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Renormalization-group methods are used to study interacting quantum field theory in curved
spacetime. Details are presented explicitly showing how the short-distance behavi'or of the theory is
linked to the existence of nonlocal terms in the effective action. We show how the usual value for
the running electric charge in QED in flat spacetime may be obtained in this way by using the
background-field method. A similar technique is then used to find nonlocal terms in the effective
action arising from a real scalar field on a weakly curved gravitational background. It is shown how
the results for the effective gravitational coupling constants obtained from analysis of these nonlocal
terms agree with those found in our previous work.

I. INTRODUCTION

In recent papers' we have analyzed the renormaliz-
ation-group behavior of interacting field theories in
curved spacetime. We were particularly interested in the
short-distance limit of the coupling constants which in-
volve the curvature, and hence are not present in flat-
spacetime quantum field theory. Examples of such cou-
pling constants are provided by those which multiply
curvature-squared terms in the generalized Einstein-
Hilbert gravitational action, and those which link the
Higgs scalar bosons to the curvature.

The method which we used was the curved-spacetime
renormalization-group analysis. As originally intro-
duced, this method involved looking at what happened to
the Green's functions under a rescaling g~ ~s g&„of
the background metric. Increasing the dimensionless pa-
rameter s probes the short-distance behavior of the theory.
In flat spacetime, this corresponds to the limit of high
momentum; however, for a general curved spacetime,
there is no natural global definition of momentum space
(although a local momentum space may be introduced ).
The curved-spacetime momentum-space method was later
applied to the effective action, and used extensively in
Refs. 1 and 2. This approach is also adopted in the
present paper.

Details of the calculations in Refs. 1 and 2 involved a
computation of the pole part of the one-loop effective ac-
tion using the background-field method and dimensional
regularization. Once the pole terms were obtained, the
renormalization was effected by adding the appropriate
counterterm s which were also expressed as pure pole
terms (minimal subtraction). A standard renormaliza-
tion-group analysis was then applied to find out the
behavior of the coupling constants at short distance. This
enabled the short-distance limit of the effective action to
be inferred.

The present paper is one of two which seeks to clarify
the short-distance limit of the effective action as obtained
in our earlier work. The origin of the short-distance
behavior will be shown explicitly to lie in the fact that
nonlocal terms are present in the effective action. (By
nonlocal, we mean those which cannot be expressed as any
finite polynomial with constant coefficients in the metric
and its derivatives. ) Because it is impossible to obtain an
explicit expression for the effective action, approximation
techniques must be resorted to. The one used in this pa-
per involves looking at the weak-field expansion of the ef-
fective action, and is described in Sec. III below. The
companion paper uses the new form for the coincidence
limit of the heat kernel found in Ref. 10 (see also Ref. 11)
to calculate nonlocal terms in strong gravitational fields.
Although the precise form of the nonlocal terms found
are different with these differing methods, they lead to the
same behavior for the effective action at short distance.
A possible way of combining the two procedures is dis-
cussed in Sec. IV.

Related nonlocal terms in the effective action may be
found in Refs. 12 and 13. The relationship between such
terms, the renormalization group, and the effective cou-
pling constants has not been discussed previously to our
knowledge.

The outline of our paper is as follows. In Sec. II we
discuss charge renormalization in QED from the
background-field viewpoint adopted in this paper. We
demonstrate how the existence of a nonlocal term in the
effective action is responsible for the running behavior of
the effective charge obtained using minimal subtraction.
The third section contains our analysis of the nonlocal
terms in the effective action which are responsible for the
running behavior of the gravitational coupling constants.
The details are presented for a real scalar field in a weak
gravitational background. The final section gives a dis-
cussion of the results. A number of technical details may
be found in the appendices.
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II. CHARGE RENORMALIZATION IN QED
AND NONLOCAL TERMS

IN THE EFFECTIVE ACTION

In this section we wish to sketch the derivation of
charge renormalization in QED in flat spacetime using
the background-field method. The reason for including
this material is to illuminate the subsequent sections
which are concerned with renormalization on a curved
background spacetime in a situation which is probably
more familiar to the reader. There is a close parallel be-
tween the nonlocal terms in the effective action for QED
which give rise to the running of the effective charge, and
the nonlocal terms in the effective action for quantum
field theory on a curved background spacetime which are
responsible for the running of the effective gravitational
coupling constants.

The bare Lagrangian for a Dirac spinor field g(x) in-
teracting with the electromagnetic field A„(x) will be tak-
en as

the gauge field is treated classically. Only a charge renor-
malization and a renormalization of the background
gauge field need to be performed. The renormalization
constants are restricted by the requirement of gauge in-
variance to satisfy

ZeZQ —1 e (2.6)

This result follows most easily using the gauge-invariant
background-field method. '

With the adoption of the background-field method we
may write

I=I+I@,
where

(2.7)

and

I=pn f d "x[—4zz F—&„F""+p(9 im)g—+ie gA Q]

(2.8)

W(x) = —, F~„gg—'+g~(e) immi )g—ii +iei) gi) g i) gi) . Iq f d"x—[q(y im)q+ieyAy] . (2.9)

(2.1)

The subscript B denotes a bare quantity. The spinor
fields are treated as anticommuting, and the choice of fac-
tors of i in (2.1) ensures that the classical action is real.
We will adopt dimensional regularization and work in n
spacetime dimensions.

