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We construct gravitational as well as fermionic action integrals for Weinberg s quasi-Riemannian
theories of gravity in d dimensions. W'e investigate the possibilities of obtaining spontaneously com-
pactifying solutions with GT ——SO(1,D —1) )& GT where GT L:SO(d —D), 4 & D (d. For
GT ——SO(d —D) we show. that they are unlikely to have G-invariant solutions of the form
(Minkowski)4&G/8, while we explicitly construct this type of solution for G~ ——H. We also
present several fermionic Lagrangians and briefly discuss the chirality problem.

I. INTRODUCTION

The orthodox Kaluza idea of unification of all long-
range forces in a single higher-dimensional gravitational
field encounters at least two major obstacles. Theses are
(i) the impossibility of obtaining four-dimensional chiral
fermions from a higher-dimensional Einstein-Dirac ac-
tion' and (ii) the absence of compactifying solutions, up to
one loop, of the form M&XBd 4,, where M4 is the flat
Minkowski space and Bd is a non-Ricci-flat compact
(d —4)-dimensional manifold (see, however, Ref. 3). In
view of these problems if we want to obtain realistic
four-dimensional physics, we are forced to depart from
the orthodoxy.

At present three kinds of departures are known. The
first, and the most extensively studied, is to introduce ele-
mentary gauge fields in the higher-dimensional action.
These fields have the standard minimal coupling to gravi-
ty and fermions, and can solve both of the above-
mentioned problems.

The other two ways of departing from the pure gravity
Kaluza theory are to abandon either the compactness of
the internal space Bd q or the Riemannian structure of
the starting d-dimensional theory. Both of these ideas are
in their primary stages and we believe they are worthwhile
investigating. This paper is devoted to a study of the
second possibility, i.e., Weinberg s quasi-Riemannian
gravity.

In quasi-Riemannian theory the only elementary Bose
fields are the ones which are given by the manifold struc-
ture, namely, the tangent vector fields to the manifold. In
contrast to the ordinary Riemannian geometry where the
tangent vectors form the fundamental representation of
the (pseudo-)orthogonal group, Weinberg assumes that
they transform according to some representation of a
group GT. It is then argued that GT must have a product
structure of the form SO(1,D —1)X GT where 4 &D & d
and GT C:SO(d D). (d is the total nu—mber of dimen-
sions. )

In this paper we shall construct action integrals which
are invariant under the tangent space group
GT ——SO(1,D —1)X Gz and the general coordinate
transformations in d dimensions. We shall then study the
compactifying solutions to the equations derived from

these actions. It will be shown that the generic 6-
invariant solutions are of the form (de Sitter)4XG/H,
with a compact 6/H. However for the special case of
GT Hwe——shall obtain solutions of the form
(Minkowski)4 X G/H, provided that GT C SO(d D). —

The plan of the paper is as follows. In Sec. II we con-
struct the action for pure gravity with GT
=SO(1,D —1)XSO(d D), whe—re 4&D &d. The possi-
bility of obtaining solutions with this tangent space group
is studied in Sec. III. Section IV generalizes these results
to a tangent space group of the form
GT ——SO(1,D —1)XGT where GY CSO(d D). In Se—c. V
we construct fermionic Lagrangians and briefly discuss
the problem of chirality. Section VI concludes the paper.
The geometrical technicalities and more details on the
construction of the Lagrangians and field equations are
relegated to two Appendixes at the end of the paper.

In the remaining part of the Introduction we recollect
various definitions in quasi-Riemannian geometry which
we use in the subsequent sections.

Let Md denote a d-dimensional manifold and z
M = 1, . . . , d a set of coordinate functions. Applying any
local GL(d, R) matrix eM(z) we can transform the natural
basis dz of the cotangent space to a (nonholonomic)
basis e"=eM(z)dz . The functions e~(z) are the viel-
beins. In the standard pseudo-Riemannian geometry it is
assumed that the index A transforms according to the
fundamental representation of SO(1,d —1). In quasi-
Riemannian geometry it will be postulated that A
transforms according to some representation of a smaller
tangent space group GT =SO(1,D —1)X GT, where
4 (D (d and GT C:SO(d D). —

In order to generate Yang-Mills fields as fluctuations of
the eM fields it is imperative to have a nonvanishing tor-
sion. ' Here we shall introduce torsion by adopting a
proposal of Weinberg.

