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The Ciaussian-effective-potential approach is used to explore the physics of A,P field theory in 1,
2, 3, and 4 spacetime dimensions. A simple and systematic approach to the renormalization,
without explicit regularization, is employed. In four dimensions we find a viable, nontrivial theory
arising from a bare coupling constant of a particular negative, infinitesimal form. The theory is
"precarious": it is stable in the absence of an ultraviolet cutoff, but unstable when regularized. Per-
turbation theory is related to this form of the theory, though not straightforwardly. We also discuss
particle masses, and the absence of two-particle bound states in P theory.

I. INTRODUCTION

The Gaussian effective potential' ' (GEP) is a simple,
nonperturbative approach to quantum field theory, based
on intuitive ideas familiar in quantum mechanics. In the
first paper of this series' we motivated the GEP, stressing
its advantages over the conventional one-loop effective po-
tential, which we illustrated in a variety of quantum-
mechanical examples. In this paper we move on to con-
sider scalar field theories with a A,P interaction in 1+ 1,
2+ 1, and 3 + 1 dimensions.

The basic ideas behind the GEP have a long history
and some of our material overlaps with earlier authors.
The aim is to present a simple and self-contained overview
of the basic physics of A,P theory, and how it evolves
from 0+ 1 dimensions (the quantum-mechanical anhar-
monic oscillator) to 3+ 1 dimensions. We shall try to be
very clear and systematic about the renormalization pro-
cess, -often a source of confusion in the earlier papers.
(Indeed, whatever its other merits, the GEP is a wonderful
pedagogical tool for explaining renormalization, as it is
free of the complications and ambiguities that arise when
renormalization is applied in perturbation theory. )

Our most interesting results (outlined briefly in Ref. 10)
are for the (3+ 1)-dimensional theory. Current dogma,
based on the works of Refs. 11—13, holds that (P )3+t is
a "trivial" theory. However, our results indicate a non-
trivial version of the theory exists if the bare coupling
constant is negative (and infinitesimal), a possibility not
considered in Refs. 11—13. The stability of this theory is
a subtle matter, and we are led to define the concept of a
"precarious" field theory. This class of theories cannot be
realized as the continuum limit of a lattice theory, at least
not in the ordinary way. Nevertheless, we shall argue that
such theories are not to be summarily dismissed as of no
physical interest.

The plan of the paper is as follows. Section II explains
the calculation of the GEP, in its bare form. Our ap-
proach to the renormalization process is discussed in de-
tail in Sec. III. Section IV presents the results, working
up from 0+ 1 to 3+ 1 dimensions. The nontrivial ver-
sion of (P )3+t is analyzed and discussed in Sec. V. A

brief discussion of one- and two-particle states, following
Refs. 2 and 4, is given in Sec. VI, where we explain our at-
titude to the "factor of 2" puzzle which plagued these ear-
lier works. Section VII summarizes our main conclusions,
particularly regarding the nontriviality of (P )3+t theory.
(An Appendix notes some curious results which arise if
dimensional regularization is used. )

Familiarity with Ref. 1 (hereafter referred to as I) is not
essential for understanding what we are doing here. How-
ever, it may help to explain why we are doing it.

II. CALCULATION OF THE CzEP
FORA/ THEORY

The Lagrangian we consider is

,' "r)~fr)"P ,—mtt (P A—,tt—/-
which corresponds to a Hamiltonian density

~= —,
'

P '+ —,
' (VP)'+ —,

' m~'P'+A, ,P' .

The GEP is defined as

(2.1)

(2.2)

VG(gp) =min VG(gp, 0)

=ming n&01A 10)n y (2.3)

where 10)n ~ is a normalized Gaussian wave functional,

centered on P=Pp..

y, ,n&010) n, y, = 1 y, ,n&014'10) n, y, =kp . (2.4)

The mass parameter Q must be positive definite in order
for the wave functional to be normalizable, just as in
quantum mechanics (cf. I). The calculation can be per-
formed in a Schrodinger wave-functional formalism, as
shown in Ref. 4, but here we use a simpler, but entirely
equivalent, method.

We write the field P as Pp+P, where Pp is a constant
classical field, and P is a quantum free field of mass Q:
The state 10)n& is then the vacuum state of this free

field. The required formalism is familiar from any field-
theory textbook. '" We write
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P=Po+ f (dk)n[an(k)e '"'"+an(k)e'"'"],

and hence,

B„P=f (dk)n( ik„—)[an(k)e '"'"—an(k)e'"'"],

where the energy component of the four-vector k& is

ko=cok(Q) =(k +Q )'~

The integration measure in v spatial dimensions is

d k
(dk)n =

(2n) 2cok(A)

(2.5)

(2.6)

(2.7)

Vg(fo)=I, 3A,~—Io + 2 mz Po +A.ego" . (2.16)

Note that, implicitly, the argument of the I& integrals
here is 0, which is Po dependent by virtue of (2.15).

III. RENORMAI, IZATION

A. Outline

the latter caveat applies, one may use the 0 equation to
simplify the expression for Vg, whenever it is convenient.
For example, one can use (2.15) to write Vg(go) in the
form

[an(k), an(k')] =5kk =2cok(Q)(2')'5"(k —k'),

and the state
~
0&n has the defining property

{2.9)

The creation and annihilation operators obey the usual
commutation relation

The above expressions for the GEP are full of divergent
integrals. Our goal in this section is to explain how to
reexpress Vg(go) as a manifestly finite function of Po.
This is true except for a divergent, but Po-independent
constant D,

an(k)
~
0&n ——0 . D = Vg—(go =0)=I, (no) 3X,—[I,(n, )]', (3.1)

(2.11)

, „&0~X,y'~0&„, =X, y, '+6y, ' f (dk)„

+3 f (dk) f (dk')„

Introducing the notation

I~(L2)—:f (dk)n[cok (0)j

we can write the result as

(2.12)

The evaluation of Vg(go, Q) for the Hamiltonian (2.2) is
a straightforward exercise. Term by term we have

n&0 ,I 2 [0'+(~4)']
l
0&n, y,

= f {dk)n[cok {Q)——,
' fl j,

n&0I , &ma'0'l0&n, y, = ~ma' 4o'+ f {dk)n

where Qo is the solution to the A equation at Po ——0. The
constant D represents the vacuum energy density of the
Po

——0 vacuum. The presence of this divergent constant
has no physical consequences, since only energy differ-
ences, not absolute energies, are measurable. Later on, we
shall follow the usual practice of redefining the zero of
the energy scale so that Vg(go ——0)=0.

Except for D, the GEP contains divergences only be-
cause it is parametrized in terms of the bare parameters
mz, kz which are themselves not finite. The finiteness of
Vg (Po) becomes manifest once one reexpresses it in terms
of finite parameters. This reparametrization of the theory,
misnamed "renormalization, " does not change the physi-
cal content of the theory, but simply reexpresses it in
more transparent form.

A convenient choice for the two new parameters is to
define

Vg(go, A)=I)+ —,(ms —0 )Io+ , ms Po +A—ggo
mz: dVg/dPo

~ y, =o —
~

(3.2)

+6k,gIogo +3kgIo (2.13) —:—d Vg/d0o I y, =o

dI~/de =(2N —1)QI~

leads to the "Q equation"

Q =m~ + 12ig[Io(Q)+go ] .

(2.14)

(2.15)

However, there are two subtleties to beware of: first, Eq.
(2.15) may have more than one solution, and one must
take care to select the right one. In particular, the solu-
tion must be a minimum, not a maximum of V~. Second,
the globa/ minimum of Vg(go 0) may not be a solution of
(2.15) at all, but may occur at one or another end point of
the range 0&0& oo. Except in the special cases where

The GEP itself, Vg(go), is obtained by minimizing this
expression with respect to the variational parameter Q, in
the range 0& 0 & oo (Ref. 15). We denote the optimum
value of Q by Q. Norma11y, Q will be given by the equa-
tion dVg/dQ

~ n n ——0, which, using the formal result
that

The claim of renormalizability is that by reparametrizing
Vg(go) in terms of mz, A,z (i.e., by changing variables, el-

iminating mz, Az in favor, of m~, A~), one achieves a
manifestly finite result.

We stress that the physical content of the results is the
same, no matter how one chooses to parametrize them.
The use of other renormalized parameters mz, A,R would
lead to different looking but equivalent results. In other
words, the GEP is exactly renormalization-group' (RG)
invariant. This is not true of the one-loop effective poten-
tial, ' because whether a term is of "one-loop" or "two-
loop" order, etc., depends on precisely how the renormal-
ized mass and coupling constant are defined. That is, RG
invariance is spoiled by using the one-loop approximation.
As with perturbation theory, this leads to a
"renormalization-scheme-dependence problem, "' which
is the question of how "best" to define the renormalized
parameters; i.e., how to "RG-improve" the results. ' For
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the GEP, exact RG invariance means that all ways of de-
fining the renormalized parameters are equivalent, and it
is merely a matter of finding the most convenient.

The parameter m~, as defined above, is very convenient
because it turns out to be the mass of a one-particle exci-
tation in the $0 ——Q vacuum. ' See Sec. VI. In 1+ 1 and
2+ 1 dimensions A,s is finite, so that there is no need to
eliminate it in favor of A,z, indeed this would only serve to
complicate the expressions. The use of X~ wiH, however,
be essential in the (3 + 1)-dimensional case.

