
PHYSICAL REVIEW D VOLUME 32, NUMBER 6 15 SEPTEMBER 1985
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We present a class of nonsingular analytic solutions of the general-relativistic field equations in
isotropic form for a static spherically symmetric material distribution. Within a sphere the outward
variation of pressure, density, pressure-density ratio, and the adiabatic sound speed is monotonic de-

creasing. The solution has been used to construct causal models for neutron stars with a maximum
mass =4' where we have assumed a surface density equivalent to the typical terrestrial nuclear
density.

I. INTRODUCTION

II. A SOLUTION IN THE ISOTROPIC FORM

We consider the line element in the isotropic form

ds2 c2ev(r)dt2 ea'(r)(dr2+r2d f12)

with

dQ =do +sin Odg

The sphere is of perfect fluid:

T'=diag(c p, —p, —p, —p) .

(2.1)

(2.2)

The field equations of general relativity reduce to the fol-
lowing:

87TG ~ (a) ) to tov v
4 r 2 r

p=e (2.3)

Sn G „co" v" (v')2 to' v'
p=e

c4 2 2 4 2r 2r
(2.4)

A considerable number' of exact solutions of Einstein's
field equations for the description of static fluid spheres
have been obtained, most of them conveniently expressible
in the standard form of the space-time metric. The appli-
cability of an exact solution to astrophysical situations of
relativistic nature depends upon the physical behavior of
the corresponding equation of state, and also upon the sta-
bility of the model under small radial perturbations. It is
well known that none of the known exact solutions has
been found satisfactory in these respects. Gn the other
hand, using fast computers stable relativistic models have
been numerically computed satisfying physically sound
equations of state. Nevertheless, on account of the
structural and operational simplicity of exact solutions it
is desirable that we find new ones if they lead to an im-
provement in our understanding of the field equations.
Since a solution having a simple form in one coordinate
system may appear very complicated in another system
we propose to explore yet unknown solutions that may not
have required structural simplicity when expressed in the
standard system of coordinates but have quite simple
forms in some other system.

Sm.G „(to') 2to'
p= —e co + +

c 4 r
(2.5)

From (2.3) and (2.4) we get the following equation in a)
and v:

(v')'
V +CO +

2

(to')' —v'to' ——(v'+a)') =0 .
2 r

(2.6)

A solution of (2.6) is

1 —k5 „g2 (1+k5)
e e1+k5 1+r2/a 2 (2.7)

with

5(r)=(1+r2/a2) ~2/(1+br /a2) r (2.8)

Here a, b, k, and 3 are constants. The expressions for
pressure and density are as follows:

SnG . 4(bk 5 —1)
c a (1+k5) (1—k5)

SmG 12(1+bk5 )

c2 a (1+k5)
P= (2.10)

Clearly for b =0 the solution is Buchdahl's solution —an
analog of a classical polytrope of index 5. In fact, our
solution consists of two different classes of solutions, ac-
cording to whether b &0 or b (0. The first case corre-
sponds to finite boundary models whereas the latter case
gives rise to a family of unbounded systems. Since we are
interested in finite-sized models, we wri'te

b=n (2.11)

where n is a nonzero real number.
The solution is to be matched over the boundary with

Schwarzschild's empty space-time,
' —1

26M 2 2 26M
c2+ c2

dR —R dQ

(2.12)

where M is the mass of the ball as determined by an exter-
nal observer and R is the radial coordinate in the exterior
region. The usual boundary conditions are that the first
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and second fundamental forms be continuous across the
boundary r =rb or equivalently R =Nb. Applying the
boundary conditions we get the values of three constants,
viz. , A, k, and a in terms of the constant n and the
Schwarzschild parameters M and Rb as follows:

and

u=GM/c Rb & —,
' (2.17)

(2.18)

n+1
n —1

(2.13)

k= 1 jn5b (2.14)

(rb/a) = [1—(1—2u)' ]/n [1+(1—2u)'i ], (2.15)

Since n is left arbitrary, we find in (2.7) a parametric class
of exact solutions. We note that the case 0& n & 1 leads
to the result similar to the case n & 1.