Let 0 denote a connection form for the gauge group
SO(l, d —1). As a Lie-algebra-valued one-form it has a
unique decomposition, viz. ,

where co is a one-form with values in the algebra of GT,
while G lies in the complementary coset subsp ace
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SO(1,d —1)/GT.
Under an element g E G~ we have

Q~g '(Q+d)g,

cong (t22+d)g,

co~g Gg,

(2b)

(2c)

i.e., co transforms as a connection while co transforms co-
variantly. %'e shall demand invariance under local GT
transformations. Therefore all derivatives should be GT
covariant. This will be ensured by using cu as a G~ con-
nection.

Since our philosophy is to regard ebr as the only funda-
mental Bose field, we must express co and co in terms of e.
To achieve this we demand 0, as an SO(l, d —1) linear
connection, to be torsion free, i.e.,

de+Abc =0, (3).

de+cub, e = —Gh, e . (4)

This indicates that —G h e is the torsion two-form of the
connection co.

The action integral in the next section will contain G
alongside the curvature two-form R defined by

In the construction of the action we shall never use the
coordinate basis in the manifold. Therefore every equa-
tion we write will be automatically invariant under gen-
eral coordinate transformations.

where e stands for the column matrix of vielbein one-
forms e =eMdz . Equation (3) can be solved in the usu-
al way' and gives

C&~8 =~8ce

where

M N M N M NA8c eA e8 ec[M,N] e8 eceA [M, N] ec eA e8[M, N]

(3a)
eC(M, N] dN CM ~M CN

Substituting this solution in Eq. (1) we get a unique solu-
tion for c22 and c0 as functions of ebr.

As we already remarked, in the absence of GT torsion it
is impossible to generate Yang-Mills fields from compac-
tification of a higher-dimensional quasi-Riemannian man-
ifold. The GT connection co has in fact a nonvanishing
torsion. To see this it is sufficient to substitute from (1)
in (3) to obtain

1+ 2 Q[ab](+[ah]ye +f1[ah]ce )

co=Q,p( Ap, be —+II,P ey) .

(7a)

(7b)

As mentioned in the previous section Eq. (3) has as the
solution Eq. (3a) giving 0 as functions of e". Hence co

and co will be functions of e" and their first derivatives.
To construct the action we sha11 construct a11 GT in-

variants .which contain co, co, and at most their first
derivatives. First consider c22. Since it transforms as a GT
connection we can form its curvature tensor. It is given
by Eq. (5). Relative to our adopted basis it may be ex-
panded as follows:

R =
4 (R ysQ[ap]+R ybQ[ab])e he

+ , (R cb—Q[aP]+R'cSQ[ab])e'he

+ 4 (R cdQ[( p]+R',dQ[ab])e'he" . (8)

Subject to our restriction of not having more than two
derivatives, the required GT-invariant tensors should be
formed out of various components of R. Recalling the
antisymmetry of R» with respect to A~A and C~D,
the only possible GT invariants are

ap ab
aP~ ~ ab

Next consider G. Since B contains the first derivatives
of e, we should employ only bilinears in B. It is fairly
easy to see from Eq. (7b) and Appendix A that the only
permissible GT invariants are

-~[pr] — -~fprIco~ [pr]co & co+
I pr I

co, co~p co

this let the index A be decomposed. into a=1, . . . , D and
a =D+1, . . . , d, such that e and e transform, respec-
tively, as SO(1,D —1) and SO(d —D) vectors. Then the
Lorentz connection 0= —,Q»Q[»]ce', can be decom-
posed as follows:

1 c
2 Q»II[»]ce =

2 Qap(II[ap]ye +II[ap]ae
1+ 2 Q[ab] ( +[ah]y ++[ab]ce

1+ 2 Q[aP](II[aP]ye +II[aP]be»
where Q», QaP, and Q,b are the generators of
SO(l, d —1), SO(1,D —1), and SO(d D), res—pectively.
Upon comparison with Eq. (1) we conclude that

1~= 2Q[ap](&apye +&ap e )