S. Handling the divergent integrals

To actually perform the change of variables from ms
(and A,z) to mz (and A.z) is a somewhat delicate business,
since it involves handling the divergent integrals IN. It
would be usual at this stage to introduce a regularization
device. Qne might introduce an ultraviolet cutoff

~
k

~
&MUv to restrict the range of integration in the IN

integrals, or one might set up the theory on a spatial lat-
tice, which effectively introduces an ultraviolet cutoff of
order of the inverse lattice spacing. Alternatively, one
could analytically continue in v, the number of spatial di-
mensions. ' Any of these modifications to the theory will
serve to make all the algebra finite. One can then happily

TABLE I. A summary of the leading divergent behavior of
the I~ integrals, in terms of an ultraviolet cutoff MUv.

1+ I
2+1
3+I

lnMUv
M„v

Uv'

MUv
MUv 3

MUv 4

proceed to change variables from ms (and A,~) to m„(and
kg) and, at the end, remove the regulator (e.g., take
MUv —+oo) to recover the original theory. The bare pa-
rameters will have to have a certain regulator
dependence —and may well tend to infinity, or to zero, as
the regulator is removed —in order for the renormalized
parameters to remain finite.

We follow this program in spirit, although we do not
exp1icitly introduce a regularization device. The reader
may regard, say, an ultraviolet cutoff as being. implicitly
present. (For the reader's convenience, the leading diver-
gent behavior of the IN integrals is summarized in Table
I.) We may dispense with an explicit regularization be-
cause our calculation will involve only differences
IN(Q) —IN(m), for which we can show, formally, that

IN(Q) IN(m) = — f d~k[(k2+II2)N —&~2 (k2+m2)N —&&2j
1

2(2m )

2 2 N —1/2

k+m) 1— —j(2m)' 2(k +m )'i (k'+ m ~)

1—1V ——+r
= J (dk) (m II )"—

. (k'+m')"-N
T

1

(m —Q )'IN „(m) . (3.3)

r

(v+ 1)/2, v= odd

v/2, v =even, (3.4)

the terms involve convergent integrals, for which we may
use

I (~) 1 I [—(2K+v —1)/2j
2(4~).~2 r[ —(2X —1)/2]

This formula expresses the difference of two IN integrals
as a sum of less-divergent integrals. Indeed, from
r =X+k onward, where

IN(Q) —IN(m)

N+k —1
1—%——+r2

(m —0 )"IN „(m)

1(N+ —,') ( 1 k
+ m2N+. 1(—'k LN(.+)k(x), (3.6)r(-,' )

(3.7)

where the functions L ' are defined recursively as

L +)(x)= J dx'L "'(x'),

with

for 2K+v —1 &Q . (3.5)

It is then possible to resum the bulk of the series, so that
we obtain the following formula:

I (~) l/&p v=odd
0

1/(2v x ), v=even

and

(3.8)
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TABLE II. Useful formulas for the differences of Iz integrals in v+ I dimensions [from Eq. (3.6)]:x:—Q/m.
v= 1 or 2

Il(O}—I/(m) =
2 (0 —m )Ip(m) —m +'L2(X)/(8~}

Ip(Q) —Ip(m) = —m 'L
g (x)/(4')

,
1/(2~0 ), v=1I ](0):

v=3 (or 4)

Ij(Q)—I)(m)= 2 (0 —m )Ip(m) —
8 (Q —m ) I l(m)+m +'L3(x)/(32m )

Ip{A)—Ip(m)= —
2 {0—m )I &(m)+m 'L2(x)/{16m )

I l(Q) —I )(m) = —m 'L )(x)/(8m. )

x—:0 /m (3.9)

+constant, (3.10)

(3.1 1)

The special cases of the master formula (3.6) which we
shall need are set out in Table II, and the first few L;
functions are listed in Table III. Note that the formal re-
sult for de/dQ, used in Eq. (2.14) earlier, can be regard-
ed as a special case of (3.6).

We also note here that I& can be reexpressed as mani-
festly covariant integrals over the (v+ 1)-dimensional
energy-momentum space,' e.g.,

1,(Q) = —— I d'+'k ln(k —0 )
2 (2m)

passes from an even spacetime to the next odd spacetime.
For example, Io, which is IR divergent in 0+ 1 and 1 + 1
dimensions, first becomes IR convergent in 2+ 1 dimen-
sions. This should be compared and contrasted with the
pattern of UV divergences [see Eq. (3.6) and Table II],
where the dramatic changes take place as one passes from
an odd spacetime to the next even spaeetime. The pattern
can be summarized as follows:

0+1 / 1+1, 2+1 / 3+1,. . . (divergences get-
ting worse),

0+1, 1+1 / 2+1, 3+1 / . (convergence
getting better),
where the slash indicates a dramatic change in the UV or
IR properties. This pattern has an important bearing on
the physics of A, (() theories as a function of dimension, as
we shall see.

The others can be obtained by use of (2.14). Wick rota-
tion, with the usual I', e prescription, shows the equivalence
to the original expressions. (In the case of I&, the in-
tegrand does not fall off as

~

k
~

—+Dc, so that there is a
divergent constant contribution from the contour at infin-
ity. )

Another remark concerns the infrared properties of the
integrals, by which we mean the convergence or otherwise
at the

~
it~ ~0 end point when Q=O; Infrared conver-

gence, in this sense, requires 2K+v —1&0, which is just
the opposite of the ultraviolet convergence condition.
Thus infrared properties will change dramatically as one

dn {tp 12~a
d(()p Q (I+6AgI i)

(3.12)

C. Definition of the renormalized parameters

As explained in Sec. IIIA we find it convenient to de-
fine our renormalized parameters in terms of derivatives
of the GEP at the origin. To find out how they are relat-
ed to the bare parameters we need to examine the deriva-
tives of VG(gp). It will be important to remember that Q
is implicitly (tp dependent, since it obeys (2.15). This im-
plies

TABLE III. The first few L;(x) functions from Eqs. (3.6)—(3.9). Also shown are their expansions iny:—(x —1) or z=—Vx —l.

L l(x) =lnx
L2(x) =x lnx —(x —1)
L3(x)= ~ [2x lnx —2(x —I)—3(x —1) ]

v= even

L~(x)=(V x —1)
L2(x)= —,(Vx —1)'(2t/x +1)
L3(x)= —,t (V x —1) (gx +9V x +3)

=y(1 —2y+ 3y-] I

1 2 1=—y(1 ——y+ .
1 3= —,y (1+ - )

=z'(1+ —', z)
2 3 5 2= —,z (1+ 4z+ 5z )
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Differentiating (2.16), one then finds

d Vg
=pp(mR +4XRpp +12k,RIp) . (3.13)

IV. THE PHYSICS OF A,P THEORIES

A. 0+ 1 dimensions

[Alternatively, one could have noted that a partial dif-
ferentiation of (2.13), treating Q as constant, would have
led to the correct result, since, by definition, the Q depen-
dence of Vg (Pp, Q) vanishes when Q= Q.]

In passing, we note that the condition for a stationary
point of Vg(gp) away from the origin is that the expres-
sion in parentheses in (3.13) should vanish. Using the Q
equation this can be simplified to

Q =8ARpp

Differentiating Vg again gives

(3.14)

d Vg I ( (12K,Rpp)
=mR +12k,R(Ip+pp )—

dip + B 1—(3.15)

Evaluating this at the origin one has

d VG
mR = =mR + 12k.RIp(Q p),

dip &o=p
(3.16)

where Qp is the solution to the Q equation at Pp ——0. But
the Q equation, (2.15), shows that the right-hand side
(RHS) of the above equation is just Qp, and so we see that

m~ =no .2 2 (3.17)

This identification implies that mR is positive definite, so
that the origin is always a minimum of the GEP. Later
on, we shall see that, in the Gaussian approximation, mz
is indeed the physical particle mass.

Combining the last two equations allows us to express
mz in terms of mR (Ref 4):.

mR =mR —12ARIp(mR ) (3.18)

This equation will enable us to eliminate mz in favor of
mg.

Differentiating (3.15) twice more, keeping only terms
which contribute at Pp ——0 gives

We are now ready to discuss the GEP results for A,P"
theories. Our aim is to provide an overall picture of the
basic physics, and how it evolves from 0 + 1 to 3 + 1 di-
m.ensions.

In 0+ 1 dimensions the system is the familiar anhar-
monic oscillator, and the "integrals" I& and Io become

Ii ———,Q, Ip ——1/(2Q), (4.1)

so that Eqs. (2.13) and (2.15) reproduce the previous re-
sults in I.

First, we dispose of the possibility that A,z is negative.
It is intuitively obvious that such a theory cannot be vi-
able, but it is important to see just what does happen. For
negative AR the expression for Vg(pp, Q), Eq. (2.13), has
no finite minimum in 0, since it tends to —ao as Q~O,
the dominant term being 3A,RIp ———

~ ~

A,R ~

Q . Thus
Vg (Pp) is not just unbounded below for large Pp, it is actu-
ally —oo everywhere. Note that the disaster is an in-
frared effect, being associated with the massless limit
0~0.