The background-field method involves the replacement
of all fields in the classical action by the sum of a
background-field part and a quantum part. For the La-
grangian in Eq. (2.1) we may define renormalized back-
ground fields A„(x), g(x) and a renormalized mass m,
and charge e in terms of the bare ones by

I& contains terms which are quadratic in the quantum
fields. (Terms linear in the quantum fields may be ig-
nored since they will not contribute to the effective ac-
tion. '

) The background fields will be taken to have no
dependence on the (n —4) extra coordinates. Thus in Eq.
(2.8), the integral f d "x will involve a factor of
(length)" or (mass) " coming from the volume associ-
ated with the extra dimensions. We will choose p to be
associated with this volume so that (2.8) becomes

I= f d x[—, Z~F„„F&"+—g(9im)g+ieg—AQ] .

(2.10)

a~(x)= '"-""Z '"a~(x) (2.2) The partition function Z is defined by

(n 4)/2z 1/2q( (2.3)

Ply =Zm tB ) (2.4)

—(.n —4)/2Z eee (2.5)

The unit of mass p has been introduced here so that the
renormalized quantities occurring on the right-hand side
(RHS) of Eqs. (2.2)—(2.5) have the same dimensions for
all n as they do for n =4. (See Ref. 8.)

Because this section serves merely to illustrate our
method in an easier and more familiar setting before
proceeding to the gravitational case, we will specialize to
the case where only the Dirac spinor field is quantized in
the presence of a classical background electromagnetic
field. (This is closely analogous to the quantization. of
matter fields on a classical gravitational background. )

Owing to this simplifying assumption, there will be no re-
normalization of either the spinor field or its mass. Thus
the renormalization constants Z~ and Z~ appearing in
Eqs. (2.3) and (2.4) may be set equal to unity. The reason
for this (using the language of Feynman diagrams) is that
the contributions to Z~ and Z come from diagrams
which contain internal photon lines which are absent if

Z= f dp[g, g]exp(iI), (2.11)

where d)M[/, g] represents the functional measure for the
quantum part of the fermion fields, and I is given in Eq.
(2.7). The effective action may be obtained from Z by
performing a functional Legendre transformation. '5 It
proves convenient to regard the term in 3 which appears
in I~ as an interaction term I;„„

I;„,=ie f d"x P(x)g(x)g(x) .

Then the effective action is given by

r=I+r"',
where I""' is the one-loop part defined by

(2.12)

(2.13)

I ( ) ) i (e
~ int ) (2.14)

Here the angular brackets ( ) mean that only one-
particle-irreducible graphs (which in the present case are
simply connected graphs) are to be kept in the Wick
reduction of the enclosed expression. The exponential
may be expanded to give
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I = —i g ( —e)"

k=0

x f d" d" (g( )A( )g( )

Xy(x/, )A(x/, )q(xk)) .

(2.15)

(/t/~(x)P//(x') ) =iS~//(x, x') .

The fermion propagator satisfies (matrix notation)

(9„—im)S(x, x') =5(x,x'),

(2.16)

(2.17)

where 5(x,x') is the n-dimensional Dirac 5 distribution.
The momentum-space representation for the propagator is

S( ~) f d P ip (x —x') (P+m)
(2m)" (p m+—ie)

(2.18)

where causal (or Feynman) boundary conditions have been
adopted.

The k =0 term in Eq. (2.15) gives a vacuum contribu-
tion which may be ignored in flat Minkowski spacetime.
The k = 1 term involves

This expression may be evaluated by using the usual
rules for integration over anticommuting variables. ' The
two-point function (tp~(x)1(tt/(x')), where a and p denote
four-component spinor indices, is given in terms of the
fermion propagator by

ponents of momenta in the directions associated with the
extra dimensions get set equal to zero. Expansion of
(2.22) about the pole at n =4 then leads to

I '"=— [2(n —4) '+ y+ln(m /4np )]
24m

&& f8'x A~(x)(&„~ a—„a„)A"(x)

2

f d x A "(x)(g„~—B„B„)F(Cl)A (x)

+O(A ), (2.23)

where
1

F(0)= f dt t(1—t)ln[1+t(1 —t)m CI] .

An effective Lagrangian may be defined by

I = f d xW~tt(x) .

(2.24)

(2.25)

e
W,tt(x) = —,' F"" Zg ——[2(n—4) '+ y

12%.2

+ln(m /4np )]

1 "' is easily seen to involve only the field strength Fz„
after integration by parts. When I '" is combined with I
given in Eq. (10) to form the total effective action [see
(2.13)], the effective Lagrangian is found to be

(f(x)A(x)f(x) ) = i tr[A(x—)S(x,x)] (2.19)

if (2.16) is used. This may be seen to vanish using the
momentum-space representation (2.18) and the fact that
the y matrices are traceless. In fact, all terms in Eq.
(2.15) with k odd will vanish. This is a consequence of
Furry's theorem. ' Thus, the first nontrivial term in I "'
1s

+ieger Q+

A.

F(Cl) F& +g(9 im)f-
2772

(2.26)

where

II„„(x,x') = —tr[y„S (x,x')yQ(x', x)] . (2.21)

II„„is the usual vacuum polarization tensor for QED. It
is easily evaluated to be

11„„(x,x )

=i(4m ) I (2—n/2)2'+" (BpB„—gp~)
n/2 —2

+t( 1 t)(—I g i)
0 4m.

(2.22)

Because the background gauge field has no dependence on
the extra spatial coordinates, it is easily shown that when
the integration over the (n —4) extra dimensions is per-
formed in (2.20) using (2.22), a factor of p " arises from
the volume of the extra dimensions. In addition, the com-

I "'=—e f d "x d "x'A "(x)IIp„(x,x')3 "(x')+O(A ),
2

(2.20)

This is observed to be manifestly gauge invariant. It is
also seen to be a nonlocal expression due to the presence
of the term which involves F(Cl).