II. THE ACTION FOR Gp ——SO(1,D —1)XSO(d —D)

To clarify the principles of constructing invariant ac-
tions, in this section we shall assume that
Gz ——SO(D —1)X SO(d D). Within the —context of
quasi-Riemannian gravity this is the most restrictive GT.
Nevertheless we shall show that the most general GT-
invariant action which does not involve more than two
derivatives contains nine independent parameters. To see

—a[bc] — —aIb~ I
— b —a ~~a[bc]~ ~ ~a(bc I~ - ~ ~ab ~ c

1 1

where G p[ab]= 2 (p pab ~pba) an ~p[ b] =
a2 (~pab

+copb, ) —( 1/D) yj,beep,
'. Similar definitions hold for

~, [p ] and co, [p ]. In Eq. (10) the raising and lowering of
the indices have been performed with gap and 6,b. Now
from (9) and (10) we can construct the invariant action
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S[e]=f deted z(c,R p+c2R', b+c3co [py]co +c4co [py]co +c5co p co y

—a[bc) — —aIbc) — b—a c+e6~a[bc]CO +C7COa[bc]co +e8coab co c +C9) ~

where c&, . . . , c9 are constants.
In principle one can vary S with respect to e and obtain

the equations of motion. In practice, however, it turns
out to be simpler to regard co, G, and e as independent
variables and impose the Eq. (4) as a constraint by intro-
ducing a Lagrange multiplier Pq (see Appendix B). Thus
instead of (11) we consider the following:

S[e,co, co,g]—:S[e,co,co]

+ f y„h '(de" +co"a he~+co "I3hep),

(12)

where P is a column vector of two-forms and the 4 opera-
tion in Eq. (12) has been defined in Appendix A. Clearly
the variation of S with respect to P yields the desired con-
straint, namely, Eq. (4).

We conclude that the most general GT ——SO(1,D
—1)XSO(d D) invar—iant action depends on nine arbi-
trary constants. c9 is a d-dimensional cosmological con-
stant. .

A A

de ~+ —,
' c- -~e~ n, e c=O,

B C (15)

where c- -, A = 1, . . . , dimG are the structure constantsB C
of G. Denoting the indices in the algebra of H by i and
the rest by A we get from (15)

de +cic ~ + 2ca c (16)

i —3 & A Cco g —c.g e +6) g, —2 egg e =0 . (17a)

Thus, we have the following solution for co and co (note
that e' is an H connection):

co ~ =c,.~ e + —,(1—A. )cc p ei & 3 C (17b)

Now we consider the 3 component of Eq. (4) and sub-
tract it from Eq. (16) to get [we set co" =0=co a-„, see Eq.
(14)]

(co ~ —c.~ e )he +(co ~ ——,cc~ e )he =0.i B —A & A C B
i8

From this we conclude that

III. VACUUM SOLUTIONS FOR
G, =SO(1,D —1)XSO(d —D)

—A ~ A CG —=—c—— eB CB2
(17c)

co~p=0 ~ (14)

First let us ask whether B can be a homogeneous
(6/H) space. . In every homogeneous space 6/H there
exist a set of Maurer-Cartan forms e, A = 1, . . . , dimG,
satisfying"

In this section we shall look for compactifying solu-
tions to the field equations derived from Eq. (11). These
solutions will be required to have a product structure
M4XB where M4 is a four-dimensional maximally sym-
metric space-time and B is a compact homogeneous space.

First we notice that for a manifold like M4XB the
tangent space group G~ given above wi11 break into
SO(1,3)XSO(D —4)XSO(d D). Let the —index set Ia}
be broken up accordingly as t a } U I a }, a =(1, . . . , 4),
a=(5, . . . , D —4). Let us also write A, B=5,6, . . . ,
d —4, i.e., I A }=

I a } U I a }.Hence (7b) decomposes into

co=Q p(Q pce +Q p.ey)~Q, I](Q,gee +Q,p
ey) . (1.3)

For Q—„p. we use the explicit expression, Eq. (3a), giving
us

m v P v ]M, n
~Py "~Py ~ Py[, ] P y "[ ] y " P[v, ]

'

This vanishes by the product structure of the manifolds
M4&B. Note that in the above equation p, v=1, . . . , 4
and m, n =5, . . . , d are space-time indices. Then the
maximal symmetry of M4 implies that (the form index is
suppressed)

1 a y a c
CO b ———, A(Cb e+Cb,—e')=-—, ACbc e'—, (18a)