In 0+ 1 dimensions the bare parameters m~ and A.~
are, of course, finite, and they provide perhaps the most
compact parametrization of the results. However, to fa-
cilitate comparison with the results in higher dimensions,
we choose to swap mR for mR using

mR =mR —6AR /mR,2 — 2
mg )0. (4.2)

The original parameter space —oo & m~ & oo, 0& ~g
& oo, maps 1-to-1 onto 0 & mz & oo, 0 & A,q & oo. Nega-
tive values of mz are associated with large values of

3 1
AR = kR/mR ( & —,). Hence we expect to see a single-well
effective potential for small A,z, evolving into a double-
well shape as A,z increases. This is indeed what we find in
Fig. 1.

To plot the figure we have taken Eqs. (2.16) and (2.15)
together with (4.1), and eliminated mR using (4.2). Scal-
ing the variables by mR, as in Eq. (3.20) gives

d"Vg [1—12ARI )(mR)]
l dip' oo=p [I+6~RI i(mR)1

(3.19)
Wg(Np) = —,(~x —1)—4 AR ——1

+ —,
' (1—6A,R)@p +A,RC&p (4.3)

0&P ——PP /mR, A.R
——A,R /mR

F g ——(Vg D)/mR +', x=Q /mR—
(3.20)

In 1+ 1 and 2+ 1 dimensions I ] is a convergent in-
tegral, so there is a finite relationship between A,z and kz,
confirming our expectation that, in these low dimensions,
A,z is finite. In 3+ 1 dimensions I, is logarithmically
divergent, and the situation is more subtle. %'e shall come
to this in Sec. V.

It will be convenient later, especially when discussing
numerical results, to work in units of mz. To this end we
define

with

(~x ) —Vx (1—6A,R+ 12k,R@p ) —6A, R
——0 . (4.4)

Note that P G is defined with the constant D subtracted,
so that P g(0)=0.

It is convenient to define a "critical A,~" which marks
the transition from single-well to double-well behavior.
For A,~ &k~,„, the global minimum of the GEP is at
+0——0, while for A,z ~ A,,„, the global minima occur
at 4p=+c, c&0. For A,R=A, ,„, the GEP has three ex-
actly degenerate minima. Numerically, we find

A,g,„,——1.149285 .
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where x is obtained by solving

(x —1)+ ( 3AR /m )lnx = 12AR @p2 . (4.12)

The results obtained from these formulas are illustrated in
Fig. 2, and they reproduce the earlier results of Chang.

The qualitative behavior is similar to the (0 + 1)-
dimensional case: The GEP evolves from a single-well to
a double-well shape as A,B increases, with the critical kB
being

C. 2+ 1 dimensions

L, (x)=(v x —1),

L2(x)= —,(vx —1) (2Vx +1)
(4.14)

Because the algebra of the divergent integrals in 2+ 1

dimensions is so similar to that in 1+ 1 dimensions (see
Table II), we may simply take over the results in (4.8) and
(4.9) except that now

~B,„,——2.552 7045 . (4.13)

Recalling the discussion in the preceding section, we
should not jump to the conclusion that there is a first-
order phase transition to an SSB phase at this value of A,R.
In fact, as discussed by Chang, this would violate certain
rigorous theorems. '

By analogy with the QM case, one might imagine that
the vacuum at large A,B, described semiclassically, has a
domain structure —in space as well as time —with each
domain having (P)~„,~ ——+c or —c, so that the overall P
is still zero. The point is that in 1+ 1 dimensions, as in

0+ 1, the system can still pass from one vacuum to
another through configurations of finite energy: a
soliton-antisoliton pair moving slowly apart, creating a
domain of the other vacuum, will do the trick. If this pic-
ture is correct then the vacuum would be a coherent "gas"
of solitons.

To discuss this question further would take us outside
the scope of this paper. The GEP definitely indicates a
fairly dramatic change in the physics at A, R around 2.5,
but does not say if this is a true phase transition. Possibly
the GEP could be used as a starting point for a semiclassi-
cal tunneling calculation of the intervacuurn mixing.

(and each occurrence of an L; function will need a trivial
extra factor of mR).

We first check the end-point values Q=O and ao. As
Q~co, Vg(gp, Q) —+Q /(24rr)~+Do, so this is never

relevant. However, A —+0 is more complicated, since, as
remarked in Sec. IIIB a dramatic change in the infrared
behavior of the integrals takes place between 1+ 1 and

2+ 1 dimensions. Thus Q=O no longer leads to an infin-

ite VG, but gives

Vg(gp Q=O)=D+ mR Pp +XRPp

~R 9~B3

+- 1+
12~ 4~m R

3KB
+ mRNp2'

(4.15)

We observe that a negative XB is still unacceptable, be-
cause the GEP would be unbounded below at large Pp.
[However, at least we are no longer finding that A,R nega-
tive implies Vg (Pp) = —oo everywhere. ] We therefore
continue to restrict B to positive values.

The Q equation, (4.9), now becomes [employing the
scaled variables of (3.20) again]

—,(x —1)=6k&[@p —(Vx —1) /( 4')] . (4.16)

In this case we are favored with an analytically soluble

equation, so we can write explicitly

-0.2
3ARvx=—2'

2

+ 12k,B@0

1/2

(4.17)

(The sign of the square root is determined by the require-
ment that ~x:—Q/mR &0.) If we use (4.9) to simplify
(4.8) by removing the 6XRpp term we can express Vg(cp)
in the convenient form

~g (@P)= —,
' C P +A R @P4

(~x —1) 9~a1+ +2v x . (4.18)
24m 2m

--0.4

--0.6

FIG. 2. The GEP for P in 1 + 1 dimensions. X~ = 1,2, 3,4.

[It is easy to see that (4.18) is less than (4.15), which as-
sures us that the 0 equation, and not the Q=O end point,
is giving the global minimum of Vg(fp, Q).]

By computing (4.18) with v x given by (4.17) we have
obtained the results shown in Fig. 3. Again, we see a
transition from single-well to double-well behavior, with
the critical kB being
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Ag ——A/I )(mR) (4.25)

(i.e., A,~ tends to zero in a particular way as the cutoff

lows from Eq. (3.19) for A,~, taking A,~ finite. What we
have now learned is that there are no Po, or higher, terms
which might cause the potential to turn back upwards at
large Po. Thus we conclude that a positive-A, ~ theory is
unstable. Since the GEP, being a variational approxima-
tion, should be an upper bound on the true effective po-
tential, this amounts to a proof that there is no vacuum
state in a continuum P theory with finite, positive A,~.

To understand this rather surprising result, it is instruc-
tive to consider the situation in a cutoff version of the
theory; for example, a lattice-regulated theory. If the lat-
tice spacing is sufficiently small we can expect the GEP
of the lattice system to closely resemble (4.24), except
when Po is so large that it becomes greater than I'"t,
which is now finite. We can no longer discard terms
suppressed by powers of 1/I'"& if these contain high
powers of Po . Presumably, the presence of these terms in
the lattice case must cause the CHEEP, which had been go-
ing down like —2K~go, to turn back up again as Po—+ ao.
(See Fig. 4.) This means that, while the GEP has a local
minimum at go=0, its true minimum is much, much
deeper, and lies out at some enormous value of Po, )I"",.
That is, the lattice system will be in a SSB ("ordered" )

phase. As the inverse lattice spacing MUv goes to infini-
ty, the true vacuum, and hence all the physics, goes with
it. (See Fig. 4.) This explains why we find nothing sensi-
ble when we look directly at the continuum theory, as in
Eq. (4.24).

We have now disposed of all finite values of A,~, but
there remains the possibility that A,s is infinitesimal, of
the form

tends to infinity). There are three cases: (i) A & ——,, (ii)
A & ——,', and (iii) A = ——,'+O(1/I &). [The reason for
this classification is that the condition for the Q equation
to give a minimum, not a maximum, of Vo(go, Q) is

1+6K~I )(m~)) 0, (4.26)

(4.27)

Because 1+62 is negative, by assumption, this potential
is unbounded below.

In case (ii), A & ——,', the Q equation does provide the
minimum of Vo(go, Q). The analysis now Proceeds just as
for finite, positive A,z. The Q equation again requires x to
be infinitesimally close to unity:

122 0o 1 1

(1+6~) m~' I )(mg) I (4.28)

[cf. (4.23)]. When we substitute into (4.20), all that
remains is

Vo(ko) =D+ 2
mz'4o' . (4.29)

All the other terms —including now the Po terms —vanish
as I

~
~ Oo. This should be no surprise since the coeffi-

cient of Po, namely, A,z, as given in (3.19), becomes in
this case

as one can easily derive from differentiating (2.13) twice. ]
In case (i) the Q equation does not give a minimum, and
one should consider the end point Q=O. This case is
essentially the same as the finite, negative A,~ case we
analyzed earlier. One again obtains (4.22), which then
reduces to

Vo(po, Q=O) =constant+ —,
'

mz (1+63)go2

(1—123) 1

I ) (1+62) I (4.30)

This case corresponds to the "triviality" scenario, "
since the resulting theory is merely a free field theory.

