: First, we rewrite (4.3) in
the form

provided that (4.2) holds, but they can no longer be solved
for p„and q„.

The same features hold for finite elements with r& 1.
Namely, the canonical commutation relations are
preserved if the equations of motion are imposed at the
Gaussian knots, but again the implicit equations cannot
be recast into explicit form.

q(x)=q„ i 1 ——+q„—. qn "aPn =qn —i+—"PPn i . — (4.10)

a+P=1 .

The resulting implicit operator recurrence relations are

(4.2)

[Recall that q„and p„areour approximations to the ex-
act operator functions q(t) and p(t) evaluated at the time
t =nb and that x is the local variable defined on the nth
interval by (2.8).] Treating this problem with full general-
ity, we impose the equations of motion (2.2) and (2.3) at
the points x =ah and x =Ph, respectively. As we
showed in Sec. II, quantum-mechanical consistency re-
quires

Next, we use the identity

e'p 'qe 'p '=q +2sp,
where s is a c number, to rewrite (4.10) as

(4.11)

p 2~h/2 ip 2~h/2 ip &2»/2 ip &2»/
e " qne" =e " '

qn —le

or

ip ah/2 ip $ Ph, /2 —ip $
Ph/2 —ip ah/2

qn e e qn —le " ' e

(4.12)

qn —
qn - l =p„,(1—a)+p„a, (4.3)

The unitary transfer operator U can be written in the
form

=f(q. i(1 P)+q.P}. —
)Ah

(4.4)
This operator has the property that

(4.13)

g(x) =x —aph f(x) .

Then, in terms of the inverse function g '(x), we have
I

(4 5)

cx j.
q —i+ g (qn —i+ h Pp„ i ), (4.6)

To rewrite these equations in explicit form, we define the
function g(x) by

qn —Uqn —l U ~ pn —Upn —l U

A comparison with (4.12), suggests the ansatz

'p. 'h/2 ip. -i'»/2 IAhU=e" e" e'

Substituting this form in (4.14) gives

iAhq e iAh

(4.14)

(4.15)

+h g (q. i+hPP. i)P qn —i 1 Therefore, we observe that 2 is a function of q„ l only:

The derivation of these equations depended crucially on
the form of the Hamiltonian. If we generahze the form of

3 =3 (q„ i) .

Next we use (4.14) and (4,15) to write

(4.16)
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ip„ah/2 ip„&Ph/2 iA (q„&)h —iA (q„&)h —ip„&Ph/2 '—ip„ah/2
(4.17)

ip 2ah/2 ip„ah/2To simplify this equation we premultiply by e " and postmultiply by e " . Then, we replace p„bythe right-
hand side of (4.7),

P 1 1 ip„&Ph/2 iA(q„&)h —iA(q &)h —ip„&Ph/2
Pn —1

h
qn —1+

h
g (qn —1+hpPn —1)—e e "

pn —(ea ha ha
—ip

&
Ph/2 ip

&
Ph/2This equation simplifies if we premultiply by e " ' and postmultiply by e " ' . The result is

p 1 1 i (A(q„|)h —iA(q„()h
Pn —i

h
(qn —i phPn —1)+

h
g ('qn —1) e pn —lea ha ha

=p„ i
—2 '(q„ i )h,

~'(q. 1)=, [q. i
—g (q. 1)]

1

h 2aP
(4.18)

It is even possible to find a closed-form solution to
(4.18). Integrating both sides of (4.18) gives

r

3 (x)= —,x —f ds g '(s)
h aP

(4.19)

To evaluate the integral we make the change of variable
u =g '(s),

~(x)
A (x)= 2

—,
' x —f du g'(u)u

h aP

We evaluate this integral by parts:
—1

A(x)= z
—,'x —xg '(x)+ f dug(u)

h aP
Finally, we refer to (4.5) and recall that f (x)= —V'(x):

A (x)=, t —,'x' —xg '(x)+ —,
'

[g '(x)]'I+ V[g '(x)]
h aP

1
[x —g '(x)] + V[g '(x)] .