(18b)

But co 6+cob ——0, so that from the linear independence of
e' and e~, it follows that c-- =cb, ——0. So either A, =O
or all the relevant structure constants vanish. Hence

z ——0. The outcome of these geometrical considera-
tions is (see Appendix B) that the only terms contributing
to the field equations are the first two and the last terms
in Eq. (11) and they yield the following:

Rap —,' yiap(Rg)+sRd D—+A)=0,
R,b

—,' 5,b(RD ~sRd D+—A)=0,
Rp, ——R,p ——0,

(19a)

(19b)

(19c)

where s —=cq/cj, A:—c9/c~, and

R ~p —=R ~yp ~ Rgb —=R g~b

RD=—R ~, Rd D=—R, .

We observe that Eq. (19a) does not admit a Ricci-flat

where k is an arbitrary parameter.
%'e have already concluded that the only nonvanishing

components of co are co-„ i.e., the components co b, co ~
should vanish. As a result we must have [from Eq. (17c)]
either A, =O or

a a a acP- =egg =cb- =cb~ =0 .
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IV. GENERALIZATION TO Gp ——SO(1,D —1))&Gp

To construct an action for the case of GT C:SO(d D)—
it is sufficient to embed GT in SO(d D) and deco—mpose
each term of Eq. (11) in accordance with SO(d D)—
~GT. Hence apart from the first and the last terms in
Eq. (11), every single term will give rise to several new Gr
invariants. The number of arbitrary parameters will in-
crease correspondingly.

Additional sources of new GT invariants are the com-
ponents co 'b, and B'b& which vanish whenever
GT ——SO(d —D). These components of co give rise to
qualitatively new contributions to the action. In fact they
make it possible to find compactifying solutions of the
form Mq X G/H. The general Lagrangian for Gz
=SO(l,D —1)X GT is thus a rather unwieldy object with
many terms. Clearly we need some additional symmetry
principle —for instance, supersymmetry to reduce the
number of free parameters.

In this section we restrict ourselves to the simplest
modification of Eq. (11) so that the field equations admit
a compactifying solution of the form (Minkowski)4
XG/H. To this end we supplement Eq. (11) by the fol-
lowing:

dete "z c]orb&B +c~]Gab, B' ' . 20

Here the latin indices are raised and lowered by 5,t„as
this tensor is necessarily an invariant tensor of any
GT| SO(d D). To exhibit the so—lution let us further
simplify the problem by setting D =4 and consider the
following ansatz (note that now a, f3 range over the first
four dimensions):

co~P=0, co~b = —cob~=0 . (21)

The components G p, cu b, and B,b& vanish by virtue of
the product structure M4 && 6/H.

To write down the nonvanishing components of co and
co we return to the Maurer-Cartan equation (15) and

solution for I& unless at the same time the internal space
is also Ricci flat. The generic G-invariant solution is thus
(de Sitter)4. X G/H.

The argument above for the vanishing of co depends on
the standard construction of G-invariant Maurer-Cartan
forms on G/H. Perhaps this argument can be circum-
vented if we drop the requirement of maximal symmetry,
i.e., if we look for solutions which are invariant only
under a subgroup of G.

Alternatively we may assume that 8 is not homogene-
ous. It should of course possess some isometrics for the
Kaluza idea to work. In this case the components co bz
given by

m n m n m n
~abg eaebeg[mn] eb egea[mn] C e~b[mn]

are nonzero, and can act as a source term for compactifi-
cation. Now the ansatz e&

——6~, co&
——0 (Minkowski four-

space) will be compatible with Rz s ——8~ s where 8—„s is
a (nonvanishing) function of eM. In other words we may
have solutions of the form (Minkowski)4XB where B is a
nonhomogeneous space.

divide the set of one-forms Ie"] into two nonoverlap-
ping subsets I e'I, a =1, . . . , dimG/H and I e'I,
i =1, . . . , dimH. We recall that under an H operation
the one-forms e' transform covariantly while e'
transforms as an H connection. " Therefore the subset e'
may be identified as a basis of the one-forms in 6/H.