Our conclusions are thus in perfect accord with Refs.
1 1—13: If we start with a positive A~ lattice -theory, we
have two equally unpalatable alternatives. Either we keep
A,z finite, in which case the vacuum is driven to infinity,
and we end up with an unstable continuum theory [Eq.
(4.24)]: Or we let A,z tend to zero like 3/I ~, in which
case we end up with a free field theory [Eq. (4.29)].

However, one case remains, namely, A = ——,
'

+ O(1/I &), and this is where it becomes interesting.

V. "PRECARIOUS Q
"

A. The efficacious form of A.~

FIG. 4. A sketch of the GEP for a lattice-regularized P"
theory with finite, positive A,z in 3+ 1 dimensions. The true
vacuum of the system moves out to infinity as the continuum
limit .is approached, leaving the continuum theory with an
ug.bounded-below effective potential.

We could have guessed that A,z ——1/(6I ~) would be
the important case, just from a perusal of the coupling
constant renormalization [Eq. (3.19)]:

[1—12K,gI ) (m~ )]
Ar+ (&.1)[1+6k@I r(mz )]
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(1—6A,gI i ) I+ 1— 48K,gI
(1 6A g—I i)

Taking the inverse of this relationship one, has
4

VG(PO, Q) =D+ ,'x—my Po — (x —1)
R

L3(x)m~
+

32 ~
(5.7)

which is double valued, in general. (See Fig. 5.) Taking
I

&
arbitrarily large there are two possibilities that give a

f1Illte A,g .'

dropping terms of order 1/I
~

or smaller. Observe that
VG is now finite for any Q. The 0 equation is also mani-

festly finite, since (5.4) inserted into (4.21) gives

A,~ ————,
'

A,g +O(1/I ( ), (5.3) (x —1)= [L2(x)+16m 0o /~z ] .
4~

(5.8)

which we have already dismissed, and

1 11+ +6I
& (mz ) 2k+I & (mz )

(5.4)

which we now discuss.
It is worthwhile noting that (5.4) can be written simply

We are now in a position to calculate and plot some nu-

merical results. First we tidy up the formulas in three
ways: We scale the variables with respect to mz [see Eq.
(3.20)]; we use the parameter x= —4m /A, z, introduced
above, in place of A~, and finally we take L2(x),L3(x)
from Table III. This gives us

where

1

61,(A) ' (5.5)

P G(@o»)= 2x@0 + q
[2x lnx —2(x —1)

128m.

—(3—2v)(x —1) ] (5.9)

2

In(m~ /A )=- 4m

~R
(5.6)

with x given by

(x —1)(1—~) —16m.2C 0
——x lnx, (5.10)

by virtue of the formula for I I(A) —I ~(m~) in Table
II. The parameter A is a finite "characteristic scale" pa-
rameter, analogous to the A parameter of QCD. (It
should not be confused with a UV cutoff. ) Equation (5.5)
is a pure manifestation of the "dimensional transmuta-
tion" phenomenon. ' ' The parameter sc introduced in
(5.6) will be very important in what follows.

If we evaluate VG(fp 0) Eq. (4.20) with Ag given by
(5.4), we observe several cancellations, which leave

or by the end point x =0, whichever gives the smaller re-
sult in P G. We note that x =0 in (5.9) gives

F G(40,0)=(2~—1)/(128m ), (5.11)

which is a constant, independent of %0. If, however, the
appropriate x is given by (5.10), then we may use this
equation to eliminate the logarithm in (5.9):

(x —1)
G( 50)= & xC 0 —

&
(x —1+2IC)

128m
(5.12)

Next, we need to understand the solutions to the tran-
scendental equation (5.10), which we can do by plotting
each side as a function of x. (See Fig. 6.) For the present
we shall assume that K is positive, which implies a nega-
tive A~. (The next section is devoted to showing that this
assumption involves no loss of generality. ) For 0&~&1
Eq. (5.10) has two solutions when &bo =0. As 4o in-
creases, one solution starts at x =1 and decreases, while
the other starts at smaller x and increases. The first solu-
tion gives a minimum, the second a maximum, of 7 G.
At some critical value of 40,

@o,en(=(e "+~—1)/(16m ), (5.13)

FIG. 5. A sketch (not to scale) of the A,~,k~ relationship,
(5.1), with I ~ regularized. The dashed and solid curves corre-
spond to the plus and minus sign, respectively, in Eq. (5.2).

. the two solutions coalesce, and thereafter disappear. For
~~ 1 the situation is similar, except that the second solu-
tion is not present at 40 ——0: It appears later at x =0,
when 4&o has reached (v —1)/(16m ), and increases until it
coalesces with the first solution.

When @o exceeds No,„, there is no solution to the 0
equation, and 7 G(@Ox) is minimized at the end point
x =0. In fact the end point will take over as soon as the
result for KG, obtained using the 0 equation, exceeds the
value in Eq. (5.11). This occurs at
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Ojg
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~ ~ ' i'
~ ~

~ ~ ~
~ ~ ~

~ ~ ~ ~

it ~ 0 a ~ ~ ~ ~ ~

0.02~OSHH+ I

FIG. 6. Graphical solutiori of the Q equation, (5.10). The
curve is the function x 1nx, while the straight lines represent the
left-hand side of (5.10) with %0 ——0, for various ranges of a.
The arrows indicate how the lines move as @0 increases.

K = 0.49

FIG. 8. As Fig. 7, but for a =0.49. For ~ & 2 the GEP itself
is a horizontal line. However, the dashed curve, arising from-a
local minimum of VG($0, Q}, can be interpreted as a short-lived,
metastable survival of the weak coupling phase.

0 brmk ——[e "—2(1 —z)]/(32' ), (5.14)

which is just before %0 reaches @0«, .
Thus the results have the form shown in Fig. 7. For

weak coupling (large Ir) the GEP is a slightly flattened
parabola, which is "chopped off" at the top. As the cou-
pling strength is increased there is little change to the
almost-parabolic part, but the "chopping off" becomes
much more drastic. Indeed, for couplings stronger than
—A, R

——8m (~& —,), the GEP is entirely given by the hor-

~ &
~ ~ ~ ~ '' /

'K = 0.75

FIG. 7. The GEP for "precarious P
" in 3+ 1 dimensions,

with a= 4n /AR ——0.75, 1—.25. The dashed and dotted curves
correspond to solutions of the Q equation which are local-but-
not-global minima, and maxima of VG(((}O,Q}, respectively. (See
also Fig. 2 of Ref. 10, which is for ~=1.)

izontal line that results from the x =0 end point. (See
Fig. 8.)

What do these results mean? We first note the strong
resemblance to the results found in the QM example of
the "crater potential, " studied in I. This analogy gives us
confidence in the following straightforward interpretation.
The theory appears to have two phases. One phase, at
weak coupling (and low temperature) is a perfectly ordi-
nary field theory, with massive particles interacting
through a weak, attractive (because A,R is negative) force.
The other phase, at strong coupling (or high temperature),
is characterized by a completely flat potential, which is
the potential of a massless free field theory We shal. l ar-
gue in Sec. VD, that this rather mysterious phase has a
natural interpretation from an "effective field theory"
viewpoint.

We should explain our allusions to finite temperatures
in the above. VG represents an energy density, and any
system with a finite number of particles has an energy
density infinitesimally close to that of the vacuum, since
the particles' energy is diluted by an infinite volume fac-
tor Therefo. re, all particle masses, scattering properties,
etc., are associated with the behavior of the GEP in the
immediate neighborhood of the origin. Only if we consid-
er systems with finite energy density, such as finite-
ternperature systems, will the behavior of the GEP away
from the origin become important. The "chopping off"
of the potential implies that there is a critical energy den-
sity mR (2' —1)/(128m ), and hence a critical tempera-
ture, at which a transition to the "free, massless" (or
whatever) phase occurs. These considerations imply the
phase diagram of Fig. 9. We can interpret the dashed
curve in Fig. 8 as a metastable survival of the weak cou-
pling phase into the strong coupling regime (cf. the
crater-potential example in I).

Many of the results here have counterparts in the ear-
lier analysis of Bardeen and Moshe. The analyses are not
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=x «o,
C'o'= ~'o'«o

lr'=ln(m~ /A )=Ir+lnxp,

P G
——WG/xp —constant .

(5.16)

0

FIG. 9. The phase diagram suggested by the GEP results.
The weak coupling phase, labeled "P," is an ordinary, massive
field theory. It becomes unstable to decay to a more mysterious

phase, characterized by a flat GEP, at a temperature propor-
tional to (2~—1). The diagram is shown in two equivalent
forms: (a) temperature vs coupling constant A,z, and (b) tem-

perature vs ~, where a= —4m

directly comparable since Ref. 9 studies the O(X)-
symmetric generalization of P theory and employs the
large-X approximation in addition to the GEP method.
They discuss the finite-temperature case in more detail,
and show how to perform a finite-temperature generaliza-
tion of the CrEP calculation.

In the next section we dispose of the technical matter of
why ~&0 gives nothing new. We then discuss the weak
coupling limit, and the relation to perturbation theory and
the one-loop effective potential. Finally, in Sec. VD we
discuss the "paradox" of how a negative A,~ leads to a
stable theory.

