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The deduction by Guerra and Marra of the usual quantum operator algebra from a canonical
variable Hamiltonian treatment of Nelson s hydrodynamical stochastic description of real nonre1a-

tivistic Schrodinger waves is extended to the causal stochastic interpretation given by Guerra and

Ruggiero and by Vigier of relativistic Klein-Gordon waves. A specific representation shows that the
Poisson brackets for canonical hydrodynamical observables become "averages" of quantum observ-

ables in the given state. Stochastic quantization thus justifies the standard procedure of replacing
the classical particle (or field) observables with operators according to the scheme p„~—ikey„and
L„~—i%(x„B —x„d„).

I. INTRODUCTION

In a recent paper Guerra and Marra' have shown that
the quantum observable operator algebra can be deduced
from a stochastic variational principle with a suitable
form of the stochastic action Lagrangian and Hamiltoni-
an. This remarkable result is based on Nelson's nonrela-
tivistic hydrodynamical stochastic analysis of
Schrodinger's equation and the fact that the correspond-
ing associated Madelung-Hamilton-Jacobi and continuity
equations can be interpreted as canonical Hamilton equa-
tions for a suitable symplectic system with phase space
described by the density and phase action fields. As one
also knows this Madelung fluid (or the corresponding de
Broglie-Schrodinger wave) represents in the stochastic in-
terpretation of quantum mechanics a real physical field
(Einstein's Gespensterwellen or de Broglie's pilot waves)
surrounding effective timelike motions of quantum parti-
cles in M4.

The aim of the present work is to extend this nonrela-
tivistic theory to the case of quantum operators operating
on the spin-zero Klein-Gordon waves f(x"). This is evi-
dently possible since Guerra and Ruggiero, Vigier, and
Kyprianidis et al. generalizing Nelson's approach, have
given a complete relativistic description of the corre-
sponding subquantal relativistic random behavior. This
model justifies the Klein-Gordon equation in an entirely
realistic stochastic interpretation of quantum mechanics
which rests on the simultaneous existence of real space-
time particle trajectories (combining average timelike drift
motions with random jumps at the velocity of light) and
surrounding real quantum fields represented by the g
wave.

To carry out the relativistic extension, we shall in Sec.
II briefly recall the basic assumptions of Guerra on con-
trol theory and give the corresponding relativistic stochas-
tic generalization of his formalism.

In Sec. III we shall describe the symplectic structure in
phase space, give the explicit forms of the new Lagrang-
ian and Hamiltonian, and develop the canonical theory in
various representations. In Sec. IV we show how the usu-
al quantum operator algebra results from the invariant
Poisson subalgebra and give some examples of this result
for given observables, including a justification of the
well-known result that the quantization procedure implies
the replacement of classical particle (or field) observables
by operators according to the scheme p&~ —ikey&. In
Sec. V we give a physical justification for the quantization
of action, following a proposal of Bohm.

To summarize, the aim of our paper is first to extend to
relativity the treatment of Guerra, and second to underpin
this particular formalism with a physical model in which
particles are viewed as solitons surrounded by real waves
propagating on a stochastic background.

II. RELATIVISTIC STOCHASTIC
VARIATIONAL PRINCIPLE

To obtain the relativistic extension of the stochastic
variational principle in control theory of Guerra et al. ,
we have first of all to take into account the difficulties in-
volved in defining the Markov property for relativistic
processes. In fact two considerations are important for
this:

(a) It has been shown that if we impose on the position
x"(r) in Minkowski spacetime M, r& 8 (proper time) the
condition that the future (r'&r) and the past (r'(r) are
independent if the present (r'=r) is known, then we ob-
tain a trivial expression for x"(r) namely, cu "(7 ro)—
with u", ro constant.

(b) Guerra and Ruggiero have adopted an alternative
formulation of the Markov property: If o. is a spacelike
three-dimensional surface in M and 2 —are the regions
of M, respectively, in the future and the past with
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respect to o., then given a diffusion process x"(r) in any
region 2 of M any event can be controlled just by look-
ing at the parts of trajectories in this region A. Introduc-
ing the conditional expectations E,E— we can express
the Markov property by writing

Xo

Furthermore, displacements 4x along the trajectories can
be invariantly characterized by their spacelike or timelike
nature [(bx) &0 or )0], and x"(r) can be conceived of
as a random process with invariant density p(x, r),
x EM, rE R. By denoting 5~x"=+[x "(r+br)
—x"(r)], b,r & 0 and using the conditional expectation
values we can define the forward/backward velocity vec-
tor fields b+" as limits 6&~0+:

g+ p
E x(r)=x, (h +x) &0-

6+x" + 2+E x (r) =x, (b, +x) &0 ~b "j (x,r) .