2h aP
(4.20)

Having found the exact expression for A we return to
(4.15) and rewrite it as

ip„&ah/2
~ ip„&Ph/2 iA(q„&)hU=Ue" U e" e

where we have used the identity (4.11). This gives a dif-
ferential equation for A:

B. Continuum limit

It is easy to compute the continuum limit of the
transfer operator. If h is small, g (x)=x +0 (h ). Thus
g '(x)=x+0(h ) and A(x) in (4.20) is approximately
V(x) with corrections of order h . Therefore, from (4.21)
we have

ln U a+P
&h 2 p„+i+V(q„+i)+O(h). . (4.22)

Since a+p= 1, we have obtained the continuum Hamil-
tonian in the limit as h —+0.

C. Transfer operator for the harmonic oscillator

For the harmonic oscillator, whose Hamiltonian is
given by H =p /2+m q /2, A(x) in (4.21) is

A(x)= (4.23)
2(1+aPh m )

Thus, the transfer operator is exactly

ibm qU =exp(ip Ph /2) exp exp(ip ah /2) .
2(1+aPh m )

(4.24)

The three exponentials in (4.24) can be combined exactly
into a single exponential:

ip„&Ph/2 iV(q„&)h ip„&ah/2U=e" e " e

If we take the logarithm of this and divide by ih we ob-
tain

Solving for U we find

ip„ I Ph/2 iA (qfg $
)h

ipse) (4;21) where

)Ah (4.25)

This is our final closed-form expression for the transfer
operator.

It is important to note that while U in (4.21) depends
on p„ i and qn ), U is independent of n [just as the
Hamiltonian H =p /2+ V(q) is independent of time t
even though p and q are functions of t] To prove th.at U
is independent of n, we simply multiply (4.21) by U on
the left-hand side and U ' on the right-hand side. This
transformation does not change U, of course, but has the
effect of replacing p„ i and qn ( in (4.21) by p„and q„,
respectively.

1

hm

mb [1——,'m h (1—4aP)]'~
arctan

1 ——,m h (1—2aP)

m h
1 — (1—4aP)

4

X —'p + —,'m2q + —'m h(P —a) +qP

(4.26)
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arctan ( —,p + —,tn q ) .= 2 mh

hm 2
(4.28)

1s

D. Cubic anharmonic osci11ator

For the quantum-mechanical model whose Hamiltonian

p A,H= +—
q2 . 3

f(x)= —Ax

(4.29)

(4.30)

and

g '(x) = —1+(1+4a/3h'A, x)'~'
2a/3h A,

(4.31)

where the sign of the square root is determined by requir-
ing that g

' be smooth in the limit h —+0. The transfer
operator is given by (4.21) where

For small h,

A = —,'p + ,' rn—q + —,'m h (/3 a—)(pq+qp)+O(h ) .

(4.27)

Observe that A differs from the continuum Hamiltonian
by terms of order h, unless a=/3. The case a=/3 is clear-
ly very special. If a=P= —,', only even powers of h occur
in the expansion of A because the equations of motion
have been imposed in a time-reversal symmetric manner.
If we set a=P= —, in (4.26) we obtain

(3X'q' —3X'q'+ 7X'q'p'q'+ —', Xp 4)
160

+O(h') (h~0) . (4.36)

If we use quadratic finite elements, A (which we cannot
obtain in closed form) will differ from II by terms of or-
der h, cubic finite elements will give a difference of order
h, and so on.

F. Large-lattice-spacing limit

Although the large-lattice-spacing limit is not a physi-
cally relevant region, it is mathematically interesting. In
the symmetric case, a=P= —,', the recursion relations (4.6)
and (4.7) become extremely simple in the limit h~op.
Specifically, they read

p„=—p„ i+0 (1/h),

q„=—q„~+O(1/h) .
(4.37)

2

lim A h =—p +mq2
h~oo 2 m

(4.38)

Apparently, then, in this limit, the transfer operator in the
case of linear finite elements becomes the parity operator.