B. Vfhy sc is positive

(xp —1 )( 1 —Ir) =xplnxp (xp ) 1 ) (5.15)

Thus we need to rescale the variables as follows:

In the preceding section it was assumed that
Ir—:—4m. /A, z was positive. If lr is negative then there are
two solutions to the 0 equation (5.10) at @p——0: One is at
x = 1, while the other is at some larger value of x (see Fig.
6). It turns out that x =1 is not a minimum, but a max-

imum, of VG, and it is the other root that we should be

using.
However, from the definition of mz as d VG /

dip ~ ~ p
——Qp, where Qp is the solution to the 0 equa-

tion at Pp ——0, we ought to have x =1 at 4p ——0. The
problem is that for negative Ir we have inadvertently mis-

defined mz by allowing the algebra to work with the
wrong root for Qo. We can repair the damage by identify-

ing the correct mz and rescaling all the variables accord-
ingly. From (5.10) at @p——0 it follows that the real m~,
denoted m~, is a factor xp bigger than the fake m~,
where

We must expect to subtract a constant from &6 because
the algebra as it stands defines the zero of energy such
that P G(@p——O, O, =Op)=0 for the wrong Qp. Substitut-

ing into Eqs. (5.10) and (5.12) and using (5.15) to simplify
the results, one discovers that these equations regain ex-

actly their original forms in terms of the primed variables

[except for the anticipated constant term in the case of
(5.12)]. One also observes that lr' is positive: In fact,
0~~~ —ao maps onto 0~~'~1. Hence the results ob-
tained with negative a are just a repeat of results obtained

previously with a positive v parameter. Thus there is no
loss of generality involved in taking ~ to be positive.

In terms of Fig. 7 what is happening is that the algebra
with negative a is trying to put us off with the dotted
curve of the corresponding Ir'. (Note that the dotted curve
extends to the origin only for Ir'&1.) By means of our
repair work we have recovered the lower, solid curve,
which is the true GEP.

This story is strongly reminiscent of the history of
I /X-expansion investigations of O(N)-symmetric
theory. The original analysis found- the equivalent of
the dotted curve, and observed that this phase contained
tachyons. Later, it was shown that the one-loop effective
potential actually had two branches, and that the phase
corresponding to the lower curve was free of tachyonic in-

stabilities. The curves obtained show a remarkable simi-

larity to Fig. 7.
Another way of understanding the situation is the fol-

lowing. Take the mass renormalization equation (3.18)
and substitute A,~ ———1/[6I ~(A)]. After some rear-

rangement, and use of the Ip(mR ) —Ip(A) formula from
Table II, this can be expressed as

16
[ , (my A)I $(A) ——Ip(A)—]=L2(m/2/A2) .

(5.17)

The left-hand side is a function only of the bare parame-
ters; A being directly related to A,~. The form of the
right-hand side (see Fig. 10), reveals that two values of
m~ may correspond to the same bare parameters. There-2

fore, both these values of mz should correspond to the
same physical theory. This is, indeed, just what we have
found above. A theory with mz ~A (negative Ir) is just
a reparametrization of an equivalent theory with

mz )A (positive a): It is a less convenient parametriza-
tion, in that the m~ parameter, for negative ~, does not
represent the particle mass.

In conclusion, we emphasize the important conse-
quences of the result that, effectively, a & 0. It means that
the renormalized coupling A,z is negative, corresponding
to an attractive interaction. It implies that m~ )A (and
if we require K & —,', so that the weak coupling phase is
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H=16m No (5.20)

Substituting for (x —1) in (5.12) then yields the weak cou-
pling expansion of the GEP,

~G(@0) 7@0 +~R@0
3

1 ~R ~R+ &i +&2, +
128m 4m 4~

(5.21)

I

0

FIG. 10. Equation (5.17) in graphical form, showing how two
values of m& can lead to the same value of L2(mz /A ), and
hence must correspond to the same bare parameters. Theories
with mR (A [i.e., a—:1n(mR /A') (0] lnap 1-to-1 onto
equivalent theories with A &mz &eA (i.e., 0&~&1). Only in

the latter form of the theory does the parameter m& have its
usual interpretation as the particle Inass.

stable, then we . have the stronger condition,
mR )e' A ). Consequently, there is no such thing as a
weakly coupled, massless P theory Such .an object can be
formally studied in perturbation theory, ' but it appears to
be a mirage. (One could say that the theory has dynami-
cal mass generation, because, in a sense, the bare mass is
zero. See the Appendix. )

Vl l„p Il + —,
'

(mB ———0 )Io+ —,
'

mB $0

+XB$0 +6KBIOQO

with

(5.23)

0 =mB +12k,Bpo (5.24)

Proceeding, as before, to define renormalized parameters
through the derivatives at the origin one finds

where

Bl ——0, B2 ———,H, B3———
6 H, B4 ———,

' H (1+—„H),
(5.22)

Note the absence of a A,R term.
Next we consider the one-loop effective potential. As

explained in Sec. II of I, the one-loop result is contained
in the GEP, and can be found by discarding the 3A,&lo
term in (2.13), and correspondingly the 12K,BI0 term in
(2.15). That is,

C. The weak coupling limit
mR =mB + 12k IB( 0m)B,

(5.25)

~R
(x —1)=H

4m

T

~R ~R1+3] +32
4m 4m

2

In this section we undertake the question of how our re-
sults are related to perturbation theory and the one-loop
potential. We begin by making a weak coupling expan-
sion of the GEP results. That is, we consider the a.~oo
limit of Eqs. (5.10) and (5.12). Note that the chopping off
of the potential by (5.11) can be ignored in this limit. Ex-
panding x lnx about x =1 one can solve Eq. (5.10) as a
power series in A,z. The result is

AR =KB[1—18ABI 1(mB )] .

The mass renormalization is subtly different from before
because here Qo ——mz, so that m~ not mz appears as
the argument of Io. Not only is the integral divergent,
but so is its mass-parameter argument. However, if one
treats the equation iteratively then it agrees with the pre-
vious result to first order in A,B. Similarly, the result for
A,B reproduces the first nontrivial term in a perturbation
expansion of (5.1).

Substituting the mass renormalization, and using (5.24),
we can rewrite the one-loop result as

+ ~ ~ ~ (5.18)
2I 1-loop Il(mB )+ TmR 1) 0 +~R00
4

+ '2L3(n2/mB2) .
327T2

(5.26)

Ai ——0, A2 ——2H, A3 ———6H

A4 ———,'H (1+—,'H), As ————„H (1+—„H),
(5.19)

The first term is the divergent vacuum-energy constant,
which we are free to subtract [though note that it differs
from D in (3.1)]. The remaining terms, using (5.24), are

4
2 2 4 Ply

+1-loop Z mR 40 +BRIO + 1+
64m

12K.B$0
Ply

ln 1+ 12~BOO'

E1lg

12kB/0 216KB $0
2 4 7

Ply P7Zg
(5.27)
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which coincides with the result of Coleman and Weinberg
[Eq. (B5), after correction of an obvious misprint], except
that the correction term involves bare and not renormal-
ized quantities. This reflects the fact that the one-loop ef-
fective potential is not RG invariant: It does not renor-
malize properly by substitution. The result is only finite
if we neglect "higher-order terms" in A,~ in Eq. (5.25) and
replace mz, A,z by mR, A,R, This means that, strictly, we
are only entitled to keep the first nontrivial term in the ex-
pansion of the L3 term in powers of A,~. i.e. (scaling the
variables by m~ ),

3AR
(x —1)=

z [Lz(x)+H] . (5.32)

(x —1)=3H
4m.

1+3 ]
4m

~R

4~

2

(5.33)

Substituting perturbatively for A,~ using (5.30) we can
solve (5.32) for (x —1) as a power series in A,z ..

P, )„———,@p +A,~No + A,g 4&p +O(A, g ) . (5.28)

This makes the point that the loop expansion —even
though each order involves summing an infinite number
of Feynman diagrams —is still basically a perturbative ex-
pansion of the effective potential. It suffers from all the
usual troubles of perturbation theory.

Comparing (5.28) with (5.21) and (5.22), we see that
they do not agree: There is a factor of 27 discrepancy in
the coefficient of the A,R @p term. We now want to ex-
plain the origin of this factor.

One of the diseases of perturbation theory is that it
makes an unjustified interchange of limits. It assumes
that one may introduce a UV cutoff to regulate I &, then
make an expansion about A,R

——0, and finally send the cut-
off to infinity. However in the real theory a cutoff is nev-
er present. If one is introduced, it ought to be sent back
to infinity before the A,~ ~0 limit is investigated. This is
the order we used in deriving (5.21). The perturbative re-
sult (5.28) is different because it reverses the order of these
limits. We can show this in the following manner.

Let us go back to the CxEP in the form (4.20) and (4.21),
where the mass reriormalization has been performed, but
not the coupling-constant renormalization. Instead of
performing the coupling constant renormalization proper-
ly, as in Sec. VA, let us proceed perturbatively: That is,
we expand (5.1) as

A,~ ——A,~(l —18K,~I )+108k,g I ) +. . . ),
or, inversely,

A,g ——A,~(1+18k,gI (+540k,g I, +. . . ) .

(5.29)

(5.30)

Such expansions implicitly a'ssume that I
&

is regulated
(UV cutoff held finite) while the X+~0 limit, needed to
generate the series expansion, is taken. With the proper
ordering of the limits (I ~~co, while X~ held finite),
these expansions are pure nonsense. However, let us see
where the perturbative route takes us.