FIG. 1. The construction of apparent spacelike motions out
of an underlying particle-antiparticle transition structure
(dashed lines).

(2.1)

(2.2)

and an osmotic velocity u"= , (b"+ b" ) whic—h —is ex-

pressed in terms of the density p as follows:

u„=—(A'/2m)B„lnp, (2.3)

where the diffusion coefficient (fi/2m) is derived not by
analogy with quantum mechanics but from de Broglie's
particle-oscillator model (see Ref. 8).

Following Cxuerra and Rug giero we can define a
forward/backward derivative for any function of a sto-
chastic process x"(r),

In evaluating the above expression we notice that it
contains both timelike and spacelike contributions, thus
indicating the fundamentally nonlocal character of rela-
tivistic quantum motions. Figure 1 illustrates the config-
uration of Eq. (2.1) where the forward velocity b"+ at
point 3 is composed of a timelike and a spacelike part,
b~+, and b~+„respectively. The apparent spacelike
motion is shown in Ref. 5 to be re1ated to
particle/antiparticle transitions that establish the nonlocal
correlations between spacelike-separated elements. From
this we deduce that the specific definition of the relativis-
tic Markov property by Guerra and Ruggiero is exactly
that which is appropriate to the reproduction of the essen-
tially nonlocal character of relativistic quantum mechan-
ics, a fact that rests on the particle/antiparticle transition
processes always present in the relativistic theory (see also
Refs. 4 and 5).

With the already established relations we can define a
drift velocity U"= , (b~+ +b" ) tha—t yields a conservation
equation for the scalar density

and from this definition we can write for the drift and
osmotic derivatives D, 6D

D= —(D +D )= +U 0"1

2 + —
~ p

&D = , (D~ —D ) =—u„B"—(A'/2m)
(2.5)

W(x, r) = ,' mb+ (x,r)b"—(x,r), (2.6)

where b "+ (x,r) is considered as the control field and
b" (x,r) can be defined through Eq. (2.3), i.e.,

b „=b „+(fi/m)B„lnp . (2.7)

The average stochastic action can now be defined as

A = f E(W(x(r), r))dr

= f f W(x, r)p(x, r)dxdr, (2.8)

which is the action expended by the control field in mov-
ing the system from proper time ~p to 7] for some initial
distribution pp.

Using standard techniques of integration by parts and
Eq. (2.7) we can prove that

& = —,
'

m f f [b+qb~~ —(fi/m)Bqb~~ ]p(x, r)dx dr

which enables us to introduce the forward Lagrangian

W+(x, r) = —,m [b+„b~~ (A/m)r}„—b~~ ] (2.9)

Having established this scheme, we now proceed to the
relativistic generalization of Guerra and Morato's sto-
chastic action functionals, seeking a stochastic simulation
of relativistic quantum behavior. A straightforward ex-
tension of their treatment can indeed be achieved by intro-
ducing the following relativistic Lagrangian field:

D+ —— +b+ 8„+(fi/2m)Cl,p
ar

(2.4) with the property E(W(x, r))=E(W+(x, r)). In addi-
tion, we can introduce an action functional
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where p ( x', r'; x, r), r') r is the transition probability den-
sity and show that

(D+ I)(x,r) =W+(x, r) (2.1 1)

with the boundary condition I(,rz)=0. By analogy with
Ref. 6 we introduce a new action functional with addi-
tional end-point contributions

J(x,r;r~, S&', v+ ) =I(x,r;r~, v+ )+E(S~(x (r~))) (2.12)

obeying the transport equation (D+J)(x,r) =W+(x, r)
and the boundary condition J(,r&)=S&( ). Finally, fol-
lowing the demonstration presented in Ref. 6 we intro-
duce a variational principle for the control field v+ and
prove that

v&(x, r) =(1/m)B&S(x, r), (2.13)

where S=J(x,r;r&,S, ;v+) is the value of J for the sta-
tionary physical control field v+. Furthermore since S
coincides with J for the stationary field we have from Eq.
(2.1 1)