In general H must be a subgroup of GT, where now Gz.
is the tangent space group of G/H. Therefore to exhibit
the existence of a compactifying solution it is sufficient to
consider the case for which GT ——H. Then the most
natural 6-invariant ansatz for the nonvanishing com-
ponents of co and B is

a a i
CO b ——C bie
—a ~ a c
M b ——TC bce

(22a)

(22b)

where e' and e" are the Maurer-Cartan forms. Our an-
satz should be compatible with Eq. (4). This compatibili-
ty is immediately demonstrated with the help of the
Maurer-Cartan equation (15). Substituting (22a) into Eq.
(5) gives us

R p
——0,

Ra~=0,

+ah ab

with c
&
——c2 and c9 ——0. In the above

(23a)

(23b)

(23c)

O,b
——(c/4)C, dg C'"b =(c/4)[2C2(H)+1]5,g

with c =c ~ &
/c ~, C2(H) being the quadratic Casimir of H

in the representation (assumed for simplicity to be irredu-

cible) of the vielbein. We have also normalized C- -"
B C

such that C- - C- - = —5- -. Noting that
CA DB AB

R~b =C,~'C b' —— C2(H)g~b, —

we see that the length scale of the G/H manifold (relative
to the length scale of d-dimensional gravity) is determined
by the field equations to be

—c =4C2(H)/[2C2(H)+1] .

The conclusion is that an appropriate choice of only
three out of the eleven parameters of the action leads to a
solution of the desired form (Minkowski)4X G/H. It
should be emphasized though, that the G/H manifold is
necessarily nonsymmetric (C,q, &0). Examples of such
spaces (with the vielbein in a single irreducible representa-
tion of H) are SU(6)/SU(3) with the embedding of SU(3)
in SU(6) such that 6 of SU(6) branches into 6 of SU(3)
with the vielbein e in the 27 of SU(3) or SU(10)/SU(5)
with e' in the 75 of SU(5), etc.

0

&abed =Ciab Ced

Now we can substitute our ansatz in the field equations
derived from Eqs. (11) and (20). The result is (for details,
see Appendix 8)
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V. SPINOR LAGRANGIANS

One of the original motivations for introducing quasi-
Riemannian gravity was the possibility of obtaining four-
dimensional chiral fermions from a higher-dimensional
Einstein-Dirac theory. It is therefore appropriate to con-
struct a suitable action integral for the Fermi fields.

The case of Gr ——SO(1,D —1)XSO(d D)—is simple
and will be considered first. %'e denote by y and y' the

y matrices of SO(1,D —1) and SO(d D),—respectively,
and define I ~ by

=(y g 1)e +(lg y')e, (25)

Then the following Lagrangian satisfies all of our invari-
ance requirements:

W=dete Pi I D~Q+H. c (26)

where g transforms as a spinor of SO(1,D —1) and
SO(d —D), and DM is defined by

DM ~M + 4 ~[ap)M V 7 + 4 ~[ah]M7 3 ~
a P (27)

It should be mentioned that in order to obtain SO(1,3)
spinors upon compactification it is essential for P to be a
spinor of SO(1,D —1). However, in general, it may
transform according to any representation of SO(d D). —

It is fairly straightforward to generalize (26) for a spi-
nor p-form

1 Ml M
fM . . . ~dz 'h. Adz

pf I p

Thus the harmonic expansion will give an infinite number
of zero-mass fermions. But only those belonging to com-
plex representations (chiral fermions) of the isometry of
G~ will remain massless when radiative effects are taken
into account.

Of course (32) can be generalized to include y D
terms as well. For example, let lt, . . . , be a spinor of
SO( —1,D —1), and be in some representation Xg 8
R . . R of G~ where a; are R indices and the in-
dices are omitted (1(, . . . , is a column matrix as a carrier

r

of X). Then if the vielbein e' is in a representation V of
G~ such that VC Xg X and C, is the corresponding
Clebsch-Gordan coefficient, then we may replace (30) by

I =y {31e +1C~e'
and with the appropriate modification of D, (32) will be a
fermion Lagrangian density. For the case
Gz- ——SO(d D) of cou—rse C, =y, .

The field g, . . . , is very similar to a field of spin )—,a&- a

(for r ).1). The crucial difference is that the indices
a&, . . . , a„ transform according to the subgroup Gz of
the full tangent space group. This enables us to avoid the
usual problems associated with higher spin fields. ' Wit-
ten has already shown that this type of spinor leads to
chiral fermions upon compactification, ' for example,
when r =2.