The usual measured value for the electron charge is
determined in very-low-energy experiments for which the
large-distance behavior is relevant. This leads us to define
the electron charge in the limit where

~

F(Cl)
~

&& 1. (The
fact that this is the large-distance limit may be seen from
sealing the background metric n& —+s g& and letting s
tend to zero. ) The field renormalization factor Zz should

en be fixed so that the coefficient of F/ "F
2

Z„=1+ [2(n —4) '+y+ln(m /4np )] .
127T2

(2.27)

+ieL fAp+ (2.28)

If we call the value of the electron charge defined in this
way eL (L being mnemonic for low energy or large dis-
tance), then

2

~,tt(x)= —,'F~" 1 — ~F(C:I)—F„„+Q(9im)P—
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will be taken to begives the renormalized effective Lagrangian.
If we now want to identify the electron charge mea-

sured at a different scale, then it is necessary to perform a
further finite renormalization of the vector field. This is
most easily formulated in momentum space, and is

i= fd x( g)'/' ,'g~—"a„y,aP, ,'—m—,'y, ' ,'—g,—Ry,'

4
4f ~B (3.1)

' —1/22

~ ~(q) 1 — F( —q')
2

(2.29)2 "(q) .

This means that the interaction term [last term in (2.28)]
involves a charge e (q), where

2

e (q) =eL 1 — F( —q )
2772

For large values of
~ q ~

&&m,

e (q)=eL 1 — ln( —q /m )
12m

where P~ is the bare field, ms is the bare mass, and A.~ is
the bare quartic self-coupling. The constant gs is a bare
quantity which describes a nonminimal coupling to the
scalar curvature.

Again the theory will be quantized using the

(2 30) background-field method. Because we are on a curved
background spacetime, it is necessary to add in additional
gravitational terms to renormalize the theory. The re-
quired terms take the form

IG ——f d"x( —g)' (As+~zR+a»R" ~ R& z

+apsR"'Rq, +a3gR ) .
This is the standard result for the running electric charge
in QED. ' It agrees with the result found using minimal
subtraction. The leading term in the large-distance
behavior of the effective Lagrangian may be obtained
from Eq. (2.28) by expanding (2.25):

Renormalized quantities are defined by

( )
(n 4)/2Z 1/2y(x )

2 2
mg —Zm pl

As =p Zgk,

4 =0+8
As ——p" "(A+5A),

&s =P (le+5K),

F(O)= 3'0 m Cl . (2.32)

This gives

2

W,fr(x)= —
~
F"" 1 — F „+g(9 im )g-

6O~2m'

(3.2)

(3.3)

(3A)

(3.5)

(3.6)

(3.7)

(3.8)

+ie, qgy+ (2.33) a;~ ——p" (a;+5a;) (i =, 1,2, 3) . (3.9)

The remainder of this paper will be concerned with ob-
taining analogous results for a scalar field on a gravita-
tional background.

Iii. RENORMALIZATION
OF THE GRAVITATIONAL COUPLING CONSTANTS

Here P(x ) denotes the background scalar field.
Make the background field split, and as before take the

background fields P, gz„ to be independent of the extra
dimensions. Because we are only working to one-loop or-
der, we have

Consider a real scalar field with a quartic self-
interaction on a gravitational background. The action

I

I=I+Ig,
where

(3.10)

&= f d x( —g)' ' ,'Z~g" d„/BE —,'Z&Z m'p——,' Z&(g+—g—)Rp''Z'~Z&' —p4-
4f

+ f d x( g)'/ [A~5A+(—~+5s)R+(a)+5a))R""~ R„p +(az+5ap)R""R„„+(a3+5a3)R ] (3.11)

I~ ———,
' f d "x(—g)'/ g""d„QdQ mP gRP— — (3.12)

I~ is the part of the action which gives rise to one-loop
effects. As in Sec. II, the linear term has been neglected
since it will not give any contribution to the effective ac-
tion. Also, because we are only working to one-loop or-
der, the counterterms and renormalization constants may

be dropped in I~.
As explained in the Introduction, we want to examine

the nonlocal terms in the effective action which give rise
to the running behavior in the gravitational coupling con-
stants. We will do this by making the following weak-
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field expansion of the metric:

g„„(x)=g„„+h„„(x) (3.13)

and treating h&„(x) as an external field. This means that
flat-spacetime Feynman rules can be used. As we have al-
ready mentioned, an alternate method whi. ch does not use
this expansion is given in Ref. 9. This leads to different
nonlocal terms in the effective action.

As with the QED calculation in a background elec-
tromagnetic field, terms in hz„will be treated as interac-
tion terms. We will write

(0)Ig ——Ig +Ilnt ~ (3.14)

where

,——f—d"x(~&"a„yap m—y ) (3.15)

is the free part of the action which defines the scalar field
propagator. The interaction part is obtained using results
given in Appendix A. We may write .

(3.16)

where the superscript denotes the power of h&„which
occurs. It is easily shown that

I,'„", = ——,
' f d"x (h""—,'hq"")—BpPBQ+, hm—P+—hg P + —,g(Clh)$

4
(3.17)

and

I,'„,'= —, f d"x [h" h "—, hh"" ——,(h h—„——,'h )ii&"]B„QBQ—( —,'h —'h&"h —) ma 2 p 8 4 p&

+g(h&"Clhq„+ 4h&"' h—~ i, ——,
' h" ' h„i ——,

'
hClh)P (3.18)

The one-loop contribution to the effective action, expressed in powers of h&„may be obtained from

I = —i(e' '"') .

