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If theories of high-energy physics such as spontaneous symmetry breaking and quantum chromo-
dynamics are correct, then exploding black holes will be surrounded by phase-transition bubbles or
fireballs, supported by the pressure of particles trapped inside a high-temperature phase. For
quark-gas fireballs, where there is a hadron bag with a hole in it, this enhances the y-ray emission
by a factor of 69 which could lead to a feature in the y-ray background around 200 MeV. For other
bubbles there may be detectable electromagnetic pulses produced by the Rees mechanism when the
bubble bursts, particularly for the inflated bubbles which result from the models suggested by the

inflationary-universe scenario.

'I. INTRODUCTION

Modern theories of high-energy physics predict the ex-
istence of phase transitions,! some of them at tempera-
tures higher than are likely to be obtainable in the labora-
tory. Since the opportunities to test such theories are so
limited it becomes of interest to consider the effects of
such theories on the behavior of primordial black holes,
that is, black holes produced in the very early universe,
which we might hope to observe astronomically.

A black hole of mass M radiates energy due to the
well-known Hawking effect,? characterized by a tempera-
ture of

T, =(87M)~! (1)

in dimensionless units such that i=c=G=k=1. As the
black hole evaporates, the temperature rises and we have
the possibility that a bubble of a high-temperature phase
surrounds the horizon. This process is resisted by the in-
ward pressure of the low-temperature phase which resists
the growth of the high-temperature phase inside the bub-
ble, and if the black hole can heat up a large enough re-
gion we will see only a fireball, somewhere in the middle
of which is the exploding black hole. For the case of
Higgs-Kibble® models of fundamental interactions, for ex-
ample, there should be a restoration of symmetry at high
temperatures with an associated phase transition. Howev-
er, Hawking has shown that for exploding black holes the
high-temperature region would be too localized and sym-
metry would not be restored.*

We shall consider a new effect that arises when some
particles emitted by the black hole are reflected from the
wall of a bubble. Such particles will be referred to as
“trapped particles” in what follows. For example, in the
case of the Higgs-Kibble models, symmetry breaking is
associated with the presence of particles which are mass-
less in the symmetric phase but which have a nonzero rest
mass m in the broken-symmetry phase. These particles
can be emitted by the black hole into a bubble of the
restored-symmetry phase, but those with energy less than
m would have imaginary momentum outside of the bub-
ble and must therefore be trapped. Another case of this
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new effect is for the quark model of hadrons where results
suggest that there exists a deconfined or weakly interact-
ing quark-gas phase of matter’ at high temperatures.
While a black hole can happily radiate quarks into such a
phase, the quarks are then trapped within it because of the
well-known fact that free quarks do not exist.

The extra pressure on the bubble wall resulting from
these reflected particles pushes the bubble surface out-
ward. Because the dynamical time scale for these effects
is usually much shorter than the evaporation time of the
black hole, the bubble wall reaches equilibrium at a point
where the forces upon it are balanced. We shall see in
Sec. II that this point lies at a minimum of an effective
free energy which can be constructed from the latent heat
of the symmetric phase, the surface tension of the bubble
wall, and an effective pressure inside of the bubble. This
thermodynamic viewpoint allows us to consider situations
such as a quark-gas fireball, where the underlying theoret-
ical model is not so well understood, in Sec. V.

The calculation of the effective pressure inside of the
‘bubble requires a knowledge of quantities such as (¢?)
near a black hole, which we shall take a look at in Sec. III.
The presence of the bubble wall means that we are in an
intermediate situation between the case of a black hole ra-
diating into free space and a black hole in thermal equili-
brium, both of which have been investigated by Candelas,’
and numerically by Fawcett and Whiting.” The difference
between the two cases lies principally in the choice of vac-
uum state. For a black hole in free space we must use the
Unruh vacuum state® which is defined with respect to reg-
ular time coordinates at past null infinity and on the past
horizon of the fully extended black-hole metric. A black
hole in thermal equilibrium, on the other hand, corre-
sponds to the Hartle-Hawking® vacuum state defined with
respect to time coordinates which are regular on the past
and future black-hole horizons. In the case that we are in-
terested in we must use the Unruh vacuum state. Howev-
er, in the limit that the transmission coefficient of the
wall goes to zero we shall see in Sec. III that one recovers
the results for a black hole in thermal equilibrium, just as
if we had used the Hartle-Hawking state.

In most cases of interest and in the cases of most in-
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terest the radius of the bubble wall is much greater than
the Schwarzschild radius of the black hole and our com-
putational task is greatly eased because we can neglect the
effects of spacetime curvature. The main process which
limits the size of the bubble is the loss of energy by the
trapped particles interacting with .particles which pass
freely through the bubble wall. For broken-symmetry
models this limits the large bubbles to cases where the in-
teraction constant are small. In the case of the quark-gas
fireball this scattering is mainly electromagneti¢c which is
small enough to allow a large bubble radius.