VI. CONCLUSION
(28)

In this paper we constructed action integrals for
Weinberg s quasi-Riemannian theories of gravity. We
studied the possibilities of spontaneous compactification
into a product space (Mi knwoski)qXG/H and exhibited
explicit solutions in which the tangent space group of the
d-dimensional manifold is Gz- ——SO(1,3) XH. This solu-
tion may be generalized to the case where G~
=SO(1,D —1)X Gr, with Gr C SO(1 D). We also—dealt
with fermionic fields and constructed Lagrangians com-
patible with the invariance requirements of the theory.

It was remarked in the final paragraph of the last sec-
tion. that the possibility of having spinor tensor fields

with the tensor indices transforming only under

G~ can, in general, lead to chiral fermions upon compac-
tification without the usual unitarity problems of the stan-
dard higher spin fields.

Although a reduced tangent space group Gz- avoids
some of the usual problems of the Riemannian theory, it
also loses its uniqueness features. For a general
Gr ——SO(1,D —1)X Gz, Gz C. SO(d D), the invariant—
Lagrangian depends on many arbitrary parameters. For
example, for Gr ——SU(3) with the vielbein in the octet
representation of SU(3) we can write down at least 40 in-
dependent terms compatible with all invariances of the
theory. Some of these terms may be excluded by the re-
quirement of the absence of ghost and tachyon excita-
tions. However the number of the remaining terms will
still be large. Obviously a more fundamental principle
such as supersymmetry is needed to reduce the number of
the independent parameters. The requirement of anomaly
cancellation may put further restrictions on the possible
forms of the Lagrangians.

W =QI h *Dg+ H.c. , (29)

where D=d+co as in Eq. (27) and I'=I ~dZ with
I M =eMegqz~l and I defined as in Eq. (25).

Generalization to the case of Gr ——SO(l,D —1)XGz.
with Gz CSO(d D) is not uni—que. One possible way of
constructing such a Lagrangian is to fix an embedding of
Gr in SO(d D) and thus d—ecompose (29) into irreduci-
ble pieces under the branching of SO( d —D)—+Gr .

Alternatively we may consider a field f ' ' which is
a spinor of SO(1,D —1) as before but carries the Gz- in-
dices a

~ a„. Then defining I and D by

I =(y~@1)e

D =0 + 4 co[~p)p p +cgyTa P

(30)

(31)

where T are the generators of Gr in the representation
characterized by the indices a&, . . . , a„, we may write

" p, . . . g I h *
Dpg, . . . b +H. c. ,

(32)

where q is an invariant tensor of Gz.
Note that when Gz. ——SO(1,3) XGz to leading order in

the fluctuations around (Minkowski) q X8 background
there will be no mass term since QI h 'Dg=gy"Dzg.

where gM . . . M is a spinor of SO(l, D —1)XSO(d D)—
1 p

and is completely antisymmetric in its covariant indices.
The appropriate W for such a field is a generalization

of the usual Rarita-Schwinger Lagrangian,
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APPENDIX A: SOME DEFINITIONS
AND USEFUL RESULTS

In an n-dimensional manifold with vielbein one-forms

a1'' a —la1
4'b, o'4b' ~ ~ ~ b' g b&

g™b

(A 1 1)

or more schematically,

(A12)

Let A be a matrix-valued q-form. Define the inner prod-
ucts

be a connection (on the associated G bundles) valued in
the Lie algebra of G, T' being generators of G in the
representation A. Under the action of G, co~cos
=g '(co+d)g.

Consider a tensor p-form 4 which belongs to a repre-
sentation which is a direct product of R's,

e'=e&dx", a =1, . . . , n, p=1, . . . , n

we define p-forms

a1 a a1 a
e ' ~=e h Ae'.