~2I (x, r;rz, b+ ) = — W+(x",r')p (x', r', x, r)dx'dr',

(2.10)

drodynamical fields given by the density p(x, r) and the
phase function S(x,r). That is, one can prove that p and
S constitute a system of canonical variables in relation to
the two equations of motion, i.e., Eqs. (2.2) and (2.14). To
show that this is true we proceed in the same way as Ref.
1. For this we construct a phase space I specified by
fields p and S' acting as canonical variables. The field la-
bel is x EM and we allow an explicit proper-time depen-
dence. One should however remark at this point that,
while in the classical case the time t is a universal external
parameter, in the relativistic case ~ is not an independent
parameter since d ~ =dx "dx&, and in fact is defined
along a certain trajectory. However, we shall assume that
~ is fixed as the proper time only after the variational pro-
cess is performed and an explicit solution of the equations
of motion is constructed. Moreover, since the proper-time
parameters on the different trajectory solutions of the
same equations of motion for the one-particle problem
can easily be seen to be independent, we can treat ~ for the
purposes of variations as a universal parameter. Hence, it.
attains the same status as the physical time t in the non-
relativistic theory.

Bearing these considerations in mind we introduce in I
by analogy with Ref. 1 a symplectic structure given by the
two-form

(D+S)(x,r) = ,
'

mb+qb—+ (A/2)r)„b—+ . (2.14)
cvz(5p, 5S;5'p, 5'S) = J [5p(x)5'S(x) —5'p(x)5S(x)]dx,

Introducing the explicit form of D+ from Eq. (2.4) and
b~+ as 6"+ ——v" +u" and assuming in agreement with a
tentative suggestion of Feynman that S(x~,r)
=S(x")——,

' mc r, we obtain

(3.1)

where 6 and 6' are two generic systems of increments for
the phase-space variables, which implies the relations

m2c —a„sa'"S+A'a„Pa"~+&' ~ =O, ~ = —,'»p

(2.15)

which constitutes a Hamilton-Jacobi equation with sto-
chastic corrections. This equation (2.15) together with
Eqs. (2.2)—(2.13) and the ansatz

}p(x),S(x') } =5(x —x'), [p,p} = tS,S}=0

5M 5A
5S(x) 5p(x)

if the Poisson brackets for generic
W(p, S),%(p,S) on phase space are defined as

r

[M,A}=J

(3.2)

functions

P=&p(x)exp[(i /A)S(x)]

=exp[P (x) + (i /A' )S (x ) ] (2.16)

In this context 6/6p, 6/6S are the functional p, S deriva-
tives, respectively.

We now introduce a relativistic Lagrangian of the form
combine to yield the Klein-Gordon equation

m c+
g2 /=0. (2.17)

III. THE SYMPLECTIC STRUCTURE
IN PHASE SPACE

We have thus shown that the stochastic action functional,
varied with respect to the stochastic control field v+,
yields the relativistic scalar particle Klein-Gordon equa-
tion of relativistic quantum mechanics. In the next sec-
tion we will establish the relation of this variational prin-
ciple with the standard volume variation of Lagrangian
and Hamiltonian fields in the relativistic regime.

mc A'
~, Bg ~Bg*

l a'T a7
+A'c'a„@*a„y (3.4)

which can be rewritten with g =exp [P + (i /A)S] as [with
a scaling constant (2mc ) ']

+ p (a„Sa~S+A'a„palp).
87 2m

(3.5)

One can check immediately that p and S are canonical
variables of the Lagrangian by writing down the Euler-
Lagrange equations with respect to p and S. In fact, the
variation with respect to p yields

aw
5p 5p ~ B(B~)

Having now established an approach to relativistic
Markov processes via a stochastic variational principle,
we can proceed to examine the problem not in terms of a
particle structure but by taking as basic variables the hy-

or equivalently

g2'S+ ' asas —~ ara J —' J =o.
2m " 2m " 2m

(3.6)
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The variation with respect to S yields

a~
5s 5s " a(a„s)

aw
a(a, s)

=0

while the Hamilton equations of motion read

as 5A

6p

or equivalently

BpS
p =0.

B7 Pl
(3.7)

One can easily check that in order to convert Eq. (3.6) to
the Hamilton-Jacobi-type equation and Eq. (3.7) to the
continuity equation of the ordinary Klein-Gordon theory
one simply has to postulate in agreement with the sugges-
tion of Feynman that the canonical variables p and S have
the form

p(x, r) =p(x), S(x,r) =S(x) —,
' mc —r .

Equations (3.6) and (3.7) yield, respectively,

1I +0 I a&I — 8 Sa~s+ =0,P g2 P

S+2a„sa~I =0,

(3.8)

(3.9)

(3.10)

which constitute the real and imaginary parts of the
Madelung decomposition of the ordinary Klein-Gordon
equation (2.17).