Without a black-hole bubble the radiation emitted by an
evaporating black hole is likely to be free radiation in
which interactions are insignificant,lo but the black hole is
not a perfect blackbody radiator due to the scattering of
radiation from the curved spacetime. The luminosity is
given by

aM _2

a0t =aM~*, 4 (2)
where a is a constant. Table I shows the value of a and
the remaining lifetime of a black hole for various tem-
peratures. This table uses the emission rates calculated by
Page!! applied to the SU(5) grand unified theory.!? The
occurrence of black-hole bubbles will only affect the life-
time if there is a large inflow of material back into the
black hole, which is unlikely. However, the nature of the
radiation is very much affected. For example, the y-ray
luminosity of the hole increases by a factor of around 70
as the temperature rises through 200 MeV because the
quarks which are emitted by the hole radiate energy by
annihilation and bremsstrahlung processes, and this may
lead to a feature in the y-ray background.

There is evidently a wide range of energy, and an even
wider range of black-hole lifetimes, above 1 GeV. Bub-
bles will arise whenever there is a phase transition without
too many losses caused by scattering. They can appear
very rapidly, giving sudden jumps in the emission spectra.
They can also burst very rapidly, releasing large numbers
of highly relativistic charged particle-antiparticle pairs
which lead to electromagnetic pulses by the mechanism
suggested by Rees.!®> Some particular examples of this are
given in Sec. VL.

II. BUBBLES

Consider a model in which a U(1) gauge symmetry is
broken in flat space by the vacuum expectation value of a
Higgs field ¢. If we include a Fermi field ¢ and a gauge
field 4, then the action has the form

TABLE I. The lifetime of a black hole is given for a variety
of temperatures. The luminosity parameter a (see text) is given
in Planck units of 3.63 X 10°° ergsec™'.

Temperature a Lifetime
1 MeV 3.6 10~* 6.4 10%! sec
200 MeV 23x10™* 1.1 10 sec
100 MeV 41x10~* 0.5 106 sec
10" MeV 45%10~* 0.3 1078 sec

S= [[—+(D$)*(Dp)—+F-F—PDY—Pmyp— V(o)
—fPpldy, ()

where F),, is the Maxwell tensor and D, is the gauge-
covariant derivative D, +ig4,. We can take the potential
Vo(¢é) to be a quartic polynomial in | ¢ |, but quantum ef-
fects lead to an effective potential ¥(¢) which must be of
the form shown in Fig. 1 for spontaneous symmetry
breaking to occur in flat space. This potential has a glo-
bal minimum at the broken-symmetry value of ¢ =¢, and
a local minimum at ¢ =0 with an energy difference €* be-
tween them. There may also exist a potential barrier of
height &%, resulting from the radiative one-loop quantum
corrections, for example.

Our aim is to study semiclassical soliton solutions ¢(7)
where 7 is the radial coordinate of the black-hole metric,

dr?

M __dar”
(1—2M/r)

1 de’+

+rXd @ +sin’0de?) . 4)

In the usual manner* we shall shift the scalar field opera-

tor to ¢+ ¢, +id, where ¢, and ¢, are fluctuating quan-
tum fields with vanishing expectation values. This en-
ables us to construct an effective action I'[¢] by integrat-
ing over the quantum fields in a path integral, and to
one-loop order we get*

Tlo]= [ [—¢06+Vi(4)], 5)
where
Vild)=V(d)+~d2u(r) . 6)

The flat-space quantum corrections are included in V(¢),
but the extra black-hole effects are contained in

Wr)=g%(A%) + ) +30($®) + A (4" , )

where +A is the quadratic coupling constant. These ex-
pectation values depend upon the black-hole mass M and
the choice of vacuum state.

A black-hole bubble solution can now be defined as a
static spherically symmetric solution of the field equa-
tions

Og=V'(¢) (8)

4 elo

¢0 > l¢|

FIG. 1. A typical Higgs potential V(¢).
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or more fully

_2M \d’ 2\, M \|d$_,
1= dr2+r[1 T=V@ v O

which is regular on the horizon and approaches the
broken-symmetry value ¢, at large distances from the
hole. On the horizon, ¢ will not be a regular function of »
but it will be well behaved in the Kruskal coordinate sys-
tem'*
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U= —e —(t—r)y/4M | _ I

(10)

’
Vet +n/4M -1

of the completed black-hole spacetime shown in Fig. 2.
At the crossing point U =¥ =0 we have

3 3¢ |0¢

2, -1
AUV or 16M (1

—2M /r) (11)

which must vanish for a regular solution. Therefore the
boundary conditions of the bubble solution to Eq. (9) are

1/2
|1_l"1 4% 0 asr—2M, (12)
¥ dr
¢—dy as r— o . (13)

The existence of a nontrivial bubble solution depends
upon the size of v(r). We can argue this along the lines of
Coleman’s description of false vacuum decay,'® by the
analogy between Eq. (9) and a mechanical particle moving
in a potential — V. From the field equation (7) we can get
an energy equation,
do 2
dr

o
¥

1
2 14

r2

_ _3M
J2M y 2r

2
a¢
ar dr

v(r)gbid‘rédr_ Vo). (14)

The solution starts off from »=2M with ¢ near the sym-
metric value ¢ =0, shown in Fig. 3. Without the terms on
the right, energy conservation prevents the solution reach-

FIG. 2. The Penrose diagram of a complete black-hole space-
time.