Before beginning this exercise, we first put Eqs. (4.20)
and (4.21) in more convenient form. Judicious use of
(4.21) in (4.20), and scaling the variables by m~, gives

1 G(@p)= —,
'

@p —2A,~+p

q [(x —1)[H —Lq(x)]+2L3(x)] (5.31)
64m

with H:—16m C&p, as above. Also, using (5.1), we can
write (4.21) in the "mixed, "but convenient form

3 ') ——12(4' I ) ),
Ap ——360(4m I i) + ,H, —

A3 ——13392(4m. I )) +162H(4~ I ()—,H—

+ Az @o (12I-i —No )+ ' ' '27
m.2

(5.34)

Several cancellations of I &'s are encountered in deriving
this result, but the cancellations fail in the A,R and higher
terms. It is easy to see that, if we simply ignore the I
terms, the result reproduces (5.21) with systematic factors
of 3 associated with each kR —except in the A,R@o" term.
The latter is a special case because the —2A,&No term in
(5.31) contributes —2A,+@p"+(I i terms) in the perturba-

.tive case, while it contributes nothing in the proper pro-
cedure, being O(1/I &).

To summarize: The one-loop result (5.28) agrees per-
fectly with the GEP result (5.34) obtained using the illegal
perturbative procedure, but differs from the true GEP re-
sult (5.21). The crucial point is that the I &~m and
A,R —+0 limits do not commute, so that perturbation theory
mistreats (1—12K&I

& ) as 1+O(A~), when it should
properly be 3.

We conjecture that this noncommutativity of limits is a
general feature of any theory which is not asymptotically
free (AF) in perturbation theory. The reasoning is simple.
In a non-AF theory, perturbation theory is valid, if at all,
only at low energies, Q «A, where A is the characteris-
tic scale of the theory. The perturbative limit XR~O is
equivalent to sending A to infinity. However, there is
also the cutoff MUv to be sent to infinity. It is only to be
expected that the results will depend on which mass scale
is sent to infinity first. In an AF theory, on the other
hand, perturbation theory is valid at high energies,
Q &&A . The perturbative limit A,~~0 then corresponds
to sending A to zero. There is then no reason to suppose
that this interferes with taking MUv in the opposite
direction, towards infinity.

etc. This is quite different from (5.18), as it contains lots
of I ] terms. However, if we ignore the I

&
terms, we

see that the coefficients agree except for systematic fac-
tors of 3. The reason is obvious when we compare (5.32)
with (5.8): In one case 1/(1 —12keI ~) is a factor of —,';
in the other it is 1+(I ~) terms).

Substituting (5.33) into (5.31) gives

P f"(@p)=—,Np +A,g@p + A,g Np
m.2
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D. Stability and precariousness

mG(C'o n=o)= +(a+aC'o —
6 C'o )

(2a.—1) 2

128m Ila~

+ 0 ~ ~ (5.35)

The precise form of A and 8 is unimportant. What
matters is the presence of the negative-@o term —which
is, of course, just the A,z+o term of the classical potential.
This term will dominate for C&o &&(I"'I)'~, causing the
potential to be unbounded below. Thus the lattice system,
which has a finite, negative i(z, ———I/(6I'"& ), is indeed
unstable. Intuition is satisfied.

However, as the regularization is removed, and
I"'&~ m, the value of @0 at which the instability occurs
also tends to infinity. (See Fig. 11.) In the limit I "t~ oo

we recover the situation in Fig. 7, where the potential is
bounded below at all finite @o's. Although the lattice sys-
tem does not have a ground state, it does have a metasta-
ble state at @0——0. If the system is placed initially in this

The analysis above reveals that P in 3+ 1 dimensions
does have a nontrivial form, if the bare coupling constant
is negative and infinitesimal. Classical intuition and per-
turbation theory would both indicate that a negative-A,
theory is unstable, but we have nevertheless found that the
GEP is bounded below. In this section we discuss why,
and in what sense, the theory is stable.

Some insight can be gained by considering IR behavior,
and how it improves with increasing dimension. In 0+1
and 1+1 dimensions a negative k~ was unthinkable: it
led to VG(gp)= —oo everywhere, due to the IR diver-
gences associated with the 0=0 end point. In 2+1 di-
mensions a negative A,& was unacceptable, but not
unthinkable: it gave a finite Va(go), but 'one which be-
came unbounded below at large Pp. In 3+ 1 dimensions
the IR behavior has improved so much that the 0=0 end
point gives a GEP which is both finite and bounded below
as Pp~oo (being in fact constant for Pp&Pp&„,k), for
Az ———1/(6I &). Thus in 3+ 1 dimensions a "sufficient-
ly infinitesimally small, " negative A,~ becomes just viable.

[The above paragraph suggests an explanation for the
analogy with the crater potential QM example of I. The
shape of the crater potential resembles —,

'
m P +A,P with

negative A, , except at large i)t, where it becomes asymptoti-
cally constant. One can regard this difference as a way of
forcing the QM system to show the same good IR (0=0)
behavior as the (3+ 1)-dimensional system, thereby com-
pleting the analogy. ]

Perhaps a better way of understanding the situation is
to realize that, in a sense, the theory is really "infinitely
metastable" rather than truly stable. To explain this fine
distinction we need to consider the situation in a cutoff
version of the theory, such as a lattice-regularized theory.
In a lattice version of the theory the equivalent of I

&
is

large, but finite. Terms of order 1/I"'& can no longer be
neglected; and for sufficiently large Po they may even
come to dominate. Indeed, if we go back to (4.20) and in-
vestigate the Q=O end point, which governs the large-Pp
behavior, keeping the 1/I"'~ terms we find

J p ~ ~

I
/ /

(2X-1)
128m'

FIG. 11. A sketch of the GEP for a lattice-regularized p4
theory with k& ———1/(6I'"& ). The potential is unbounded
below, so the system has no ground state. However, the instabil-
ity moves out to infinity as the continuum limit is approached,
leaving the continuum theory with a potential which is bounded
below [and equal to the constant value 12it —1)/(128vr2) for all
it 0 s above yo, break].

state, its decay will be hindered bp the very wide potential
barrier, extending out to +o —(I'~) (See Fig. 11.) As
I'"&~m, quantum tunneling through the barrier will be
more and more suppressed, and the lifetime of the meta-
stable vacuum will tend to infinity. Thus in the continu-
um limit we recover our previous conclusion that the
theory has a stable ("infinitely metastable") vacuum.

To describe this situation we are led to introduce the
following terminology: 3 "precarious" theory is a theory
which is unstable for any finite UV cutoff, but which be
comes stable (infinitely metastable) when the cutoff is re
moved. We believe that such theories may have physical
interest, and should not be dismissed out of hand. We can
argue this from two different viewpoints.

Our "hard-line" viewpoint is that, after all, we are
studying continuum quantum field theory. Such theories
have no UV cutoff. If one is temporarily introduced for
technical reasons, it must be removed again before any

, physical properties of the theory —such as vacuum
stability —are investigated. Any limit we may wish to
consider, such as A,+~0, or /phoo must be taken after
the cutoff has been taken back to infinity. Otherwise we
are not studying quantum field theory, but something else.

It is a very important feature of quantum field theory
that it contains field modes with arbitrarily short wave-
lengths. If a mutilated version of the theory with these
short-wavelength modes removed is unstable, why should
we care? The mutilated version is not Lorentz invariant,
even.

The alternative viewpoint is to adopt the language of
"effective field theories. " The philosophy here is based on
the recognition that we are, and always will be, ignorant
of physics at arbitrarily small distances. Therefore, we
ought to regard any currently successful theory as merely
a low-energy "effective-theory, " valid only for experi-
ments involving momentum scales much less than some
very large-scale MUv. That is, we should imagine our
theory as being embedded in some unknown, underlying
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theory, which may have a quite different high-
energy/short-distance behavior from our current theory.
We may say that our current theory is "truly renormaliz-
able" if, for sufficiently large MUv, all its physical predic-
tions are insensitive to the exact value of MUv, and to the
nature of the physics above MUv. In some ways, MUv
acts as a UV cutoff on the theory —but there is more to it
than that.

Let us suppose that our P theory arises as an "effective
low-energy theory": to be specific, suppose the underlying
theory has fermionic "preons" with some Lagrangian

2 20- M„„

~ ~

I
l
I
I
I

/
/

/

l
I
I
I
I

(5.36)

where MUv is the characteristic scale of this preon theory.
Imagine that the fermions and antifermions pair up to
form very tightly bound spin-0 bound states, which can be
described by an effective (pseudo-)scalar field, P. At low
energies the theory looks like a theory of scalar particles,
and the original Lagrangian is approximately equivalent
to an "effective" Lagrangian

+B,rt'+B, P'r)„$d"Q+B,(d„pd P)'+

(5.37)

FICx. 12. "Precarious P
" in effective-field-theory language.