(The term independent of h is ignored here. ) The Wick reduction is obtained using

(P(x)P(x') ) =id(x —x'),
where

(3.19)

(3.20)

(Cl„+m i e)b (x ——x') = —5(x —x')

defines the flat-spacetime propagator.

A. g renormalization

(3.21)

The g' renormalization is fixed by terms in the one-loop effective action of the form RP . In the weak-field expansion
this means that the lowest-order nonvanishing term is of order hg . It is easy to see that the relevant part of the one-
loop effective action is

I ~"————f d "x h (x)P (x)(P (x) )
8

4

+—A, f d"x d"x$ (x')[[h" (x)——,
' il""h(x)](p (x')B„p(x)BQ(x))

+ —,'m2h(x)($2(x)P (x'))+ —,'g'[Clh(x)]($ (x)Q (x')) } . (3.22)

This result follows directly from expanding the exponential in (3.19) and keeping the relevant terms. Using Wicks
theorem and (3.20) gives

($ (x)P (x') ) = —26 (x —x'),
($ (x')&„P(x)&P(x)) = —28„5(x —x')B„b,(x —x') .

Note that the prescription for T*products has been employed here. Then

r~ '= ——'X jd"x h(x)a(0) j'(x)
8

——A, f d"x d"x$ (x') j[h" (x)——,'h(x)il"']B„h(x —x')8 b(x —x')+ —,'m h (x)b, (x —x')

(3.23)

(3.24)

(3.25)



1414 LEONARD PARKER AND DAVID J. TOMS 32

The products of Green's functions which occur in (3.2S) may be evaluated by introducing the Fourier transform

b(x —x')= e'"'" " '(k —m +i@)
d"k

(2n. )"
(3.26)

A number of relevant integrals are listed in Appendix B. Everything may be expanded about n =4 to identify the pole
term and finite term. It is necessary to separate the finite term into two pieces. One involves only non-negative powers
of masses and is local. The second piece is a nonlocal expression which, if it is expanded in powers of m, begins at or-
der m . This procedure leads to

b, (x —x') = —i(4m) [2(n —4) '+y+ln(m /4mp )]5(x x')+—F)(x —x'),

m 5 (x —x')= im—(4m) [2(n —4) '+y+ln(m /4mp )]5(x —x') ——(4m) 5(x —x')+Fz(x —x'),
6

B&b(x —x')B„b(x —x')= ——m (4m) ri&„[2(n —4) '+y —1+in(m /4mp )]5(x —x')
2

(4') qz, [2(n —4) '+y+ln(m /4mp )]CI5(x —x')

(3.27)

(3.28)

——(4m) [2(n —4) '+y+ln(m /4mp )]B&B+(x x')+F—3p (x —x'), (3.29)

where
1

F~(x —x') = i (4—m ) f dt in[1+ t (1 t)m ]5(—x —x'),
1

Fz(x —x')= i(4—m) f dt[m ln[1+t(1 t)m —C3] ——,'Cl]5(x —x'),

F3@ (x —x') = — (4tr) rt„—„f dt t ( 1 —t)ln[ 1 + t ( 1 —t)m Cl]CI5(x —x ')

1—i(4m) f dt t(1 —t)ln[1+t(1 t)m ]B—&OP(x —x')+ ,
'

ri&+z(x ——x').

These results may be substituted into (3.2S) and the result simplified using the gauge condition (AS). Note also that

ri„„(h"" —,
'

h g"")= [——1 —,' (n 4—)]h—

(3.30)

(3.31)

(3.32)

(3.33)

must be used. After a straightforward calculation it is found that

I ~"=——,'Am (4m) [2(n —4) '+y —1+in(m /4np )] f d xh(x)P (x)

——,k(4~) [2(n —4) '+y+ln(m /4rrp )](g——,') f d xP (x)Clh(x) ——,'A(4n. ) f d xP (x)G(O) h(x),

(3.34)

where
1

G(CI)= f dt[g t(1 —t)]in[1+ t(—1 t)m ]—. (3.3S)

The complete terms of order hg in the one-loop effec-
tive action also involve contributions coming from I as
given in Eq. (3.11). Noting that no field renormalization
is required at one-loop order (i.e., Z&

——1), the needed
terms are found to be

,' f d'x[(h&" —,'h—g~")B„Q—BQ—

+ —,'m (1+5Z )h(x)P (x)

+ —,(g+5g')[ h(x)]P (x)j, (3.36)

where we have written Z =1+5Z . In order to identify
the physical values of the coupling constants we must
describe how to fix the counterterms. Just as in the case
of charge renormalization in QED, we will identify the

physical coupling constants to be those measured at large
distances (or low momenta). With this choice, the coun-
terterms 5Z and 5$ will cancel off the complete depen-
dence on h(x)P (x) and [ h(x)]P (x), respectively, in

s~+r~ '..

5Z~ = — [2(n —4) '+y —1+in(m /4mp )],m
32 2

(3.37)

5$= — (g——,
' )[2(n —4) '+y+ln(m /4mp )] .

32~2

(3.38)

[Note that the nonlocal term G(O) will vanish in the
large-distance limit. The large-distance limit is obtained
by the metric rescaling g&„~s g&„and letting s~0.]

Adopting this definition for the coupling constants, we
have
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x ——, &"——,
' hq&"

g+ G(&) (&h )
32

(3.39)

as the complete part of the renormalized one-loop effec-
tive action involving terms of order hg . By letting
g&„~s ri&„ in Eq. (3.35) and taking s~0, it is easily
seen that

G(CI)=2(g ——,
'

)1ns . (3.40)

The effective g parameter may be identified from Eq.
(3.39) to be

g(s) =g+ (g——,
'

)1ns
16m.