‘ to ¢0.

FIG. 3. The potential — ¥V (¢).

ing the top of the hill at ¢ =¢,. On the other hand, the
second term increases the energy and can cause ¢ to
overshoot ¢, at a finite radius provided that v(r) is large.
If this happens, the initial value of ¢ can be reduced,
which also has the effect of reducing the energy-
nonconserving terms, to such an extent that ¢ does not
reach ¢=¢,. Therefore there must be some intermediate
starting point from which ¢ just comes to rest at ¢ =d,.
This is the bubble solution.

To be of physical interest, the bubble must be stable and
not collapse as time goes by. We shall examine the stabili-
ty of thin-wall bubbles. These are bubbles which look like
a spherical region of restored symmetry surrounded by a
thin wall in which ¢ grows from zero to ¢,. Denote such
a solution by ¢(r;7), where the position 7 of the bubble
wall is defined by

$(FF)=¢, (15)
for some value ¢, which is chosen to lie in the range zero
The bubble wall may then be perturbed to a posi-

tion 7(¢) and the field equation (8) for the perturbed field
can be used to give

_ 2
11,_2M |36 | _
21 r ar] 4
52, ad;
szar!— +a?rJ
2
_ [ 2|,_3M | |3
W 2r]arJdr

v(r)gg%‘fjdr—-V(O) . (16)

Because of the thin-wall approximation, the radial deriva-
tive of ¢ is zero except near r =7, and we can simplify the
integrals. Furthermore, we are perturbing a stationary
solution so that we may also take 7 to be small. We there-
fore get, for r= oo,

. 2 M
S et 2 [1—— Si+TvPIge?, a7
7 2F
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2
dr (18)

3
ar

Sl:-"z;

is the surface action. This is the equation of motion for
the bubble wall which behaves like a body with a mass S,
per unit area. The first and second force terms represent
pressure and surface-tension forces which push the wall
inward towards the black hole. The third term represents
an outward pressure from the medium inside the bubble.

We can best examine the equilibrium of the bubble wall
by introducing an effective free energy F such that

dF

4nF2S F= — (19)
d"—.
Comparing this with Eq. (17), we see that
F(r)=%mr3e*+4mr? l—ﬂl— 51—4—7Tr3p(r) R (20)
2r 3 .
where the effective pressure is defined by
Fr=—— [T wrboridr @1
? 273 Jam 0 )

Stable equilibrium then occurs at the value of 7 which

correspond to the minima of F. At such values increasing -

7 results in an inward-going force whereas decreasing 7
leads to an outward-going force.

We are now in a position to construct a strategy for in-
vestigating black-hole bubbles. For any particular model
we usually have a good idea of the values of €* and S;.
For example, if the potential has the form shown in Fig. 1
then S|~+&%p,. The effective pressure p requires a little
more effort but it can be evaluated by the methods
described in the next two sections. If the resulting free
energy F has a global minimum at some radius larger
than the Schwarzschild radius of the black hole then a
bubble solution is likely to arise. However, it can happen
that a free-energy barrier prevents the growth of the bub-
ble. In this case thermal tunneling may take place which,
by analogy with thermodynamic results,'® should have a
rate proportional to e ~¥”/T where 7 is the value of the
bubble radius corresponding to the top of the free-energy
barrier.

The advantage of this approach is that we need not be
restricted to broken-symmetry models. Other theories,
such as quantum chromodynamics® appear to have high-
temperature phases and also surface energies on phase
boundaries.

III. BLACK HOLES IN LEAKY BOXES

Let us assume that the black hole is surrounded by a
thin-walled bubble whose radius is much larger than the
Schwarzschild radius and that some of the particles emit-
ted by the black hole are reflected off the bubble wall. We
can treat this situation as one in which the black hole has
been surrounded by a spherical box which allows some of
the radiation to leak away.

We shall obtain an expression for {¢$,%) in the case that

V'’(0) is zero. This can easily be extended to cases where
V""(0) is nonzero and to similar expressions for the other
fields which enable us to calculate the effective pressure
inside the bubble. The first step is to expand the quantum
field ¢ in terms of suitable positive- and negative-
frequency modes,

o= (a;p;+aip}), (22)

where the a; are the annihilation operators of the Unruh
vacuum state. These modes, defined with respect to the
Kruskal V coordinate on the past horizon, are linear com-
binations of the mode functions®!”