A further step consists in showing that one can con-
struct a Hamiltonian as a phase-space function for which
the Hamilton equations of motion appear in canonical
form. Two routes can be chosen for this depending on
whether we choose p or S as the analog of the canonical
position variable. We will briefly treat both of them start-
ing with

(a) The S=q and p—=p version for which A takes the
form

ap
[ ~) 5A
p~

(3.14)

g= &p exp[(i/A)S], P' =V'p exp[ (i /A)S)—
for which all the relations established by Guerra and Mar-
ra in the nonrelativistic case hold here, i.e.,

f p5S dx = ,'iA f (P5P* —$*5$)dx—,
(3.15)

1 f 5W 5%
iA 5g 5y*

6M 6A
5p

I g(x), g*(x')
I =5(x x')/i A, —

I 0 WI =
I
0* 0"

I =0.

which reproduces again Eqs. (3.6) and (3.7) or with (3.8)
Eqs. (3.9) and (3.10). In an appendix we examine the non-
relativistic limit of the above expressions.

Now, since p and S have been established as canonical
-variables of the relativistic Hamiltonian and Lagrangian,
we can perform canonical transformations in phase space
exactly as in Ref. 1. In fact, we can introduce a P&, gz
representation with

f~ ——~p cos(S/A), g2= v'p sin(S/A)

and show that the symplectic structure associated with

P&, f2 is the same as that associated with p,S. But far
more important is the equivalent representation defined in
terms of the wave function and its complex conjugate:

A (p,S)= f p —W dx
BS
87

= —f (a„Sa"S+A a„pal'p)dx .2'
Then the equations of motion read in canonical form

as 5A
87 6P

ap
I I

5A
07 ' 5S

(3.11)

(3.12)

f a„y*a~ydx (3.17)

We shall now seek an expression for the Hamiltonian
operator H ~ of the Klein-Gordon theory such that the
field Hamiltonian A introduced in Eqs. (3.11) or (3.13)
can be expressed as

~=A (g, P')= (Q,H,pf) = f P*(x)H,pg(x)dx .

(3.16)

This association of a H, ~ with A will be performed for
each of the two A versions separately:

(a) Noting that A can be expressed in the following
way in terms of P, P*

and reproduce Eqs. (3.6) and (3.7) or with (3.8) Eqs. (3.9)
and (3.10), respectively.

(b) Correspondingly, the second version (S=—P and
p=q) yields a Hamiltonian

A (p, S)

and introducing the Hamiltonian operator in the form
H,„=(A /2m)Cl, we can show that the expression

f Q*Clgdx

= f sap as
87 87

~ (a Sa~S+A'a Pa~P) dx
2m p

(3.13)

can transformed by means of a simple integration by parts
to the form of A, a fact that establishes the following re-
lation:
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fz
A (Q, f )= f P'H, pgdx, H, p

——0 . (3.18) M(p, s)= f f g'(x)A (X,X')P(x')dx dx',

Bf 1 5A 1=If,~I = — = —. H,pgBr i' 5f' i'
and with g=g(x)exp[ —(i/A') —,

' mc r], this reduces to Eq.
(2.17).

(b) Correspondingly, the second form of A can be writ-
ten in terms of g, g' if we remark that we can work with a
new Hamiltonian (equivalent with respect to variations)

(3.19)

This formula shows that the relativistic hydrodynamical
Hamiltonian can be written as the "quantum average" of
a relativistic quantum operator A,z in the f representa-
tion. As a consequence the Hamilton equations are linear
and coincide with the "relativistic Schrodinger equation"
or for the given ansatz (3.8) with the Klein-Gordon equa-
tion. In fact one can write

X,X'HM (4.1)

with A'(x, x')=A(x', x), since W should be real, where
the corresponding operator A is defined by

(Ag)(x)= f A(x,x')g(x')dx'. (4.2)

Since the properties of the algebra a whose elements are
the bilinear observables defined by Eq. (4.1) are indepen-
dent of the dimensions of the space we can simply
transpose the results elaborated in Ref. 1 for the nonrela-
tivistic case into the present context. Among these we
state the property that any ME.a can be written in the
form Eq. (4.1) [W(p,s)= (g, Ag), i.e., the Hilbert-space
scalar product] for some self-adjoint operator A and, most
importantly, the relation between Poisson brackets and
commutators:

+ ' (a„Sa~S+~'a„Pa~P) dx
2%

which is expressed in terms of P, tP* as

87 O'T

(3.20)

f2
B„g'8"g dx .

f2
~(p, g")= f g* 2iiii + Cl ttrdx5r 2m

(3.22)

from which we immediately identify H, ~
=2iiiii3/Br

+(A /2m)Cl. Following the steps of the demonstration
under point (a) we can show

ay
I

1 5~
ar

(3.23)

This relation together with the known ansatz for
reduces again to the Klein-Gordon equation.