(3.41)

if it is noted that to order h, R = —,Uh. This is identical
to that obtained from the use of minimal subtraction and
standard renormalization-group methods. It clearly
demonstrates that the origin lies in the nonlocal term in-
volving G( ) in the effective action.

B. Calculation af 0 (h ~) terms in the gravitational action

In order to examine the terms in the effective action
which are purely gravitational it is necessary to work to
order h . [This is obvious from the results given in Eqs.
(A10)—(A13).] We may set the background scalar field to
zero for the gravitational terms since they are "vacuum"
contributions. The order h contribution to the gravita-
tional part of the one-loop effective action is

(3.42)

where P =0 is taken in Eqs. (3.17) and (3.18).
The result for &I „„'& is obtained easily, involving only

&P (x) & and & B&P(x)BQ(x) &. From (3.20),

& y'( ) & = ~(0) . (3.43)

A simple calculation (see Appendix B) leads to

. Pl
& B„P(x)BP(x)& =i 6(0)g„„.

n
(3.44)

After some integrations by parts and use of the gauge
condition (A6), it is observed that

&~ „", &= —'~(0)
2

m
X f d"x (h""h,——,'hz)

71
pv

+ ,' g (h ""Oh—~„—,'
h Clh )—. (3.45)

This contains only local terms.
The evaluation of (I „'t') is a good deal more tedious.

In addition to the results in Eqs. (3.23) and (3.24), we re-
quire

&a„y(xgy(x)a;y(x )a.'y(x ) &

= —a„a,'~(x —x')a„a.~(x —x )

—a„a.'~(x —x )aP,'a(x —x') . (3.46)

It is found that

&(I,'„", ) & = ——,
' f d "x d "x'[[h~"(x)——,

' ri"'h(x)][h~(x') —,
'

ri~ h(x')]—B„B'b(x —x')B„B'b(x —x')

+m h (x') [h&"(x)—, ri""h (x) ]B„h—(x—x')BQ(x —x')

+ —,
'

m h (x)h (x')b2(x —x')+g[Q'h (x')][h""(x) ,' ri""h (x)—]—
x B~b (x —x')8 b (x —x') + —,

'
gm h (x') [C3h (x)]b, (x —x')

+ —,g [Clh (x)][CI'h(x')]5 (x —x') j . (3.47)

Expressions for the required products of Green's functions may be found in Appendix B.
As before, we must separate the terms in the effective action into parts which contain no inverse powers of mass when

expanded, and those which begin at order m . For simplicity we refer to these parts as local and nonlocal, respectively.
It is found that

[B„B'b, (x —x')B„B'b (x —x')]

8(4')' tm [2(n —4) '+L ——', ]+ ,
'

m [2(n ——4) '+L —1](-j'+ 30 [2(& —4) +L]

XP(x x')(~„„q +g„ri +q„&, ) [ —,'m —[2(n —4) '+L —1]+—„[2(n—4) '+L]O'JPo' YP 2(4 )2 6

X(q„„a;a.+q„.a'„a,'+q„,a„a.+q a„'a'„)S(x —x )

+ [ —,
' m [2(n —4) '+L —1]+ 2' [2(n —4) +L]Cl'J(g„B&B&+ri„&B'8')&(x —x')

2(4n. )

[2(n —4)-'+ L]a' a„'a' a.'gx —x ),
30(4 )

(3.48)
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where

L=y+ln(m /4n. p ) . (3.49}

The subscript L on the LHS of Eq. (3.48) refers to the local contribution. The part which leads to nonlocal (NL) terms
in the effective action is

[B„B'h(x —x')B,i3' h(x —x')] „=— (q„„g +rj„q„+g„g„)G(Cl')5(x —x')
8(4m. )

, [&,.a„a,+&„,a„a.+&,.a„a,+~„.a,a.]G,( )gx —x )
2(4w)

, (q„.a„'a,'+q„,a„'a.')G, (CI )S(x —x )—,G, (o )a„'a„'a,'a.'S(x —x ),
2(4n ) (4~)

(3.50)

where

G4(CI) =

G5(CI) =

G, (CI) =

G7(CI) =

1f dtI [m'+t(1 —t)CI]'in[1+ t(l —t)m
—'Cl] —t(l —t)m'CI ——', h'(1 —h)' 'j,

1f dt t(1—t)I[m +t(1—t)CI]ln[1+t(l —t)m CI] t(1 —t)Clj—,
1f dt t I [m +t(1—t)CI]l [n1+t(1 t)m —CI] t(1 ——t)CIj,
]f dh t'(1 —t)'ln[1+t(1 —t)m 'CI] .

(3.51)

(3.52)

(3.53)

(3.54)

The other expressions needed are
4 2 l

m b, (x —x')= — [2(n —4) '+L]6(x —x') — CI'5(x —x')+
2

CI' 5(x —x')+Gq(CI')5(x —x'),
(4~) 6(4m ) 60(4m)

(3.55}

where

and

~m4
Gs(CI) = —

2 f dt Iln[1+t(1 —t)m CI] ——,
'

m CI+ —,'o m CI j (3.56)

m 8 b, (x —x')B„h(x —x') = — [2(n —4) '+L —l]g P(x —x')p

~ 2 . ~ 2

[2(n —4) '+L]g„~5(x —x') — [2(n —4) '+L]B„BP(x—x')
12(4m) 6(4n. )