(47ew)~ 2 Xioty, (6,6)R;(r)r~'. (23)

The radial functions R;(r) themselves come in two types,

distinguished by their asymptotic behavior. Outward-
going modes
R =eior+ + Ae —iork ko
=Bel | r* o (24)
where
r*=r+2Mln 1—~¥ (25)

are emitted from the hole with unit flux and encounter a
potential barrier for which the reflection and transmission
coefficients are 4 and B. On the other hand, the
inward-going modes

«—

R =Be 9™, p* ,_ »

=e_i“”+z:1_ei“”, r*——»;w (26)

come from outside of the hole with unit flux. We can
represent these modes by diagrams such as shown in Fig.
4, in which the r* coordinate runs from left to right and
lines are used to represent the flux.

The radial functions for a black-hole bubble must allow
for the mass m of the field in the broken-symmetry phase
beyond the bubble wall. This causes scattering of the
modes from the wall, with which we may associate reflec-
tion and transmission coefficients S and T. These new ra-
dial functions have the form

@y

a)

) 3
b) { ;ﬁ

FIG. 4. Diagrammatic representation of the mode functions
R and R. The r* coordinate runs from left to right and lines
labeled by the amplitude are used to represent the flux.

o > =
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S -
P=e'®™  ge'", r—2M

bel(t)r_‘_*c*e'—l&)r’ y—7

12
= % de™, r o 27)
ﬁ:je‘im’*, r—2M
=(c_e"“”+21_e""“”, r—7F
172
2] —ikr | 7 ikr
=% (e +ae'™), row (28)

where k?=w?—m? The amplitudes of the various waves

can be found by following through the flux in a diagram
such as shown in Fig. 5. One obtains

—S*q * —
g—ppe— 14 s §_ , =B
1-S4 1-S4 1-854
— __““* ¥ «— «— 1
a=]“7-'*—l1 A(—S > b: T<—, C:—T_r
1—-4S8 1—-S4 1—-4S8
(29)

For r <7, these radial modes are still solutions of the radi-
al wave equation and they can therefore be expressed in
terms of the original modes,

P=—B5_ KRR, (30)
1—S4

p——T _ k. (31)
1—SA

We may now obtain an expression for ($?) in the same
way that is described in Ref. 6. After regularization, this
gives

1

2y __
<¢ )= 1672r?
»do LBw|P |2+ |P |2
x fy = S @+ Dicothzfo | PP+ P |
__40”
1—-2M /r
M? v |7
M- Mo (32)
48724 r
1 B b
o ) GIED IR
a C
d c T 1
b) { ) P

FIG. 5. Diagrammatic representation of the mode functions
Pand P.

where B=8mwM.

Reflection of the modes from the bubble wall will be as-
sociated with a phase shift which tends to disorder the
phases of the modes and complicate the final result. We
can overcome this problem in the case that the bubble
wall is larger than the predominant wavelengths, o7 >>1,
by smearing the radial dependence of {¢?) which has the
effect of averaging over the phase shifts.'®* We can there-
fore replace functions of S by their average, denoted by
square brackets,

[S]=|—3—~ |0,
1—S4
(33)
1 B 1
|1—SA |2 | 1—|s|*|4|*"
Hence
S U=14[D[S|2 =5 52
P *Pl= R R ,
[P *P] 1_|S{2!A|2l 124 | R |
(34)

— — 2 —
[P*P]:_l__lil_’R ’2_

1—[S|2]4|?

When substituted into the expression (32) for {¢?), we
recover the result for a black hole radiating into free space
in the limit that | S | =0,

S@2i+1)|B|?

1 ° dw
8mw2r? fo w0 eBe_1 ’ 33

(¢*)=
and if we use the large- or small-frequency limit'!
(21 +1)| B| *~16M*w* we get

($)2=1/1927%r% . (36)

As | S| is increased to one we find instead the result for
(¢?) in the Hartle-Hawking vacuum state. This is just
what one expects because the black hole can come into
thermal equilibrium with its surroundings.

The most important contribution to ($?) for the
black-hole bubble comes from those modes with frequen-
cies less than m which would have imaginary three-
momentum k outside of the bubble and they are therefore
totally reflected with | S | =1. If scattering between the
modes can be neglected, we have

1

2y __

(9= 16772

Xfomt—if[z(21+1)coth2l3co( |R |2+ | R |2

40? !

T 1-2M/r

M | 2M
487°r* r

(37)

and there are similar results for (42) and (¢3). Unlike
the previous case (36), the value of {$?) does not decrease
with increasing radius but it does increase with tempera-
ture to give a large outward pressure on the bubble wall.
In fact, the potentially large size of ($2) is the essential
feature which leads to the formation of black-hole bub-
bles.
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The result of scattering on low-frequency modes is that
particles in these modes can escape from the bubble and
this.can be more important than the curved-space effects
included in (37). To handle both of these effects would re-
quire techniques such as those developed by Hawking for
interacting fields near a black hole.* Fortunately, as we
shall see, in many cases of interest the bubble is much
larger than the black hole and we can neglect the space-
time curvature throughout most of the bubble interior.