Finally we wish to stress the remark made in Ref. 1

that it is the specific choice of the Lagrangian (and conse-
quently the deduced Hamiltonian) that is the origin of the
linearization of the Hamilton equation which produces
the relativistic Schrodinger equation and furthermore,
with the assumed form of P, the Klein-Gordon equation.
It would of course be interesting to introduce, for exam-
ple, a relativistic spinor Lagrangian and establish the rela-
tion between the canonical variable formalism and the
operator calculus in the area of relativistic fermion
theories. We shall discuss this elsewhere.

(3.21)

Noticing the specific dependence of g on r, we can estab-
lish the relation

I M, A I
= f f P'(x)[A, B](x, x')g( x')dx dx', (4.3)

E'fz

where [, ] is the commutator of two operators. Since
I M, A I retains the form of Eq. (4.1) we deduce that a is
closed under Poisson-bracket pairing. Therefore, we find
in the relativistic domain that the Poisson brackets are the
relativistic "quantum average, " in the above sense, of the
quantum commutator.

An observable M generates infinitesimal canonical
transformations on any A Ea according to the usual ex-
pression

(4.4)

where e is a set of infinitesimal parameters. The
remainder of this section is devoted to the construction of
some characteristic examples of observables in the algebra
a, bringing out that generators of infinitesimal canonical
transformations are indeed associated with the expected
quantum operators. We have shown already above how
the Hamiltonian generates motions in proper time.

(a) Phase changes Conside. r the generator
Q"= f p(x)x"dx. Its infinitesimal effect on p, S for a
small vector a" is given by 5p(x)=0, 5S(x)= —aux".
Constant phase transformations (under which the Hamil-
tonian is invariant) are then generated by f p(x)dx. It is
easy to see that Q"=(g,q",~g), with q",~=x".

(b) Spacetime translations. The infinitesimal change
x"~x'"=xi' a" induces —in p(x) the change
5p(x) = —a "B~. The corresponding infinitesimal canoni-
cal generator is P&(p,s)= f p(x)B&sdx as follows by
evaluating 5p(x)=a" Ip, P& I. In terms of the g, g" repre-
sentation we obtain Pz(p, s) = (,g,P,» f)), where
P,» (fi/i)B„as expect——ed. Similar results may be ob-
tained by considering the transformation of S(x).

(c) Lorentz rotations Under in. finitesimal Lorentz
transformations

IV. DEDUCTION OF THE QUANTUM
RELATIVISTIC OPERATOR ALGEBRA

By analogy with Ref. 1 let us introduce observables in
phase space which in the P, g' representation take the
form

x =x +6 ~, ep = —ep
we have

5p(x)=-,'e (x,a„—x„a„)p.

(4.5)
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By evaluating 5p(x) =d'
t p, W& I it is easy to see that the

infinitesimal generator of canonical Lorentz transforma-
tions is

W„„(p,S)= Ip(x)(x„a~ —x.a„S)dx . (4.7)

Moreover, the corresponding quantum angular momen-
tum operator is given by

(4.8)

We thus see how we can deduce the form of the quantum
operators for the spacetime causality group by first dis-
covering the infinitesimal canonical generators on the hy-
drodynamic variables, and then passing to the f,g* repre-
sentation.

Finally, we have the following Poisson-bracket rela-
tions, corresponding to the commutation relations of the
Poincare Lie group:

IP„,P I =0, [P„,W, I =g„+ rj„P-
IW„„W pj=g„pW, +g„W„p g„W„p—ri,pW„—

(1) a physical explanation for the quantization of ac-
tion,

(2) a new stochastic realistic model for Heisenberg's un-
certainty relations.

Bohm's results can be summarized as follows:
(1) Since we now start from a many-body Dirac-type

ether model one can describe its collective large-scale
behavior by collective coordinates which are an approxi-
mately self-determining set of symmetrical functions of
the particle variables representing certain overall aspects
such as collective oscillations. The collective motions are
determined (within their characteristic domain of random
fluctuation) by approximate constants of the motion.
Since one can assume that our wave elements are compar-
able to "rigid" spherical shells enclosing bilocal oscilla-
tions' with E =hvp=mpc in their rest frame we see that
these collective coordinates describe nearly harmonic os-
cillations where the constants of the motion are the ampli-
tudes of the oscillations and their initial phases. Such col-
lective coordinates can be defined through the canonical
transformations