CIB„BQ(x—x') — rl„+ 5(x —x')+ 69„„(CI)5(x—x'),
30(4n ) 120(4m )

where
~ 2 1

, q„„f dht(1 —h)Iln[l+t{1 —t)m 'CI] —t(1—h)m 'C)jCI

2

(4m) f dt h(1 —t)Iln[l+h(1 —h)m
—'CI] —t(1—t)m-' j8 0„p v

~ 4

rt&„ f dtIln[1+t(1 —t)m CI] —6m CI+ 6'Dm 0 j .
32~

(3.57)

(3.58)

Et now follows from these results that the contribution to the local part {i.e., terms not involving the G;) of
(h/2)((I, '„", ) } is

—((I „",) }t ——(64m )
' f d"xI —~m [2(n —4) '+L ——', ](h" h&„——,'h )

2
1

——,', m [2(n 4) '+L —1](h""Clh„„——,—h CIh )

—», [2(n —4) '+L]h""0 hz„—,'(g ——,
' g+ 6', )[2(n——4) '+L]hCI h j . (3.59)
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Using the results of (3.59) and (3.48) in (3.45) shows that the local contribution to the one-loop gravitational effective ac-
tion is

2

(I G')L ——J d x [2(n —4) '+L ——', ](h& h& ——,'h )+ (g ——,
' )[2(n —4) '+L —. l](h""Oh& ——,

' hOh)
16(4m )

" 8(4n )

[2(n —4) '+L]h"'O2h„— (g ——,g+ ~ )[2(n —4) '+L]hO2h
480(4n) 16(4~)

(3.60)

The nonlocal part of I G' is also obtained easily from the above results. After performing a number of integrations by
parts, and using the gauge condition (A5), it is found that

(I',")„„=(64~')-'J d"x j —,
' m'hf, (O)h+ —,

' m'hf, (O)h+ —,
' fhf, (O)O'h ,' g'h—f,—( )O'h ——,

' hf, (O)O'h

+ —,0 (h""O h& ——,'hO h)+ —,', m (h""Oh&» ,'h—O—h)—~ m h" f](O)hz»
——,m h&"fp(O)Oh„——,'h]'"fg(O)O h„„], (3.61)

where
1.

f](o)= f dtln[1+t(1 —t)m-'O],
1

f2(O) = f dt t (1—t)in[1+ t (1 t)m —O],
1

fg(O)= J dt t (1—t) ln[1+t(1 —t)m O] . (3.64)

(3.62)

I 'G' Jd x[(A+5A——)(1+—,
' h+ —,

'
h —,'h""h„„)—

+ (~+5m. )( ——,
' h""Oh„„+—,

'
h Oh )

+(a]+5a]+ —,
' ay+ —,

' 5a2)h""O'h p„

+ —,(as —a]+5aq —5a])hO h] . (3.65)

This means that we can identify 5A to cancel terms in
(1 G')L which involve no derivatives of h, 5a. to cancel
terms which involve one derivative, etc.:

4
5A= [2(n —4) '+y ——', +ln(m /4np )],

64m
2

5&= (g —, )[2(n —4—) '+y —1+in(m /4mp2)],
32~2

(3.66)

As before, we will define the "physical" values of the
gravitational coupling constants to be those measured at
large distance (or low momentum). (I G')Nz has been con-
structed explicitly so that it vanishes in the large-distance
limit. Thus, the gravitational counterterms must cancel
off all of the contribution from (I G')L. Using Eq. (3.11)
and the weak-field expansions in Appendix A leads to

independent of g, and that 5aq ——0 when g= —,. This leads
to

5a] ——
z [2(n —4) '+y+ln(m /4mp )], (3.70)

360(4n. )

5a& —— (P——, ) [2(n —4) '+y+ln(m /4mp )] .
64~

(3.71)

Knowledge of 5a] enables 5a2 to be obtained from (3.68):

5a2 ——— [2(n —4) '+y+ln(m /4mp )] .
360(477)

(3.72)

These results allow the renormalized one-loop effective
gravitational action to be obtained easily.

The short-distance limit of the graVitational effective
action (to order h ) is seen to be

1 ]G' ——(32m2) ' J d x [ —„'0 1]Uh&"O h„

+[ g60 g (g 6 ) ]lflShO h

(3.73)

This follows upon performing a rescaling g&„—+s
and looking at the behavior for large s. By using the
order- h expansions in Eqs. (A15)—(A17), and the
knowledge that R can only occur in the combination
(g ——,')R at one-loop order (see Appendix C), it follows
that for large s

(3.67)

5a]+ —,5a2 ——
2 [2(n —4) '+y+ln(m /4np )],

480(4m. )

a](s)=—(2880m ) '1ns,

a2(s)=(2880m ) 'lns,

aq(s)= —(32m ) '(g ——,
'

) lns .

(3.74)

(3.75)

(3.76)
(3.68)

5az —5a] —— (g ——,
' g+ ~ )[2(n —4) '+y

64m

+ln(m /4m. p )] . (3.69)

We can disentangle 5a] from 5az in (3.69) by use of the
argument given in Appendix C showing that 5m~ must be

This scaling behavior is identical to that found in Ref. 2
using minimal subtraction and the 't Hooft renor-
malization-group analysis. It also agrees with the method
of Ref. 9 which involved looking at curvature-dependent
nonlocal terms in the effective action. These results
demonstrate explicitly how the behavior of the effective
gravitational action at short distances is linked to the.
presence of nonlocal terms.
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IV. DISCUSSION AND CONCLUSIONS

The preceding section has shown how the existence of
nonlocal terms in the one-loop effective action leads to a
short-distance limit which agrees with that found in our
previous work. The specific model studied was a real sca-
lar field, and the background spacetime was taken to be
weakly curved with gp ——gp +hp . By working to ap-
propriate order in h&„ the result for arbitrary curvature
was inferred.