To see this limit explicitly, we set h = oo in the expres-
sion for hA for the harmonic oscillator in (4.28):

A(x)= +
2a/3h 2a P2h 4g

(1+4aPh Ax) —1

12aPh A,

(4.32)

This gives

U ei&p /m+mq )/2 (4.39)

E. Quartic anharmonic oscillator

For the continuum system described by the Hamiltoni-
an

2
p X 4

2 4

the effective lattice Hamiltonian is

(4.35)

If we expand U as a series in powers of h and compute
~=(1 /i h)l nUwe obtain

2

+—
q —(/3 —

2 )Ahqpq+O(h ) (h~0) . (4.33)
2 3

Once again, observe that in the special case a =P= —,, the
corrections are of order h . Since first-order corrections
to A vanish in the symmetric case, evidently numerical
accuracy will be optimized in this case. %'e will see this
point explicitly in Sec. V. Therefore, for the rest of this
section we will assume a=P= —,. In the symmetric case
the first few terms in the expansion of A are

A =—p + —Aq +h pqp+p3 +. . . (4.34)

which is a representation of the parity operator H (there
are many unitarily equivalent representations).

In general for any Hamiltonian H when a=/3= —,', we
have

lim U=H .
h~oo

(4.40)

V. COMPUTING THE ENERGY SPECTRUM

The finite-element method yields a fully consistent and
regulated (completely finite) quantum theory which ap-
proximates the underlying continuum theory. The im-
mediate result of solving the discrete theory is to give
discrete approximations, q„and p„to q(t) and p(t). The
problem is now to extract physical information from these
results. One can immediately extract information on tun-
neling, this will be discussed elsewhere. Of' much greater
importance is the determination of the energy spectrum.

There are a number of ways to obtain energy eigen-
values. The simplest procedure consists of determining
the time dependence of the operators q(t) and p(t) for
short times. The energy spectrum can be deduced in an
extremely quick and simple fashion from the oscillation
frequencies of these operators.
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H= 2p = ~Aq
1 2 j 4 (5.1)

for the case of symmetric linear finite elements ( r = 1,
a =p= —, ). We begin by solving the recursion relations
for a single finite element

9i -QO

h
=—

V i+no» (5.2)

A. Symmetric linear finite-element calculation

We illustrate the method for the quartic anharmonic
oscillator

(1Iq, Io) 2
(5.1 1)

Comparing powers of h in (5.10) and (5.11) with (5.8) and
(5.9) gives a simple system of algebraic equations

(5.12)

Note that this procedure produces four equations (three
different ones) for only two unknowns, tp and r. Howev-
er, all but two equations are redundant. The solutions are

1/6

Pi —PO
&

9'r+QO

h 2

3

(5.3)
21r 3A (5.13)

as a series in powers of the lattice spacing h. The result is

qi =qo+poh — qo " + ' ' '3 2

2

3 3~ 2pi =po —~qo "— qopoqoh +
2

(5.4)

(5.5)

We stop at order h because we know that the symmetric
linear finite-element prescription is accurate to this order.

Next we introduce a set of Fock states by constructing
a pair of creation and annihilation operators a and a in
terms of pp and qp.

~=(-', X)'"=1.14471m'" . (5.14)

We regard the determination of r as a kind of variational
fit which gives the optimal width that suppresses all other
frequencies to this order The .value of cp is a remarkably
good approximation to the exact numerical value of
Ei Ep whic—h is 1.08845K, '~ . The relative error of our
approximation is 5.2%.