IV. SCATTERING

From now on we shall consider the black hole as simply
a source which is radiating into the interior of a black-
hole bubble. This radiation consists of particles which in-
teract with one another according to a Lagrangian such as
the one used in Sec. II. Provided that the bubble is larger
than the Compton wavelength of these particles, then the
occupation numbers N (x,k,w) of the various types of par-
ticles in modes of frequency w and wave number k satisfy
Boltzmann’s equations

k-%: —N [ dicdkydis(2m)*8(ks + ko —k —ky) | 7| 2

XANKIN (k)[1+N (k) ][1+N (k3)]

—N (k)N (k3)[1EN(K)I[1EN(k))]],

(38)

where dk=d*k /(2m)3(2w) and .7 is the appropriate
scattering matrix element. The plus and minus signs cor-
respond to bosons and fermions, respectively. These equa-
tions relate the particle flux terms on the left, to the
amount of scattering given by the scattering integral on
the right.

We are interested in static situations where dN /3t van-
ishes. The spherical symmetry implies that we may take

N=N(ro,u), (39)

where yu=cos0=x'k/rw. This enables us to replace the
partial differential operator in the flux terms,

oN 1—p? oN

o , 40
op or to r a,u 40

by an ordinary differential operator,

2
w——ﬁ—(l_ ) dN R (41)
r du

where the derivative is taken along the curves

r(1—u®)'2=T, sketched in Fig. 6. However, these
curves do not pass through 6=0 or 6= and functions
such as 8(6) which have support only at 6=0 must be
treated separately. Consequently, Boltzmann’s equations
can be decomposed into equations for the 8(8) dependent
part, which we shall call the beam, and the remainder
which we shall call the medium. The beam can be
thought of as radiation emitted directly from the black
hole into the surrounding medium.

Let us define frequency-averaged functions n (r,u) and
h*(r) by

\V/

— - - - - -

- p
-1
FIG. 6. Curves of constant I".
Na)da) 3(0) _8(0—m)
47 + 2h ——F———+ .
[ =25 =ny2n g T2 (42)

We can then construct two angular averages. One of

these is the ﬂux,
f=7f npdp+h*—h- 43)

and the other one is the quantity which we are aiming to
calculate,

() =27 waZda))sdg

where the scalar field ¢ could equally well be a Maxwell
field 4, or a fermion field ¥ depending on the particle
under cons1derat10n

We shall construct equations for »n and & in two limit-
ing cases, one in which the particle interactions are not
strong enough to thermalize the medium and another case
in which they are. In the first case the beam will reach
the bubble wall with the same spectral distribution that it
had when it was emitted by the black hole. If the spheri-
cal symmetry was exact then the trapped particles would
be reflected back into the hole. However, in more realistic
situations the reflected particles will form a medium sur-
rounding the hole. We can then find an approximate
form of the Boltzmann equations related to the
scattering-length approximation in statistical mechanics.
This takes the form (see Appendix A)

f ndu+h*+h=, (44)

2
——”—1—, ;ldf= —Kinng+Konoh (45)
%—I—%:—K}noh (46)

where the « are scattering lengths and n,, the lowest-order
approximation to n, is much larger than 4. Equation (45)
represents scattering from the medium to untrapped parti-
cles and to the medium from the beam. The approximate
solutions are

n=nge W . 47)
h=Pr—2 """ (48)

where P is a constant, which we can obtain from a black
hole radiating into free space as given by Eq. (36),

P=1/1927*~1/1895. (49)
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The values of the flux and {($?) corresponding to these
solutions are

f=—3Kkyng’>+P/r? (50)
and
(¢%) =ng+ +(i;r)no>+P/r? . (51)

At the bubble wall, the flux of trapped particles must van-
ish but particles in the beam with frequency w>m can
still escape. We therefore have

I,(m) ]

L
I,(0)

;;2

f(F)= (52)

where the integral I, is given in Appendix A. Equating
Egs. (50) and (52) gives

1/2
3P, 3/2
— Fo3/2 53
Ro 2, F (53)
where
! Il(oo) ’

and this term dominates (#?) because our assumptions
imply that x, is very small. If we now recall some of the
results of Sec. II, Egs. (7), (20), and (21), we can obtain the
effective free energy,

172

3P,
, (55)

4 27T v
F=35mrie 4+ == ¢y’ — $7r3?m?
3 2K1

where m?=A¢,2. This is sketched in Fig. 7, which shows
that there is a stable equilibrium point for the bubble wall.
Replacing the scalar particles with gauge fields gives the
same result but with m2?=g?¢,? and «, is given by an ex-
pression familiar in form to that of Appendix A, but with
A replaced by the effective-gauge-field-interaction con-
stant o =g?/4ar.

There are two requirements for the consistency of the
bubble solution in this case. First, we require that
7 >>B) /4w for the bubble to be much larger than the
Schwarzschild radius of the black hole. We also require

that k,no7 <1, otherwise the medium will be in the-

thermalized condition considered below. For a Coleman-
Weinberg model,'® for example, we would have A~a?.

F

-+ =3

» [

FIG. 7. The free energy of a bubble wall.