We observe that it is not easy to transform (2.1) and
(2.7) into the standard form. To transform the isotropic
radial coordinate r into the standard radial coordinate 8
we require the transformation

Rb ——(rb/n)In+[1 —(1—2u)'i ]

&&[1+(1—2u)'i'] 'I'(n+1)
r(1+k5)
(1+r /a )

(2.19)

with
(2.16) This implies that to find r(R) one has to solve the follow-

ing polynomial equation of eighth degree:

n R r 2R(k —+n )a n r +[(n k) —a +2n (n +1)k ]a r 2R(n —+2n +k +2n k a )a r

+[2n a +2k a +R +n "R +4n R 2k (n +—1)a ]a r —2R(1+k n +2n +2k )a r

+[a (1—k ) +2(n +1)R ]a r —2(1+k )Ra r+k a =0. (2.20)

Apparently this equation has no simple roots.

III. PROPERTIES OF THE SOLUTION

p/c p=(n/3)(5 —5b )(n5b —5)(5b +n5 )

so that

(3.6)

In view of (2.9), (2.10), and (2.14) the expressions for
pressure and density can be rewritten as follows:

—(n /3)5 5'[5' (5/n )5 +55 5 5 /n ]
C P

8~G 4[(5/5b)' —1]
c a (1+5/n5b ) (1 5/n5b )—

8~G 12(1+n 5 /5b )

c a (1+5/n5b )

(3.1)

(3.2)

X(n5b' —5) '(5b'+n5') (3.7)

Thus extrema in p/p occur at the center and at radial
points given by the roots of the quintic equation

Clearly, p is non-negative and finite throughout the distri-
bution if

f(5)—5' (5/n )5 +55 5 5 /n —0

%'e obtain

(3.8)

nlrb') 1, (3.3)

which fixes an upper limit of u in terms of the parameter
n,

= —(2n/3)[5b (n —1)(1+5b )+4(n 5b 1)]-
C P 0

0&u &2n' (1+n )(1+n +n2 ) (3.4)
X(n5b' 1) (n+5b —) (3.9)

Clearly, the density is positive throughout the distribution
and its outward variation up to the boundary is monotoni-
cally decreasing if

1b (Qn (3.5)

It is to be noted that as n approaches 1 (but not equal to
1 as it leads to a singularity in the metric) the upper limit
of u approaches its maximum value —,

' and density ap-
proaches a uniform value throughout the sphere. Thus
our model approaches Schwarzschild's uniform .density
model as n~1.

From (3.1) and (3.2) one obtains

=(2n/15)[2n5b —2n5b 35b 5+3n—5b 55]
c2 ~p

X(n5b 5) (n 5"——1) (3.10)

so that

implying that pjp is maximum at the center. Applying
Sturrn's theorem on f (5) we find in view of (3.3) that (3.8)
has no roots in the range 0& r &rb. It follows that pjp
falls monotonically from its maximum central value to
zero on the surface.

Again we have
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dp dp

dp dp

2 4n5 3(4n5' 5n 5b'5 +5b )

(n6b —5) (n 5 —1) (2n5 —3n 5b 5 +355b 2—n5b )
(3.11)

Extrema of dp/dp occur at the center and at radial positions which satisfy the following polynomial equation in 5:

n 45b 359+3n 55 658 8n56 8n 45b 953+6n 25b 355+ 35 35+6n 35 654 n 5 6 ()

We obtain

(3.12)

dp

o

= —2 (n5b —1) '(n —1) '[2(n5b —1)(n5b +1)+(n —1)5b ]
dp o

&&[(n5b —1)(n 5b +n 5b +n 5b +6n)+8n5b (1 n—5b )

+6n5b (n 5b —1)+2(n —5b )(n 5b —1)+n5b (n 5b —1)+(n —1) 5b ] . (3.13)

The expression on the right-hand side of (3.13) is nega-
tive in view of (2.18), (3.3), and (3.5) showing thereby that
dp/dp is maximum at the center. Equation (3.12) is an
equation of ninth degree in 5, and it has not been possible
to show analytically the existence or nonexistence of its
roots in 0 & r (rb, however, numerical study in different
extreme cases suggests that dp/dp will normally fall out-
ward monotonically.

IV. PARAMETRIC BEHAVIOR OF THE STATIC
BALL AND NEUTRON-STAR MODELS

UNDER EXTREME CENTRAL CONDITIONS

In the last section we have shown analytically that the
outward variation of p/p is monotonic decreasing. This
indicates that if the equation of state is realistic in the
central region it will be so in the rest of the Auid region.
In view of this, since it has not been possible to find the
equation of state in closed analytic form, it will be worth
investigating the parametric behavior of the static ball
when some limiting equation of state is assumed to hold
at the center. Clearly, an assumption regarding the cen-
tral equation of state fixes the parameter rI, .