V. QUANTIZATION OF THE STOCHASTIC A.CTION

dP =P(p), . . . , QI„. . . )dpi . dQk (5.1)

which yields the mean fraction of the time in which the
variables P~, . . . , Pk, . . . representing the mean fields in
the regions 1,2, . . . , k, . . . , respectively, will be in the
range dP~, . . . , dPk, . . . . From this Bohm has derived

The preceding introduction of stochastic canonical vari-
ables opens new vistas into possible deeper subquantal
mechanisms which could justify the quantization mecha-
nism. Following Bohm's analysis' what we now call
"particles" are relatively stable and conserved excitations
("pilot waves" plus solitons") on, the top of a real covari-
ant vacuum (random fields) of the Dirac type. ' Such
particles will be registered only at the large-scale level
since all known apparatus are only sensitive to those
features of the field that will last for some time but not to
those features that fluctuate rapidly. Thus the "vacuum
will produce no visible effect at the large-scale level, since
its fields will cancel themselves out on the average and
space will be effectively "empty" for every large-scale pro-
cess, exactly like a perfect crystal lattice or a superfluid is
effectively empty for an electron in the lowest band; even
though the space is full of atoms.

In such a stochastic madel our new canonical variables
deal with some kind of average field quantities over small
regions of space and time. We thus assume that a group
of such average quantities would, at least, within some ap-
proximation, determine themselves independently of the
infinitely complex fluctuations inside the associated re-
gions of space, and thus define approximate average field
laws associated with certain levels of size. Owing to
deeper level fluctuations and, as in the case of the Brown-
ian motion of a particle, these fluctuations will determine
not only random jumps at the velocity of light, but also a
probability distribution,

BS
Qp= (q». m .

8Jp

(5.2)

where S is Hamilton's transformation function, Pq and qk
the momenta and coordinates of an element, J„and Q„
the momenta of the collective degrees of freedom. If we
assume that J„are now constants of the motion (so that
in the domain where the approximation is valid the Ham-
iltonian only depends on the J„and not on the Q„) the
latter increase linearly with time, like angle variables. '

Of course, because of fluctuations of variables left out of
the theory, the Q will fluctuate at random over the range
accessible to them

(2) Once the constants of motion are specified relation
(5.2) reduces to

BS : ek (5.3)

so that the phase S we have used as canonical variable is
an average action function representing collective oscilla-
tions (and the corresponding constants of the motion) on
top of the chaos of harmonic oscillators.

In that sense the expression g =p' ~ e ' ~" does not
represent a real wave but only a canonical physical change
of variables from the real variables p and 5 which
describe a real field distribution; the physical reality con-
sisting in the wave element s motions (drift plus stochas-
tic), the evolution of their associated average density p and
the corresponding average quantum potential

p' /p' . Thus when we give a wave function we
define a canonical action function S =A'Im(in/) which
determines the constants of the motion through the usual
classical phase integrals

I.= g f, Pkdek (5.4)
k

where the integrals are taken around some circuit C
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representing a set of displacements 5qk (virtual or real) in
the configuration space of the system represented by p
and S or P.

As one knows from Eq. (5.3) one obtains

I, = f g 5qk ——5S, ,
as (5.5)

where 5S, is the change of S in going around the circuit
C, and we deduce the quantum quantization from the as-
sumption that g is a single-valued function of all the
dynamical coordinates qk so that we have

5S, =2nm6= nh, (5.6)

where n is an integer and h a universal constant. The
problem of the quantization thus reduces to the discovery
of a physical model which explains why the change of S
around a circuit is restricted to discrete multiples of h,
i.e., why exp( iSh11) is necessarily single valued.

(3) To do this one can (should) return to an idea on
which de Broglie based his discovery of wave mechanics.
The idea is to consider the 1tj-wave elements as extended
elements containing periodic inner processes (such, as
shown by Souriau et al. ' generally occurs in all extended
space-time structures) which determine a kind of inner
time for each region of space and effectively constitute a
kind of local clock attached to every 1)'j element with a
given phase P. It is now quite natural to assume (a) that
in its own rest frame each clock oscillates with a uniform
angular frequency hvo ——moc which is the same for all
clocks and (b) that all clocks in the same neighborhood
are on the average in phase with each other. In homo-
geneous space there can be no reason to favor one clock
over another, nor can there be a favored direction in space
so that we can write

5p =co05~, (5.7)

coo&.—(u 5x )/c
2 2 1/2(1—u/c )

(5.8)

Integrating around a closed circuit the corresponding
change of phase 5$, should then be 2nrt with a positive

where 5~ is the change of the proper time of the clock and
where 5P is independent of 5x in this frame.