The method used has both advantages and disadvan-
tages. One advantage is that since we were perturbing
about a flat background, the usual flat-spacetime Feyn-
man propagator could be used. This simplifies the
analysis considerably. In addition, the short-distance
behavior could be linked to the large-momentum behavior
in the usual way.

A disadvantage is that it is not completely obvious
whether by working to higher order in hp the same re-
sults would be obtained. This would require more de-
tailed calculations. Also, because we worked only to order
h when computing the gravitational part of the effective
action, any dependence on curvature invariants whose or-
der is higher than two would not show up. However, be-
cause our results are consistent both with our earlier ones,
and also with those using the method of Ref. 9, we regard
both of these possibilities as extremely unlikely.

It is also possible to obtain the effective cosmological
and gravitational constants in the short-distance limit
from the results presented in Sec. III. The cosmological
constant is found to be in complete agreement with that
found in Refs. 2 and 9. (See Ref. 9 for a discussion of the
significance of the result. ) For the gravitational constant,
the method appears to give the result found in Refs. 2 and
9 for a minimally coupled scalar field only. It is not clear
to us why this is the case.

Finally, we wish to comment on a possible way in
which the results of this paper could be combined with
those of Ref. 9. Rather than perturbing about a fiat-
spacetime background, it should be possible to take a gen-
eral curved background. In place of the flat-spacetime
propagators used here, it would be possible to use the
analysis described in Ref. 10 (and used in Ref. 9) to obtain
the propagator, and then follow the perturbative type of
analysis contained in the present paper. This would
presumably lead to both types of nonlocal terms being
present in the effective action. A conjecture is that terms
of the fo'rm ln(m CI) found in the present paper would
be replaced by ln(m [Cl+ (g ——, )R]J.
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APPENDIX A

The inverse metric is given by

gPV ~PV Q PV+ Q
PA,

Q V+ ~ ~ ~ (A2)

to order h . The convention is that indices are raised and
lowered using the Minkowski metric. By expanding the
determinant of (Al) it may be shown that

( —g)'i2=1+ —,
' h+ —,

'
h —,' h" —h„+

where h = h "&. The Christoffel symbols are given by

(h A +hA, h, A,
)

/

h '(hpp ~+hp~ p hp~ p )+

(A3)

(A4)

In order to shorten some of the expressions, it is con-
venient to adopt a gauge condition on hp„. %'e will
choose the background-field gauge'

(h""——,'g" h) „=0
from which it follows that

(A5)

With this choice of gauge it may be shown that

R= —' h —hpUh ——'hp' h g+ —'hp' h g2 pv g pv, A, 2 pk. , v

(A6)

R„=—,
'

hp +
1

Ap(TY 2 ( A, ,p + p, A, hp, A, x,p )+

(AS)

(A9)

f d x( g)' R""R„=—f d x( —'h" CI h„„),

f d x( —g)'i R = f d x( —'h h) .

(A12)

(A13)

It follows from these results that we must work to order
h in order to calculate the purely gravitational terms in
the one-loop effective action. It may be noted from Eqs.
(Al 1)—(A13) that, to order h,
f d x( g)'i2(R""P Rp p~ 4R—""Rp„+R )=0 . —(A14)

This is a direct consequence of the gauss-Bonnet
theorem. By discarding total divergences we are restricted
to trivial spacetime topologies.

Further useful identities (to order h ) are

(We use the curvature conventions of our previous pa-
per. )

Using (A3), (A6), and (A7), performing integration by
parts, and discarding total divergences leads to

f d x( g)'i R = f—d"x( —,'h"'Clh„—„+, hClh), (A—10)

where terms of higher order in h have been dropped.
Similarly, it is found that

f d x( g)'i R""P R —„=f d x(h"" h„,——,'h h),
(Al 1)

We summarize a number of useful expansions needed in
the main part of the paper which follow from assuming

f d"x( g)'i'RF(U)R = —, f—d~x hF(Cl)Cl'h,

f d x( g)' R""F(CI)R = —,
' f—d xhp"F(H)U h„

(A15)

gp
——gp„+hp (A 1) (A16)
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'x —g '"R~"~ F C Z„„,.
= f d x[h""F( )C3 hp„—~hF(Cl)U h],

where F(Q) is any function.

(A17)

standard techniques of dimensional regularization after
combining denominators by introducing a parametric
form. 20

From Eq. (3.26),
n/2 —2

APPENDIX 8
We list a number of integrals here which are needed in

the main part of the text. They are all evaluated using the

i)),(0)= — I 1 ——
(4m )

We also have

(81)

I(p) dnk 1
. I„(p) = f k„(k . m—2+i') '[(k+p)2 —m 2+i']

(82a)
(82b)
(82c)

J (t2)

= f dt. —tppJ2(t)
r PppvJ2(r)+ 2 lpvJ)(r)

(83a)
(83b)
(83c)

where

1n)4() n/2 —~
[ 2 r(1 r) 2]n/2 —a

I"(a )

The products of Green's functions encountered in Sec. III A may all be expressed in terms of the given integrals:

g2( r) P erp (x x')1(p)—
(2n. )"

n

Bph(x —x')B„i)),(x —x')= f P„e'~'" " '[ip (p)+ppl (p)]
(2vr)"

A further result needed in Sec. III 8 involves the integrals
r r

Ipv2(P) d k k kvk2 2 2 2 2(k —m +i@) -[(k+p) —m +iE]
~ pv2. rr P (2~)n p v 2, cr

(85)

(86)

(87a)
(87b)