At the critical temperature 8~ 1 _m,
F~ea"m?B,! (56)

which is indeed much larger than the black hole. Such
models are of interest because they arise in the inflation-
ary scenario of the very early universe.?’

The alternative case in which the medium ‘thermalizes
at some temperature B! is considered in Appendix B.
Clearly this can only happen if B~! <m. We get the same
simplified equations (39) and (40) as before, but now we
require kK, >>«,. The solution becomes

n=ngp ——-Kln()Z‘LLr

K2Png T S
ﬁ—Zr(l——p—z)—TE 9———2—;K2n0r sinf | , (57)
h=Pr=2e"2"", (58)
where S(6;A) is the Sievert integral,
s@)= [ em=tgg (59)
W Jo
and no=+>B"2 The flux becomes
f=—3Kkrng>+P/r?. (60)

At the bubble wall, only those particles with @ > m can es-
cape, with a flux,
I 1 (m)
I 1( ¢ ) )

1 -1, —Bm
~——m e , (61)
477 o

1

f(F)=I1(w)

where we use the fact that 37! <m. Comparing this with
Eq. (60) gives an equation for 3,

C p-33, 1 —12, —Bm_
216B 7 +47T2m[3 F e =P, (62)
where «; has been replaced by its value C3 from Appen-

dix B. For mF >>(P/C)!/? the first term dominates and
we get

(¢ ~5B" =3 F2, (63)

whereas for 1 <<m7 << (P /C)'"? we get

2
472P

m 272

2
2y __lp-2 M~
(*) =538 °= B

In (64)

As in the previous case we can construct an effective free
energy using the results of Sec. II. In the large 7 limit this
has the form

2/3
F=3%mr3* +4mriS —6mrm? [% ] (65)

which is very similar to the one sketched in Fig. 7.

The consistency of a bubble solution in this case again
requires 7 >>[3, /4w, which can be viewed as an upper
limit on the scattering constant C. We also require
KynoF > 1 for thermalization.
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V. QUARK FIREBALLS

Let us assume that strong interactions are described by
quantum chromodynamics,” which predicts that quarks
and gluons are confined to color-singlet states such as
baryons and mesons. This theory is asymptotically free,
which means that the strength of the quark interactions
decreases with energy. In fact, both analytic investiga-
tions and lattice-theory calculations® predict that the
theory undergoes a phase transition to a weakly interact-
ing gas phase above a critical temperature 7,~200 MeV
or for distances less than the “flux-tube radius”
a~5%10""cm.

So far we have examined black-hole bubbles for models
with spontaneous broken symmetries. There are very
similar models for hadrons, known as the bag models,?!
which are meant to reproduce the behavior of quantum
chromodynamics at a phase transition in a manner analo-
gous to Ginzberg-Landau theory in statistical mechanics.
Such models produce good agreement, often to within
10%, with the observed properties of many baryons and
mesons. We shall concentrate on a particular example
due to Freidberg and Lee,?* which includes several other
bag models as special cases.

The volume energy density or latent heat €* of the
quark-gas phase can be related to the phase-transition
temperature as follows. Suppose that the gas inside a
large spherical box is at a temperature 7. The free energy
is then given by Eq. (20), with an effective pressure

=+ T%m?, (66)
where
2= (g%po* + [ 2bo*+Ado>) (67

and the sum extends over all the particle degrees of free-
dom. At the critical temperature this balances the €* term
and we must therefore have

=T 2m? (68)

In the bag-model approximation, this mass 7 is respon-
sible for confining the quarks inside color-singlet states
and it must therefore be chosen to be as large as possible.
It is, however, an unphysical parameter that we shall try
to eliminate. '

We can obtain an expression for the surface energy S
from the mass of a typical baryon. The results of Ref. 22
show that about one third of the baryon mass is made up
of the energy of the scalar field. For a flavor-averaged
baryon mass m; of around 1.3 GeV, we get an expression

S, et +4mr,2S = Tmy (69)

where 7, is the proton radius, 7,~5.4m; .

A black-hole bubble now becomes a black hole inside a
bag. The trapped particles are, of course, the quarks and
gluons which cannot escape because of color confinement.
They should still interact strongly enough even in the
gaseous phase inside the bubble to come into equilibrium.
They can, however, scatter energy into nontrapped parti-
cles because of electromagnetic interactions and the main
loss mechanisms are shown in Fig. 8.

a)

b)

c)

q | et
FIG. 8. Feynman diagrams for the principal energy loss
mechanisms of a quark-gas bubble.