Then in Bohm's words "the equality of c1ock phases in
the rest frame for a neighborhood can be understood more
deeply as a natural consequence of the nonlinearity of the
coupling of the neighboring clocks (implied by the general
nonlinearity of the field equations). It is well known
indeed that two oscillators of the same natural frequency
tend to come into -phase with each other when there is
such a coupling. ' Of course the relative phases P will os-
cillate somewhat, but, in the long run and on the average
these oscillations will cancel out. "' This property implies
that once a collective moving order is established (i.e.,
when the clock phases vary continuously over the g field)
it cannot be easily destroyed: so that clock synchroniza-
tion is maintained by the motion and should vary continu-
ously around any closed circuit. If we then calculate the
change of 5$(x, t) which would follow upon a virtual dis-
placement (5x;,5t) in any frame we get

integer if we preserve the single-valuedness of P. We thus
obtain

5t —(u;5x;)/c
It) 5y=~,f,'

', „, =2n~
c c (1—u /c )

(5.9)

and introducing
momentum

the total clock translation energy-

2/(I u2/c2)1/2 p m „ /(1 u2/c2)1/2

we get

(E5t —p;5x; ) =2n1r(mo/too)c (5.10)
C

which yields the quantum quantization if moc /coo ——A.
(4) Along the same lines we can obtain a realistic justifi-

cation for Heisenberg's relations' and for the numerical
value of the diffusion constant D =A'/2m.

If we want to discuss the average change of field hPk
over a small region of time b, t (just as we had to take the
average also over a region of space) we have seen that the
average value of the field momentum over this time inter-
val is then

~4k
(mk) =a

ht
(5.11)

where a is a universal constant of proportionality relating
the field momentum to its time derivative.

If the field fluctuates in a random way then by the very
definition of randomness the region over which it fluctu-
ates during the time At is given by

((51I)k) ) &bb, t, (5.12)

where b represents the basic intensity of the random fluc-
tuation; a universal constant also if the random field fluc-
tuations are at all places at all times the same in charac-
ter.

From (5.11) we deduce that mk will also fluctuate at
random over the range

b 1/2

(gt)1/2
(5.13)

51rk 5/k &ab (5.14)

independently of ht; a relation equivalent to Heisenberg' s
relations if ab =h.

If we now consider that no interaction occurs during
one stochastic jump at the velocity of light the preserva-
tion of phase continuity implies that the phase varies by
2vr only so that ((5x) )'/ =A, =(1rt/mc). When going to
u =c we have ( (5x ) ) =c b,r which yields since
D =((5x) )/2b. r the diffusion constant D =A'/2m pos-
tulated in Nelson's original paper. '

%"e conclude this section with two remarks. The first is
that in all that precedes we have only considered the
behavior of the g field (pilot-wave) elements. Their mov-
ing average equilibrium distribution associated with the
average drift current is the result of the underlying sto-
chastic field motion which generates the collective excita-
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tion g over the subquantal random vacuum. The second
is that if we assume'

(a) that only the particle aspect of matter appears in
quantum experiments

(b) that this particle aspect is represented by soliton
waves U traveling along the current lines of flow and
beating in phase with the surrounding P field it has been
explicitly shown that any arbitrary particle distribution
over the field decays in time into the distribution jo. this
propensity resulting from the field fluctuations themselves
results from the property that the solitonlike particles also
beat in phase with the surrounding f field: an essential
assumption suggested by de Broglie himself to justify the
E =hv=mc relation. ' This H theorem established by
Kyprianidis et al. generalizes a nonrelativistic demon-
stration of Bohm and Vigier. ' lt explains why the g field
also describes quantum statistics.

VI. CONCLUSION

Following closely the procedure laid down by Guerra
and Marra' for the nonrelativistic theory, we have in this
paper set up a relativistic stochastic variational principle
and established that the Lorentz scalar fields p, S may be
treated as canonical variables in phase space. Having
studied the Lagrangian and Hamiltonian structure ap-
propriate to the Klein-Gordon equation, we have gone on
to show the relation with a Hamiltonian operator forrnal-
ism for relativistic quantum mechanics and demonstrated
that there exists a well-defined equivalence between the
Poisson brackets of the hydrodynamical theory and the
commutators acting in Hilbert space. We have also justi-
fied by a physical model the single-valuedness of the wave
function and the value for the diffusion coefficient.