They may be shown to give the results

ipv2 (P) = —fo «[ 2 r(P2ripv+P priv2+Pvri2p) J1 (t) + r 'P pPVP2J2(t)]
T

I„„z (p)= dr (ri„„ri +ri„ri„+q„zri )[m —t(1 t)p ]Jl(r)—
2n

(88)

2 4+ 2 (Ppp v 92rr +P' vp 2. lper +P pp 2.9vrr+P 2t rr 7pv+P re v ipse. +Ppp rr 1v2)l ( ) + t Ppp vPiLpo. J2 ( t )

(89)

The following product of Careen's functions is then found,
n

Q„Q'iI), (x —x')3 Q'4(x —x')= f e'~'" "'[I„„(p)+pI„(p)+p I„„(p)+p„p I„(p)] .
(2m )" (810)
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APPENDIX C

In this appendix we wish to make some general com-
ments concerning the gravitational counterterms in the ef-
fective action and to justify the claim made in Sec. III 8
that R can only occur in the one-loop. effective action in
the combination (g——,

'
)R.

First of all, the gravitational part of the effective action
can be expressed in terms of the propagator b, (x,x') which
satisfies

(0+m +JR)b(x,x') = —5(x,x') .
The only other way in which g can enter the effective ac-
tion is through the 5gRQ counterterm. Thus g always
occurs in the effective action in the combination gR. In
particular, there can be no dependence on g in the coun-
terterms which multiply R& «R& «or R" Rz . This re-
sult is true to all orders in perturbation theory.

Because 5ai and 5a2 are dimensionless, and 5A has di-
mensions of (mass), we may write

5a;=Fa (A, ,m, p) (i =1,2), (C2)

5A=m Fg(l, ,m, p) (C3)

for some functions F, FA (which will contain pole terms
t

as well as finite terms. ) The dependence on m in Fa and
t

I'~ can only be through dimensionless quantities. This
means that the dependence on m and p can only be
through ln(m /p ). (Logarithms arise because p only

occurs as p" which gives rise to logarithms when ex-
pressions are expanded about n =4.)

5~ can depend at most linearly on g since it multiplies a
term which is linear in R. We may write

5a =m [gF„'"(A,,m, p)+F„' '(A, ,m, p)] (C4)

for functions F'„'' and F„' '. Again the only dependence
on m and p can be through ln(m /p ).

Finally, 5a3 multiplies a term in R and therefore can
have a quadratic dependence on g. We may write

5a3 ——g Fa '(A, ,m, p)+gFa, '(A. ,m, p)+F' '(k, m, p) (C5)

for functions F" (i = 1,2,3).

These results give the general forms that the counter-
terms must take. The pole terms which contribute to 6a3
and 5tt involve g only in the combination of (g ——,') at
one-loop order. Both counterterms vanish if g= —,'. (See
Ref. 2, for example. ) However, the resummation of the
Schwinger-Dewitt 'proper-time series used in Refs. 9—11
shows that this is also true if finite renormalizations are
made. The conclusion is that at one-loop order, 5m~, 5o.2,
and 5A are independent of g, 5t~ involves g only as a mul-
tiplicative factor of (g ——,), and 5a3 involves g only as a
multiplicative factor of (g——,

'
) . We emphasize that these

conclusions concerning 6o.3 and 5~ would no longer be
valid at higher-loop order. (It is not even true for the pole
part of the counterterms. See Ref. 21, for example. )

L. Parker and D. J. Toms, Phys. Rev. Lett. 52, 1269 (1984).
2L. Parker and D. J. Toms, Phys. Rev. D 29, 1584 (1984).
B. Nelson and P. Panangaden, Phys. Rev. D 25, 1019 (1982).

4T. S. Bunch and L. Parker, Phys. Rev. D 20, 2499 (1979).
5D. J, Toms, Phys. Lett. 1268, 37 (1983).
sB. S. DeWitt, Dynamical Theory of Groups and Fields (Gordon

and Breach, New York, 1965).
7G. 't Hooft and M. Veltman, Nucl. Phys. B44, 189 (1972); C.

G. Bollini and J. J. Giambiagi, Nuovo Cimento 12B, 20
(1972); J. F. Ashmore, Lett. Nuovo Cimento 4, 289 (1972).

G. 't Hooft, Nucl. Phys. B61, 455 (1973); J. C. Collins and A.
J. Macfarlape, Phys. Rev. D 10, 1201 (1974).

L. Parker and D. J. Toms, Phys. Rev. D 31, 2424 (1985).
~ L. Parker and D. J. Toms, Phys. Rev. D 31, 953 (1985).

I. Jack and L. Parker, Phys. Rev. D 31, 2439 (1985)~

B. S. DeWitt, Phys. Rev. 162, 1239 (1967).
i3Cr. Vilkovisky, in Quantum Theory of Grauity, edited by S. M.

Christensen (Adam Hilger, Bristol, 1984).
~4L. Abbott, Nucl. Phys. 8185, 189 (1981).

See, for example, R. Jackiw, Phys. Rev. D 9, 1686 (1974).
'6See, for example, F. Berezin, The Method of Second Quantiza

tion (Academic, New York, 1965).
7W. H. Furry, Phys. Rev. 51, 125 (1937).
L. D. Landau, A. A. Abrikosov, and I. M. Khalatnikov, Dok.
Akad. Nauk SSSR 95, 1177 (1954).
G. 't Hooft and M. Veltman, Ann. Inst. Henri Poincare A: 20,
69 (1974).
R. P. Feynman, Phys. Rev. 76, 769 (1949).
D. J. Toms, Phys. Rev. D 26, 2713 (1982).