The first process produces y rays from the pair annihi-
lation of quarks. We can construct the corresponding ele-
ment |.7” |2 by the usual diagrammatic techniques.”® Tt is
sufficiently accurate for our purposes to replace |.7 |2 by
an average over the center-of-mass scattering angle 1), and
we obtain

|.77|*=4Q%n (70)

BquZ
to leading order in Bm,, where Q and m, are the charge
and mass of the quark. A similar expression can be ob-
tained for the bremsstrahlung process, but this depends
upon the strong-interaction constant g. For now, let us
assume that the resulting expression is smaller than the
annihilation result (70). Finally, the pair production pro-
cess gives

|7 |*=50Q%?,

where e is the charge of the electron. Therefore, under
our assumptions, the energy loss is dominated by pair an-
nihilation of the lightest quark. We shall take m,~20
MeV, but the particular value will have only a very weak
effect on the final result.
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The free energy of the bubble is given by Eq. (65) of the
previous section, with

e2

4

_ 5% 247
3%¢(3)
which follows from replacing A> by |.7”|? in the result of

Appendix B. The minimum of the free energy corre-
sponds to a stable bubble wall at

2
f(0) (71)

I 2

1
2/3 72

24 _5 , (72)

T,? et

2

S
&t

7=

£
c

where Eq. (61) has been used to eliminate €*. This value
of the radius depends upon 7 through the quantity S /e*.
However, for large values of 77 the volume term dom-
inates the free energy and 7 is independent of 77,

173

F=V24 |= | T,"'=20f"13T,"!, (73)

This is consistent with our assumption that the bubble is
much larger than the Schwarzschild radius 1/r#T.

We therefore expect that as the temperature of the
black hole rises above T, it will become surrounded by a
quark-gas fireball, radiating mostly y rays. However,
highly energetic quarks can penetrate the bubble wall by
distorting it outwards into a flux tube, the breakup of
which leads to a shower of pions and other hadrons. Such
events are known as jets and they are common features of
high-energy-physics experiments. Gibbons?* er al. have
investigated the occurrence of these jets in black-hole ex-
plosions, and they should be important once the black-
hole temperature has risen above 1 GeV.

VI. ASTROPHYSICAL CONSEQUENCES

We shall consider just two effects of black-hole bubbles
which may be relevant to the observation of black-hole ex-
plosions. The first is the effect of an enhanced y-ray
emission from the quark-gas fireball upon the y-ray back-
ground, and the second is the possibility that unstable
bubbles may emit electromagnetic pulses.

The luminosity of a black hole is given by

am
dt

where we shall take a=a, for black-hole temperatures
below T, and a=a, for temperatures above T,. The y-
ray component of the luminosity will be denoted by 7,
and y,. Following Carter et al.'® we shall take a power-
law distribution for the number of black holes in a
comoving volume,

=aM~?, (74)

dN = AM>M;~*~%M , (75)

where M is the mass of a black hole at a timé ¢ and M; is
the mass of the same black hole at the recombination time
t;. Such a black hole will radiate predominantly at a fre-
quency (87M)~! but this radiation will be red-shifted so
that today, t=t, it will contribute to the background ra-
diation at a frequency of

2/3
1

V=M

t

t

(76)

It follows that the total contribution from all of the black
holes radiating at the time ¢ to the y-ray energy density
today is

AM'_4_€ 4/3
e ' L )

vV

dp ‘

8

where dM has been eliminated in favor of dv. The initial
mass M; can be expressed as a function of v and ¢ by in-
tegrating the mass-loss equation (74),

M3=3a,(t —t;)+ M3 t>t. (78)

3 3, %1 .03 3
M;°=3a;(t —t;)+ M, +a—(M —-M.°), t<t, ~(79)

2
where
3/2
v
t,= —E t (80)

is the time at which the temperature of the black hole was
T..

A very good approximation to p can be obtained by re-
placing the mass terms in equations (78) and (79) with
M_3. For the frequency range of interest, one then finds

34y, 1 dv
dp~ t el
P 87 3—e€ 1 v?
34y, 1 v 17 a4y

1M, "¢ —, v<T,

87 3—e ! T, 2 Vste
34y, 1 —a_edv

~ 87 3_€t1M1 67, v>T, (81)

where M>=3a,t, corresponds to a black hole whose life-
time equals the age of the universe ¢,. For v<<T,, the re-
sult is very similar to the one given by Carter et al., with
a frequency spectrum proportional to v~2. This is also
true for v>T,, but the constant of proportionality in-
creases by a factor y,/7,~69 as a result of the increase in
y-ray emission from the quark fireball which forms at
T=T..

The observed limit on the energy density in the y-ray
background for a few MeV is around 10~%” gecm~3. This
leads to the condition AM;, %7€ <8x10~1% corre-
sponding to a present-day limit of around 10* black holes
per cubic pc, which is very similar to the conclusion of
earlier work.?>2® However, the spectrum (81) has an addi-
tional feature that we could, in principal, also determine €
independently of 4 by examination of the slope of the
spectrum when v~T,.

Let us now turn to the prospects for observing the ef-
fects of high-energy symmetry restoration near a black
hole due to the breakup of a black-hole bubble. This may
occur after the black hole vanishes, with the bubble hiding
away the ultimate fate of the black hole. Alternatively, a
bubble can suddenly become thermodynamically favorable
or just as suddenly unfavorable and disappear depending
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upon the relative heights of the minima of the effective
free energy. A bubble will therefore eventually burst,
releasing a large quantity of energy. Rees'® has shown
that such sudden releases of energy produce electromag-
netic pulses due to the interaction of charged particle-
antiparticle pairs with the ambient galactic magnetic field.