The Hodge duality operation e is defined by

(A 1)

A2) and

I

(A @)b,'. . . b" = gA ",h@b'. . . b"
r'

(C A)b,'. . . b" =g@,',", hA"
r'

(A13)

(A14)

a~ 1 a, a a
e e~

(n p)t ~p+&
' '

n
(A3) and the commutator

where ea . . . , is completely antisymmetric in a] . . a„
1 n

and e&2. . . „——+1.
Indices are raised and lowered with the mc, tric tensor

g,b ——diag( —1, . . . , 1) (Minkowskian) or i),b 5,b (Eu-——
clidean). g,b and e, , . . . , are invariant SO(l, n —1) [or
SO(n)) tensors and hence Gz [SO( l, n —1)] invariants.
The invariant (i.e., invariant under general coordinate
transformations) volume element is

[A @]=A @—( —1)+'4 A (A15)

@~M=4—[u, 4&] . (A16)

It is easily seen that

D4= d@+[co,4&]-

is a 6 covariant derivative

(A17)

From (All) we have for an infinitesimal transformation
g =1+U,

yy dete jn& e12 . n (A4)

Torsion is defined to be

T =ck +6) R, e

The following identity is useful in translating from form
language to tensor notation:

(A6)

[A,C&]=[A,X) b, +(—1)e"X [A,h) . (A19)

Hence we have the distributive property of the covariant
derivative

(A18)

Now let @=X5 be a suitably contracted product of two
tensor-valued forms X and 6 of degrees r and s, respec-
tively (p = r +s). We see then that

where

b
5b, . . . b~= $(—1) 5, 5, . 5,~ dete,

P
(A7)

DC&=(DX) 5+( —I)"X (Db, ) .

If @ is an invariant (scalar) of G, then

(A20)

P being a permutation. Thus, for example,

R b A *e =
z R cdab dete =R dete

where

D@=d@ . (A21)

If @ is globally defined, then integrating over a p-
dimensional manifold m with Bm =0 yields from Stokes's
theorem and (A20)

1 cd
Rab 2 Rabcde (A9) DX .6= ——1 " X- Dh (A22)

Let 6 be a Lie group and g'b a representation matrix
of an element g of G in an arbitrary representation R (not
necessarily the fundamental). Let

Note also that an invariant tensor is covariantly constant;
i.e. if xj b . . . b js such that



32 FIELD EQUATIONS. AND SPONTANEOUS. . . 13S1

—1Q) —1Q~ 0) ' '
Q~ b) b'

al a bl '. b b~ g bm
form) field T". e, ro z, and T" are related by

and dg=0, then

Dg=0 .

0) '0
=Yl b . b1 m

(A23)

(A24)

De =de" +a ~~ h e~= T" . (81)

Let us, however, consider the action as a functional of the
independent fields e, co, and T:

S S[eA A TA]

Another useful result is the following. Let D be a Gz
covariant derivative. Then

D* ~ ~ D ~ P 'p+ ~e = e, . . . , e
(n —p)! p+1 n

P D P+&

(gz p)l p+I ' ' ' ~n

a& aa+&
Op+ [

(A25)

f D —2 h eecD~B (A26)

where q &CD is a 6-invariant tensor.
In deriving field equations from Lagrangians written in

form language, the following results are useful. Let 5,
denote the variation of a p-form with respect to the one-
form e, i.e.,

5,F(@,e) =F(@,e +5e) F(g,e), — (A27)

where @ is a form which is taken to be independent of e.
Then

The second equality in the above follows from the
SO(n) [and hence G&CSO(n)] invariance of e '

g,b, (A20), and (A24), and the third from (A15) and the
definition of torsion (A5).

By making use of Eqs. (A25) and (A26) we can demon-
strate that any terms involving DG in the action can be
reexpressed as a sum of bilinears in co. This may be seen
from the fact that a Dco term in the action is necessarily
of the form

Now introduce a Lagrange "parameter" two-form P and
define the new action

S[e,co, T,Q]=S[e,co, T]+ f P~ h, *(De" T"—) . (82)

Defining 5,S=S[e"+5e",co, T,P] S[e,c—o, T,P] and simi-
larly 5+, 5z S, and 5P, we have (treating e", r0"~, T", P
as independent, i.e., unconstrained, forms) from the varia-
tional principle:

5,S=5,S+ f P„h5, *(De" T)=—0, (83a)

5~=5++ f Pg h '5'"s he~=0, (83b)

5rS=5zS —f P„h *5T"=0, , (83c)

5@=f 5gg h '(De" T")=—0. (83d)

5+[e,co]= f 5' g hD'e"a. (85)

«om (A25) D'e" =0, which yields
5A =0 gi»ng us p& ——0 from (83b) so that (83a) gives