The object of our present analysis is to determine the
maximum value of the surface gravitational potential and
hence the surface red-shift Z [=(1—2u) ' —1] obtain-
able from the solution in the parametric range 1 ~ n & oo

under central conditions:

(i) (dp/dp}0 ——c',
(ii) (p/p)o ——c'/3,
(iii) (p/p)0 ——c

and when

(i ) 2 1/3(1+n 2/3)(1+n 1/3+n 2/3) —2

Figure 1 shows the variation of u and Z under these con-
ditions and we find the following results:

Condition (i):

max u =0.3188, max Z=0.6612 for n =7.22;

Condition (ii):

max u =0.2871, max Z=0.5326 for n =5.1727;

Condition (iii):

max u =0.3757, max Z=1.0055 for n =2.1;
Condition (iv):

max u~0. 4444, max Z~2 as n~l .

W'e observe that the extreme model obtained under the
condition (ii) satisfies the causality condition too (Table I).
We note that the red-shift obtainable from this model is
quite close to Bondi's limit Z &0.615.

To illustrate the astrophysical application of the solu-
tion we compute the maximum Inass of a neutron-star-
like compact object. We assume ph,

——2&10' gcm
which fixes the value of u. We thus obtain a family of
neutron-star models for values of n. Figure 2 shows the
variation of M/Mo with n under extreme conditions (i),
(ii), (iii), and (iv). Mass maximization under these condi-
tions results in the following models:

Condition (i}:

max M =3.9231MO, R~ ——18.6944 km,

po/pb =2.2813 for n =4.5;
Condition (ii):

max M =3.9926MO, R~ ——21.1215 km,

po/PI, ——1.0048 for n = 1.1255;

Condition (iii):

max M =6.2594MO, Rg ——24.5311 km,

po/pt, =1 1565 for n =1.1255;

Condition (iv):

max M =8.0684MO, R~ ——11.8606 km,
- po/p~ ——1.0077 for n =1.1255 .
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0
0.1

0;2
0.3
0.4
0.5
0.6
0.7
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(I)
871n =5.1727, u =0.28 1

0.7045
0.6251
0.5676
0.5244
0.4848
0.4667
0.4474
0.4326
0.4216
0.4135
0.3852

dp/c dp
(II)

=4 5 0 =0.30848n =4.5, u—
1.0000
0.9215
0.8610
0.8138
0.7767
0.7474
0.7246
0.7070
0.6939
0.6846
0.6786

(III)
n =3.415, u =0.2854

1.0000
0.8671
0.7795
0.7134
0.6641
0.6269
0.5988
0.5802
0.5701
0.5515
0.5448



1362 D. N. PANT AND A. SAH 32

(~~)
$4- $' 5 & I f & O

FIG. 2. Variation of M/Mo with n under the extrezne conditions (i) (dp/dp)0 ——c, (ii) (p/p)0 ——c /3, (iii) (p/p)0 ——c, (iv)
u =2n ' (1+n )(1+n ' +n )

(a)

For the neutron-star model satisfying each of the condi-
tions (i) and (ii) the parameters are as follows:

C4
D

a6
Al

l,P 27 3l 3i5 3i9

2&Ga2
qG2

FKx. 3. p vs pc for (a) n =4.5 and (dp/dp)0 ——c, (b)
n =3.415, (dp/dp)0 ——c, and (p/p)0 ——c /3.

max M =3.731Mo Rb ——19.214 km,

po/p~ =1.6933 for n =3.415 .

Figure 3 shows the equation of state for two neutron-star
models, viz. , for n =4.5 and n =3.415. Table I shows
that in these'two models the outward variation of sound
speed is monotonically decreasing throughout.

As such all the above-described calculations are based
on a particular surface density, viz. , pb

——2& 10' g cm
A decrease in pb is found to correspond to an increase in
M/Mc) and also in Rq which shows that neutron-star
models bigger in mass and size are obtainable from our
solution. This is possible if one assumes a significant
crust of subnuclear density surrounding the nuclear-
density core.
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