The true vacuum of the underlying theory is, in some sense, at
very large values of P -MUv (where, however, the concept of
an effective scalar field P probably ceases to be meaningful).
The $0——0 vacuum of the precarious-P theory corresponds to a
metastable state of the whole system. However, since its decay
is hindered by a very wide barrier, extending out to
Po -(1nMuv)'~', its decay rate becomes negligible for sufficient-
ly large MUv. All the physics in the Po ——0 vacuum becomes in-
sensitive to MUv and to the details of the underlying theory, as
MUv~ao. In this sense, precarious P is a "truly renormaliz-
able" theory;

(We are assuming that W had some symmetry which im-
plies a P —+ —P symmetry in W,fr. ) On dimensional
grounds one expects, up to logarithms, that m& -MUv,
A,z —1, A;-MUv, .8;-MUv, etc. , in 3+ 1 dimen-
sions. If we neglect all terms suppressed by inverse
powers of MUv, we find exactly the P Lagrangian we
have been studying. However, it is clearly not valid to
neglect the higher-dimension terms if we attempt to ad-
dress questions involving either large momentum

l

k
l
-MUv, or large field values

l P l
-MUv.

It is this last point which is important for us. The
effective-field-theory framework is not the same as merely
introducing a UV cutoff. It also introduces a cutoff on
large field values. (Indeed, it is probably not meaningful
to speak of very large P's, -MUv, because the notion of
an "effective field" presumably breaks down at these
scales, and one has to describe the system in terms of the
elementary preons, or whatever. ) In the naive UV-cutoff
approach there is no way to obtain "precarious P

" as the
limit of a finite, well-defined cutoff theory with a
bounded-below Hamiltonian. However, in the effective-
field-theory framework one can envisage "precarious P

"
arising as an effective low-energy theory from a well-
defined; bounded-below, underlying theory. (See Fig. 12.)
It would only be a metastable phase of the underlying
theory, whose true vacuum would be at large Po. (The
physics in the true vacuum could only be adequately
described in terms of the preons. ) Although metastable,
the Po

——0 vacuum would be very long-lived, by our previ-
ous arguments. For sufficiently large MUv its instability
would be physically irrelevant. Thus, precarious P would
satisfy our criterion for a truly renormalizable theory: all
the physics is insensitive to MUv, for sufficiently large

We think this framework is the most satisfactory one
for interpreting our results. Indeed, it supplies a simple
meaning to the mysterious behavior at strong coupling
(ir & —, ) and/or high temperatures: Beyond the phase
transition there is no longer any barrier to hinder the de-
cay to the true vacuum of the underlying theory. The new
phase will have SSB, but everything else about it is literal-
ly mysterious, because it is necessarily sensitive to MUv
and to the unknown, preonic dynamics that lies beyond
MUv. Hence our designation of this phase by the ques-
tion mark in Fig. 9 is indeed appropriate.

VI. EXCITED STATES

A. One-particle states

As in quantum mechanics (see I), we can investigate ex-
cited states of the theory by constructing excited-state
generalizations of the GEP. We do this by computing the
expectation value of the Hamiltonian M = J d'x~ be-
tween n-quantum states built on the trial vacuum state

l
0)n &,. (Note that we shall be working with the Hamil-

tonian H rather than the Hamiltonian density A .) The
analysis in this section follows Schiff and Barnes and
Ghandour. 4

For the one-particle state we need to evaluate
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where

I p&n, y, =an(p)
I 0&n, y, (6.2)

n&p I p&n ——2ar~(Q)(2m-)"5' '(0)

=2coq(Q) f d x (6.3)

The calculation proceeds just as in Eq. (2.11), except for
the extra an(p) . an(p) operators in the matrix ele-
ments. From (2.9) we have the normalization

[see any textbook' for the justification for identifying
(2~)'5'"'(0) with the spatial volume f d'x], and so we

obtain

&((Qp, p) =~p(Q)+ [ms —Q + 12k'(I0+$0 )]/[2' (Q)]

+ f d"x [I)+—,(mg —Q )Ip+3A~I0 +6K~I 0$ 0+ —'m p +A, p ] (6.4)

The last term is just the vacuum energy

&0(40)=~—n&OI H10&n, q,
=f d"x VG($0 Q) .

m2 =E2(40) Ep(40)

~ n&2IH I2&np,

y, , n&2 l2&n, y,
y, ,

—n&0 IH
I
0&n

E ) (pp, p) Ep(pp) =02~—(Q )
—= (p2+ Q )'~2 . (6.S)

In QM, the optimum Q for the first excited state was in

general different from the optimum Q for the GEP itself.
In field theory proper (v&0) this is no longer true, be-

cause any change in 0 would lead to a volume-divergent
term in F, Thus it is obvious that (6.4) is minimized by
the same Q value as for the GEP at the same $0. Since
that Q satisfies (2.1S) we observe that the second term in
(6.4) will vanish. Therefore, we find that the energy of a
one-particle state, over and above the vacuum energy, is
just

f (dp)o (p)4'~ +12k~ f (dp)o(p)

dp 2copo p

'2

(6.8)

where terms in the numerator which vanish by virtue of
the 0 equation have been eliminated. The two terms in

the above expression can be interpreted as the kinetic en-

ergy of the two constituent particles, and their binding en-

ergy, respectively. To minimize the result with respect to
o(k) we perform the functional differentiation, obtain-

ing '

Thus, «r any candidate vacuum (i.e., minimum of the
GEP), we have the identification

o(k)tok(2tpk m2)+6~g f (dp)o(p) =0 (6.9)

particle mass=A . (6.6)
As ihe last term is independent of k, ihe solution has the
form

In particular, for the candidate vacuum at $0=0 we see

that the particle mass is m~, which justifies, a posteriori,
calling this parameter the "renormalized mass. "

Note that for SSB vacua at $0 =c,&0, the mass is no

longer identical to the second derivative of the GEP, be-

cause the last term in (3.19) now contributes. However,

from (3.14), Q I, =8k,~c .

B. Two-partic1e states

In a similar way one can look for bound states by con-
sidering a trial state made from two creation operators
acting on the trial vacuum. The simplest ansatz for an s
wave state is '

I 2&n, y,
= f (dp)no(p)an(p)an( —p)

I
0&n, y, (6.7)

where, for simplicity, we have chosen to work in the c.m.
frame. The function o.(p) is the Fourier transform of the
spatial wave function of the bound state, and is to be
determined variationally by minimizing the energy. '

Proceeding as in the preceding section we obtain

o(k) =
cpk(2cpk —m2)

(6.10)

f (dp)o(p) =f (dp) (6.11)

is UV convergent, and Eq. (6.9) is manifestly finite. How-
ever, it is immediately clear that there are no solutions
with m2 &2Q, which would correspond to bound states,
because both terms in (6.9) are then positive.

However, for rn2 & 2Q the equation contains useful in-
formation about particle scattering. This can be found
by using a well-known trick in QM scattering theory.
One imagines the system enclosed in a spherical box and
considers the ratio of 5E„, the displacement of the nth en-

ergy level due to the interaction, to b,E„, the spacing

E„+&

—E„ofthe energy levels of the free-particle system.

where A is some normalization constant. Substituting
back in (6.8), or more conveniently (6.9), gives the equa-

tion for m2 in terms of k~ and the single-particle mass,

Q. (It is implicit here that $0 coincides with a minimum

of the GEP, but note that the results have the same form
in an SSB vacuum as in the Pp

——0 vacuum. )

In 1 + 1 and 2+ 1 dimensions the integral
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Both 5E„and EE„ tend to zero as the walls of the box
tend to infinity, but their ratio stays finite and is related
to the phase shift 6,

5E„/b,E„~ 5/m—. (6.12)

VII. DISCUSSION

While the results in 1 + 1 and 2 + 1 dimensions are rel-
atively straightforward, the situation in 3+ 1 dimensions
is quite subtle. We summarize our conclusions here. (i)
The obvious choice of a finite, positive A,z is not viable. It

Schiff shows that this leads to a prescription for dealing
with the pole in the integral (6.11) when mz&20: One
replaces the integral by its principal part plus ~cot5 times
its residue. One then has an equation giving the phase
shift as a function of the c.m. energy m 2. From the phase
shift one can obtain the scattering amplitude, and hence
the cross section. We shall not attempt to carry through
this program in the present paper.

In 3 + 1 dimensions, however, things are more interest-
ing and problematical. The integral in (6.11) is now loga-
rithmically divergent, and although this cancels against
the logarithmic divergence in A,s ———1/(6I ~), there is a
recalcitrant factor of 2 which prevents Eq. (6.9) from hav-
ing any solutions. In other words, the UV divergences do
not cancel in Eq. (6.8). We have checked carefully that
there is no factor of 2 error in Eq. (6.8), which agrees with
both Schiff and Barnes and Ghandour.

Of course, if Az were twice as big, i.e., —1/(3I &),
then Eq. (6.8) would yield a finite, nontrivial bound-state
equation. Schiff followed this course, but at the end of
the paper he admits that this choice of A,z leads to an un-
stable theory [as is clear from Eqs. (4.25) and (4.27) of our
own analysis]. This makes for a very lame conclusion to
his pioneering paper. Barnes and Ghandour" also come
up against this factor-of-2 puzzle. Apparently, it
discouraged them from completing their analysis of the
GEP in P theory, and their paper moves on immediately
to fermion-scalar theories.