This same procedure can be used to find other adjacent
energy differences. If we take n, n + 1 matrix elements
of (5.4) and (5.5) we find

r(a+a ) (a —a )
qo ~ ~ po

2 l 2$

where

(5.6) ~n+l, n
= 3(n +1)

&
2

1 /3

(5.15)

[a,at]=1 . (5.7)

It is possible to define these creation and annihilation
operators because pp and qo satisfy canonical commuta-
tion relations. The parameter y is completely arbitrary,
and is the coordinate-space width of the Fock states

I
n )

generated by a . In our calculation y will be determined
by a simple self-consistency requirement. Note that the
states

I
n ) = [(a )"Iv n!]

I
0) are not the energy eigen-

states of the anharmonic oscillator.
To obtain oscillation frequencies we take matrix ele-

ments of (5.4) and (5.5) between adjacent Fock states:

in 3 4(E„+i E)wry =B~-
r( —,

'
)

", (n +1)'"-
= 1.156 19(n + 1)' A,

' (5.16)

This approximation becomes more accurate as n in-
creases. For example, when n = 1, tpq i

——1.4423K, '

which corresponds to a relative error of —0.5%. When n
is large we can compare (5.15) with the WKB approxima-
tion to E„+~

—E„,which becomes exact as n ~~.
4/3

&1I ~i I
o) =

& 1 l~o I
»(1+t-', »r' ,' h'~r'—+—

(1
I qi I

0) = (1
I qo I

0) 1+ ——,
'

h zA,r + .
y'

(5.8)

(5.9)

Equation (5.15) differs from this result by a relative error
of —0.95%%uo.

We again emphasize the extreme triviality of this calcu-
lation. To understand why the result becomes more accu-
rate for large n, we point out that this calculation is valid
for short times (small h). Thus, by the uncertainty princi-
ple it is more sensitive to higher frequencies.

Any matrix element of any time-dependent operator, such
took t

as p (t) or q (t), has the general form gk cke, where ck
are complete amplitudes and cok are all possible energy
differences. Here, we choose r so that to order h only a
single frequency to appears. That is,

=e'""=1+itph — h (5.10)
1 po0

qi ——qp+Pph —Pkqp h

p & =pO —~g'O h —3cxkgOpOcfoh +
(5.17)

(5.18)

B. Asymmetric hnear finite-element calculation

Let us repeat the above calculation for the asymmetric
case where we leave a and P arbitrary but subject to the
constraint a+p= 1. In place of (5.4) and (5.5) we have
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Then, in place of (5.8) and (5.9) we find

(1
i p, i

0) =(1
i p, i

0) 1+i-,hXy—4 3akh y
2

(5.19)

Hamiltonian for the case of quadratic finite-elements is
accurate to order h, we now expand qi in terms of qo
and pp to order h:

q& ——qp+pph —
2 Aqp h — A,qoppqph'

(1
~ qi i0) =(1 iqo ~0) 1+ 2

——,p&h y + ' ' '

y'
—,I, qo —

4 ppqppp h2 S ~ 4 (5.21)

(5.20)

Note that if we equate these to (5.10) and (5.11) to order h
we obtain two equations which give precisely the same re-
sults as in (5.13) and (5.14). However, the order h equa-
tions are inconsistent in general unless a=p= —,. This re-
sult is not surprising in view of our finding in Sec. IV that
the effective lattice Hamiltonian A differs from the con-
tinuum Hamiltonian H by terms of order h unless
CX 2

It is not necessary to consider pi here, as it will produce
redundant numerical results. We now construct a two-
parameter normalized pair of states,

8& =10&cos8+12&»n8

such that for special values of the parameters the expecta-
tion value of qi oscillates with a single frequency co.
There are now four parameters, co, y, 8, and P, to be
determined by the four equations obtained by matching
the matrix element of (5.21) with

C. Quadratic finite-element calculation

Let us extend the analysis of Sec. VA to the case of
quadratic finite elements r=2. Since the effective lattice They are

(5.22)