The last equation gives us the constraint whilst the
second and third enable us to eliminate Pz, Tz, and some
or all components of co (depending on the dimension of
Gz ). Substituting into the first we can get the field equa-
tions in terms of the independent fields of the theory. Let
us illustrate the above method for pure Riemannian gravi-
ty. Here T"=0 and

S[e,co]= f R deted"x= f R~~h *e" . (84)

From (A31) and (A22)

5' ' =5 h*e = e&+~ e

So, for example,

5,R,s(~) h ' e' =5e, h R,b(co) h *e'

=(5,bR 2R,g)h' dV, —
where we put 5e, =b, e~. Also from

R b(co)=den b+co hen b

we have

5~ b(co)=d5co b+5co h~ b+~ h5 b

(A29)

(A30)

5,S[e,c0]=0
which is Einstein's equation [see (A20)].

For the case of Gz ——SO(1,D —1) && Gz with T"
8= —co ~ he, out of the plethora of terms involving r3

[see Eq. (11) or Eq. (20)] we will just keep one term for il-
lustrative purposes, namely, ~» h~ "ch ' (e~hec)
This will in fact be a linear combination of terms in (10)
and (20), but in the case D =4 with Gz C SO(d —4) it will
act as a source term for compactification. Thus we write

S[e,co,co]=c& f R ~(co) h *e ~+c2 f R,b(co) h 'e'b

+ci& f ~aah~ ch (87)
=D5CO b

APPENDIX 8: THE FIELD EQUATIONS

(A31) and

S[e,ro, co,g] =S[e,co, co]

+ f y„h *[de~+a)4~hee
It is convenient to use the Lagrange multiplier method

and the Cartan calculus to derive the field equations. Let
us consider first a theory with any tangent space group
Gz. C:SO( l, d —1) (with the vielbein e" in some real repre-
sentation of it), a connection co"z, and a torsion (two-

+r) "e he~] . (8&)

In the above we have used g" =(r) ~,5' ) to raise and
lower the indices. Note also that the c&~ term [in Eq.
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(84)] is actually a linear combination of the terms in Eqs.
(10) and (20). Variation of —S with respect to P gives the
constraint, and variations with respect to co and B will
determine P and variation with respect to e,e' will give
the field equations. The latter are as follows (after substi-
tuting the constraint):

c)R~P Q e +c2R~b Q e +c))Ggg Q co c Q 8

+D Jr+co r h "Pa ——0, (89)

We note first that if co is zero, P is zero and only the
curvature terms are left in the field equations. Thus in
the SO(1,D —1)XSO(d D—) case we have the vacuum
field equations (19a), (19b) when we require the internal
manifold to be G/H. This conclusion is obviously un-
changed even if all possible co terms are included in (87)
since they must all be necessarily quadratic in co.

Next consider the case of GT ——H. Substituting the vac-
uum values, Eqs. (22a), (22b) for cocD into Eqs.
(812a)—(812c) we find

+D*P +co" h *Pa ——0. (810)
and

=0 (813)

In varying with respect to m and co we should write
AI IA —3 —I IA

co a=co Q a co a=co Q a (811)
a a bc

P =c~&c' be '. (814)

To derive (814) we have used the completeness relation

"n, *y'=, -„w. w*"a',
QI bP e ya Q.l —

P D/ s abC

QI 3 / * ac—

(812a)

(812b)

(812c)

and vary with respect to the independent one-forms cu

and co . Here Q and Q are the subsets of the generators
of SO(1,d —1) in the subgroup GT and the complementa-
ry space SO(l, d —1)/GT. Then we get the following
equations:

I I I I
Q abQ ed+Q abQ cd 2. (~ac~bd ~ad~bc) (815)

D* P'+co', h *P'=0 . (816)

Upon substituting Eqs. (22a), (22b), (813), (814), (816)
into Eqs. (89), (810) we get

R p
——0,

Rab=ab ~

(817)

From the H (and hence GT H) invaria——nce of C,b, it fol-
lows that

In the first of these we have used the fact that ( Q )aa=0.
These equations determine P in terms of e and co

[=co(e) on using the constraint] and substitution into
(89), (810) gives the field equations for the vielbeins.

where

C cd
O~b = Ccd~ C (819)
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