This has been relatively straightforward since, once a
relativistic Markov process has been defined, the remain-
ing construction is independent of the signature of the
metric. A significant aspect of our approach is that, in
contrast to much of textbook relativistic field theory, we
have developed a manifestly covariant formalism which
employs a scalar Hamiltonian having the dimensions of
mass squared (as in the modern theory of predictive
mechanics). Actually, the previously established formal-
ism of Guerra and Marra is readily applicable to any
theory cast in Schrodinger Hamiltonian form and we
could have developed a relativistic spin-zero theory by
employing the two-component wave-function technique
proposed by Feshbach and Villars, ' and more recently
discussed by us, which expresses the Klein-Gordon
equation in the form i Ad+/ot =H% with (4,H+)
= J T~d x. We prefer the present approach since it is

immediately relevant to the causal interpretation.
Nevertheless, it does introduce an unorthodox notion of
"averaging" with respect to the quantity p which does not
define a conserved density related to probability. Such a
definition of average is evidently related to the preferred
form of the Lagrangian for which the Hamiltonian equa-
tions are linear.

Providing a physical basis for the use of operators and
the correspondence rule deepens the causal interpretation
which, while not contesting the statistical predictions of

quantum mechanics, is able to raise experimental ques-
tions which would not be suggested if the notion of trajec-
tory were absent. We note here that current neutron inter-
ferometry experiments appear to provide support for the
causal-trajectory interpretation, and thus cause difficulties
for the orthodox interpretation. Specifically we refer to
the problem of the transfer of energy due to spin-flips in
one of ihe paths in an interferometer and ihe associated
measurement process and to the question of the validity
of energy conservation on the microscopic scale. These
experiments will no doubt contribute to the clarification
of the question of the so-called "impossible" coexistence
of trajectories and wave characteristics and in the authors'
opinion give evidence in favor of the stochastic interpreta-
tion of quantum mechanics.
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APPENDIX

L""=J p + (8 Sc)"S+A' 0 Pd"P) dx .as
cI~ 2m

By putting BS/B~= ——,
' mc, since there will be no varia-

tion with respect to r„B SK'S [m c —2mB, S —(V'S) ]p
and d„PB"P~—(V'P) and we obtain

L""~L= —I p B,S+ (V'S) + (V'P) dx,2' 2@i

(A 1)

where dx is over the three space variables and the La-
grangian is considered for a fixed time t. A check to en-
sure the validity of this L, by taking the Euler-Lagrange
variations with respect to p and S as independent vari-
ables yields the Hamilton-Jacobi-type and continuity
equations of the Schrodinger theory, i.e.,

(VS)
B,S+ g2

[(VP)'+ b,P]=0,
2&i

(A2)

VS~tP+~' P =0. (A3)

Since the equivalence of this Lagrangian with the nonrela-
tivistic stochastic one is discussed in Ref. 6 we will
dispense with further remarks on this point.

The case of the Hamiltonian is a bit more complicated.
As the Hamilton canonical equations show, the relativistic

It is of interest to examine the nonrelativistic limit of
our theory. For this we have to bear in mind that z is an
arbitrary parameter which should be treated as indepen-
dent of t. Furthermore in going over to the nonrelativistic
limit S—+S' mc t—since the rest energy of the particle
should not appear explicitly in the formulas.

First consider the Lagrangian,
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Hamiltonian is a scalar and so are its variations, e.g. ,
5A /5p=BS/t)r, while the nonrelativistic one should ap-
parently appear as a limit of a fourth component. If we
perform the limit of our canonical variation we obtain (by
the same principles as introduced previously) the follow-
ing:

(a) In the first version where

~=(—p/2m)(a„Sa&S+X a„Pa&P)

for a fixed time t
(b) In the second version where

~= f S P —p —P (a Sa&S+e'a palp) dx
c)p BS p
d~ B~ Zm

and 5A /5p= —BS/Br the following equation can be de-
rived in the limit:

the fallowing equation can be written as the nonrelativis-
tic limit of 5A /5p=BS/Br:

5 f p 2a,S+ + (VP)' dx =a,S. (A4)
( VS) fi

5p
[

' 2m 2m

By means of this we deduce that the Hamiltonian for the
nonrelativistic limit reads

5 (VS) A'f p — + (VP) dx = —a,S.
5p 2frE 2'

This identifies the nonrelativistic limit of A as

(VS) fi
A "~H= f p + (VP)' dx

2M- 2171

(A6)

(Aj)

(V'S) A'= f p(x, t) 2B,S+ + (VP) dx
2fPl 2' (A5)

for a fixed time. This coincides with the choice of H in
Ref. 1, a fact that is obvious if one notices that the choice
of p as canonical position and S as canonical momentum
has been made.
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