Our provisional attitude to the problem is as follows.
The GEP analysis clearly rules out A,~= —1/(3I &), and
definitely indicates A,s ———1/(6I &) as the only viable,
nontrivial case. We must therefore concede that Eq. (6.,9)
has no solution: The expression (6.8) is minimized instead
by the "end point" o(p) ~5(p), corresponding to two free
particles. There is no bound state —because although A,z
is negative, it is not negative enough to produce a strong
enough attraction to give binding. More seriously, we are
also having to concede that there is no scattering, since,
by the arguments mentioned above, the phase shift 5 is
zero, too. However, we do not take this as meaning that
the theory is a free field theory; that would be inconsistent
with the nontrivial form of the GEP we found earlier. In-
stead, we conclude that two-particle scattering is weak,
and vanishes in the approximation we are using. Howev-
er, we expect that a nonzero result will be obtained in the
next order of the Gaussian approximation. To settle the
question one needs a higher-order calculation along the
lines sketched in Sec. V of I, but this we must defer to fu-
ture work.

leads to a GEP of the form —,'mz Po —2A.~$0, which is
unbounded below. (ii) A positive Az which vanishes like
1/I

&
leads only to a free field theory. (iii) The only non-

trivial form of P arises from the case Az ———1/(6I ~):
The GEP is bounded below —and bounded above. It indi-
cates a phase with massive particles, interacting through
an attractive force. This unbroken-symmetry phase is
stable below a critical coupling ( —A,R) & 8~, and below a
critical temperature.

These conclusions are markedly different from other
authors who have used a similar method of analysis. '

The reader must appreciate that the conclusions depend
on whether one is interested in P" or in "cutoff P

"
(by

which we include lattice P, and any other UV-regulated
form of P ). The point is that the stability properties of P
and of cutoff P are the opposite of one another. One can
see this from Figs. 4 and 11. In cutoff P, positive A,z
gives a bounded potential with a pair of minima at very
large Po, corresponding to a (cutoff-sensitive) SSB phase
(Fig. 4), while negative A,~ leads to an unbounded poten-
tial (Fig. 11). However, in the absence of a UV cutoff the
situation is the reverse: positive kz gives an unbounded
potential, —,m~ $0 —2X~PO (Sec. IVD), while a negative
A,s of the form —1/(6I ~) leads to a stable, nontrivial
theory, with unbroken symmetry (Sec. V A).

Our concern here has been to study P, which, being a
quantum field theory, contains modes of arbitrarily high
momentum. It has no cutoff. A modified form of the
theory with a finite UV cutoff is not Lorentz invariant; is
not a quantum field theory; and, in our view, is not in-
teresting. In this sense we believe the conclusions we stat-
ed above are the correct ones. If, for technical reasons, a
UV cutoff is temporarily introduced, explicitly or impli-
citly, it should be taken back to infinity before any con-
clusions are drawn about the physics of the theory. Phy-
sicists seldom worry about interchanging the order of two
limits, but here it is crucial. We saw, in Sec. V C, that our
results differ from perturbation theory because the latter
takes the weak coupling, A,+~0, limit before letting the
UV cutoff tend to infinity. Similarly, our conclusions
differ from other authors because they have investigated
stability in the $0~ co limit before taking the UV cutoff
back to infinity.

We have also discussed our results in the language of
"effective field theories" (Sec. V D), making the point that
in this framework the UV scale MUv acts more subtly
than a simple momentum cutoff. In this language one
can give a physical meaning to both the positive-A~, SSB
phase of cutoff P (Ref. 29), and the A,~ ———1/(6I &) ver-
sion of P . The difference is that the former is intrinsical-
ly sensitive to the UV scale MUv, and as MUv~oo the
physics goes with it. Particle masses, and other physical
properties, will depend on MUv, and hence are sensitive to
the detailed dynamics of the underlying theory. The
A,s ———1/(6I ~) theory, on the other hand, is a truly re-
normalizable theory, in that, for sufficiently large MUv,
all the physics become insensitive to MUv. In particular,
the decay rate of the vacuum —for this would be a meta-
stable state of the underlying theory —vanishes as

Uv
Our interest here has been purely theoretical. For
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readers interested in P only in relation to the Higgs sector
of gauge theories, we have little to say. The
A.z ———1/(6I &) form of P clearly has nothing to do
with the Higgs mechanism, since it has no SSB. As we
noted in the last paragraph, the positive-kz form of cutoff
P" does exhibit SSB (Ref 29) but the properties of this
theory depend intrinsically upon the context within which
it is embedded. The moral is that the Higgs mechanism is
not a one-way street. One does not have a quasiau-
tonomous P sector with SSB, which then feeds the SSB
through to the gauge sector. Instead, the nature of the
symmetry-broken vacuum, the value of (P), etc. , depend
crucially on the way the scalar sector is embedded in the
full theory. Several authors have already pursued these
considerations, showing that they imply an upper limit on
the Higgs-boson mass.

We believe the GEP approach sheds a lot of light on
the mystery of (P )3+&. The results, for positive Az, are
consistent with, and provide a simple interpretation of,
the arguments for "triviality" of Refs. 11—13. However,
we have also found that there exists a nontrivial, renor-
malizable, form of P hiding at negative values of A,~.
The nontrivial results found in perturbation theory are re-
lated to this theory —although not straightforwardly, be-
cause of the interchange-of-limits problem (Sec. VC).
The nontrivial P is stable but only i—n the absence of a
UV cutoff, which perhaps explains why it has been over-
looked in the past.

We hope that these new insights into a very old model
will serve to illustrate our point that the GEP is a very
simple and powerful way to investigate field theories non-
perturbatively.

Tote added. Since the completion of this work several
additional references have come to our attention. (i) Bol-
lini and Giambiagi ' have recently shown, using dimen-
sional regularization, that for any A,&&0 the GEP is un-
bounded below for P theories in more than four dimen-
sions, in agreement with the known triviality of such
theories. ' (ii) The possibility of a negative k in (AP )3+~
was discussed very carefully from the standpoint of per-
turbation theory in Ref. 32. It makes interesting reading
in conjunction with our Sec. VC. (iii) Nonperturbative
approaches different from, but clearly related to, the GEP
were introduced in Refs. 33 and 34. Reference 33 is par-
ticularly interesting as it considers (P )3+~ with a negative
A,R. The formalism is based on treating X=/, thought of
as a bound state, as a separate field. The authors found
that a bound state exists for A,~ & —8~ (which is, howev-
er, the region where we find the normal vacuum is not
stable; see Figs. 8 and 9). For —8m &A.z &0 the authors
found an apparently viable theory with no bound states, in
agreement with our findings. The absence of ghosts (ta-
chyons) was noted, but the puzzle of the theory's stability
was not elucidated, as we have tried to do here. (iv) A
quite different approach to the (P )3+& problem via
Brownian motion has also led to the conclusion that a
negative-A. theory is viable. (v) Kurt Symanzik was ap-
parently the first to realize that a (P )3+] theory with a
negative, but infinitesimal, kz could be stable. Our re-
sults can be seen as a vindication of his original argu-
ments.
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2 — 2mg =my 2 A
mg

(v —1) mz
(Al)

Putting A, =3—e and taking the limit e—+0 we see that the
two terms cancel, leaving

mz ——
2 em+ ln(mz /A )+0(e ) . (A2)

Thus in dimensional regularization the bare mass is zero
(or, rather, is infinitesimal). This result has been obtained
independently by Bollini and Giambiagi ' and we are
grateful to them for discussions on these matters.

Another intriguing exercise is td compute the vacuum
energy density

+=Il(mR ) 3~B[Io(mz )] (A3)

with Az ———1[6I &(A)]. Again there are two cancella-
tions, one multiplicative between I

~ and one of the I0's,
and one subtractive between the first and second terms.
The result is therefore finite:

4

D = [1—21n(mg /A )] . (A4)
128m

Remembering that ~—:ln(mz /A ), we see that this is
negatiue in the weak coupling phase (in spite of the fact
that this a boson theory). In fact, D is just the negative of
Eq. (5.11), so that the potential is "chopped off" by the
Q=O end point (see Fig. 7) precisely when it has risen to
zero energy. [Actually, the easy way to derive (A4) is to
note that for Q =0 dimensional regularization defines
I&(0),I0(0) to be zero. Since both bare parameters are
O(e), one sees immediately from the original expression
for VG Eq. (2.13), that Vo($0, II=0)=0 as e—+0.]

While the absolute energy density has no physical signi-
ficance in P alone, it would have significance if the
theory were coupled to gravity. Thus the above result
may be telling us something about the cosmological con-
stant generated by a scalar theory.

APPENDIX: SPECIAL RESULTS
IN DIMENSIONAL REGULARIZATION

Dimensional regularization is based on the analytic
continuation of Eq. (3.5) to noninteger values of v. At
the end of the calculation, the limit v —+3 (or whatever) is
taken. In other forms of regularization I] is. incompar-
ably bigger than I0, which in turn is incomparably bigger
than I &. However, in dimensional regularization the
divergences in each case correspond to a simple pole in
1/(3 —v). This property allows some strange cancella-
tions to occur, giving rise to some intriguing results.

We concentrate on the (3 + 1)-dimensional theory with
kz ———1/[6I &(A)]. Evaluating the bare mass from Eq.
(3.18) we observe that the poles in I0(mz) and I &(A)
cancel to give
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