Deny = cosP cos8 —cosP sin8+ v'3/2 sing sinO,
1

2

Dc@ y =Ay cosP cos8+ 3 cosP sin8+ sing cos8+ —,V3/2 sing sin82 4 6 3 ~ 9

2 2 2

D63 y =A,y cosp cos8 —3 cosp sin8+ sing cos8+ T3/3/2 sing sin83 6 6 3v3 9

2 2 2

Dco4y'=ay' 45 6 3 135 6

4 2 2
A,y — cosgcos8+(, ky —6)cosgsin8

t'

+ A,y +3V 3 sing cos8+, v'3/2A, y — sing sin8
~ 285 9~3

2 2

where

1D = cosP cos8+cosP sin8
2

+ V'3/2 sin8sing .

The procedure for solving these equations is straightfor-
ward. We eliminate the angles 8 and P and obtain a pair
of simultaneous polynomial equations for y and cu. The
roots of these polynomials can be found by Newton's
method. The lowest frequency is ~= 1.082 25K, ' . This
differs from the exact value of Ei —Ep by —0.57%.
Thus, going from linear to quadratic finite elements has
reduced the relative error by a factor of 10. Unlike the
linear finite-element calculation, this calculation supplies
additional frequencies which we identify with E3 —Ep,

Ej —E2, and E3 —E2, and which are accurate to a few
percent.

2+ g 2% (5.23)

[Note that II in (5.1) is obtained from '(5.23) by setting
%=2.j The equations corresponding with (5.2) and (5.3)
are

qi —qo

h
=Yi(P i+to) (5.24)

D. Eigenvalue calculation for the q oscillator

This same procedure can be used to find the eigenvalues
of the generalized anharmonic oscillator whose Hamil-
tonian H is given by
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and
2N —1

and we can solve unambiguously for the energy gap

P1 —S 0 e1+eO
h 2

The generalizations of (5.4) and (5.5) are

$1 =go+poA —
2 A,go A +

(5.25)

(5.26)

A,(2N —1)!
4~-'(N —1)!

1/(N + 1)

(5.30)

pi =po ~—qo
' — (2N' —1)qo 'poqo '+ '

2

(S.27)

Note that when N= 1 we obtain the exact answer co =v A,

(for the harmonic oscillator) and that when N=2 we ob-
tain the result in (5.14) which is accurate to 5%. When N
is large we can use the Stirling approximation

I (x)-x" '~ e "V2~ (x~ao )
Following the procedure used to obtain (5.8) and (5.9)

and making use of the identities

&1
l

2x —1 l0)
4 (N —1)!

to simplify (5.30):

co= —(2~2k,e/N)' ' +" (N~oo) .
e

(5.31)

&I lP, l0& 4;ggy (2N I)!
4 (N —I)!

=1+

2h 2gy2N —2(2N 1 )!
4"(N —1)!

(5.29)

If we compare the right-hand sides of (5.28) and (5.29)
with

e'""=1+icoh —co h /2+ .

we obtain four equations for the two unknowns co and y.
However, as before, two of these equations are redundant

& 1
I

~ ~ ~ ~ 10)= 2i W2y ''(2N —2)!
p 'q

4
where y is given in (5.6), we obtain the generalizations of
(5.8) and (5.9) to arbitrary ¹
&1

l q] l
0) 2 2h gy ~ —(2N I)!

&I lqo I» 4 (N —I)!
(5.28)

The results in (5.30) [and in (5.31)] become less accurate
as N increases but they are quite good when %&5. We
have compared the exact value of co with the prediction in
(5.30) for various values of N in the range —,

' (N &5.
When N = —,

' the relative error is 3.5% and when N= 1

the error is 0. As N increases from 1 so does the error: at
N = —,

' the error is 2.4%, at N=2 the error is 5.2%, at
N = —', it is 10%, and at N=3 the error is 15%. The for-
mula is only marginally useful when N=S (the error is
36%); as N~ oo the result in (5.31) grows linearly with N
while the exact value of co approaches a constant.
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