The amount of energy available in the low-scattering
bubble of Sec. IV is roughly

E~4T7T?3noﬁ,,‘2~a_6m (82)
for a black-hole temperature 8, ~!. A significant fraction
may be converted into charged-particle pairs, leading to a
pulse with a characteristic wavelength
1/3 8/3

SE , (83)

A~ B2

m
m

where 7 is the rest mass of the charged particle and B is
the magnitude of the galactic magnetic field, typically
around 5X 10~® Gauss. Thus

173

A~10%a~2

m

—8/3
m
] GeV l cm . (84)

The number of detectable photons is largest when A corre-
sponds to energies far below m, and this is more likely to
be the case for proton-antiproton pairs rather than
electron-positron pairs. A bubble bursting at energies
above 100 GeV with a of order the fine-structure constant
gives a radio pulse which is easily detectable from 10> cm
away. For larger energy-phase transitions the value of a
would have to be very small to give an observable effect.
However, values of a as small as 10~* have been con-
sidered in the context of inflationary models of the very
early universe.”%?’ Such a bubble at a temperature of 10'°
GeV could produce a great many y-ray photons of energy
around 1 MeV. The expanding ball of protons would
reach nearly 10'° cm giving a pulse duration of around 1
sec. These events would have to be close by to be detect-
able and they would therefore show no tendency towards
lying in the plane of the galaxy.

ACKNOWLEDGMENTS

This work began as a result of a suggestion by Stephen
Hawking that phase transitions near a black hole might be
of interest. I would like to express my gratitude to him
for encouragement, and to Don Page for helpful discus-
sions. This work was supported by the Science and En-
gineering Research Council.

APPENDIX A

We wish to simplify the Boltzmann equation (38) for a
weakly interacting scalar field. This can be extended to
other fields in a similar way. Consider a scalar field
which corresponds to trapped particles for frequencies less
than m, and which couples by four-line vertex interac-
tions to an untrapped field, with coupling constant A, and
to itself with coupling constant A,, as shown in Fig. 9.
The occupation number N for trapped modes of the scalar
field can be decomposed, as discussed in Sec. IV, into

A A,
FIG. 9. Interaction terms for a trapped field (solid line) and
an untrapped field (broken line).

medium N,, and beam N, parts. These have a blackbody
form

Nmz-fé%-’—"—)—, w<m \ (A1)
e
128,%h(r) §(8)
b7 Be_y sing’ @< (A2)

where 12f8,%h <<f <<1 and 8,~! is the black-hole tem-
perature. The occupation numbers of any untrapped
modes will be negligible compared to 1 far from the black
hole.

The Boltzmann equation has the form

dN
k dx

where { is the scattering integral,
t= [ diidkydky(2m)*8(ky +ky—k —ky)
X[—A2N (k)N (ki) —A2N (k)N (ky)
+ AN (k)N (k3)] . (A4)

=¢, (A3)

This decomposes into medium and beam terms &, and &,
where

Em=—A? [ dkidk,dk;N,, (KN, (k)

X (2m)*8(ky+k3s—k—k;), (A5)
Ep=—A2? [ dkidk,dk;yNy(K)N,, (k1)
X (2m)*8(ky+ k3 —k —k;) . (A6)
Hence
d
4m [ Giom
dow odw,
=—A%4 @
! ”f 2m) I (2m)
X f~£‘—N (k)N (k)
A2 ,
z—gn(u)no , (A7)
where
1
no=7 [_ ndu (A8)

and [T is the cosine of the center-of-mass scattering angle
Y. The flux term gives
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. A9
4”f(27r)3 dx ~ I(m) (A9)
where
m o'dw
I, = —_— (A10)
m= [ G

is the Debye integral and k is a unit vector in the k direc-
tion. For the beam component we find

wdow 7~2 5(0)
w [ o) Gy hno o (A11)
and
odo, @No D) 4 | 8(0)
[ 2m K dx " T(e0) S dx P sing (A12)

By equating the flux and scattering terms we arrive at
the simplified form of the Boltzmann equations (45) and
(46), with the scattering lengths

7\,1 ](m)

=8 Lim) (A13)
A2

ko= —L T (A14)
96¢(3)

APPENDIX B

For the same scalar field interactions that were con-
sidered in Appendix A, the medium will thermalize if the
self-interaction given by A, is much larger than the
scattering out of the medium given by A,. In this case the
Boltzmann equations (38) again take a simple form. The
occupation number of the medium at a temperature 8~}
will be approximately

1
m:eﬁw-—-l ’ (Bl)
128,°h 5(0)
b_eﬁh“’_l sin@ ’ ®2)

where 128,%h <<1. We can again take the occupation
numbers of the untrapped modes to be negligible far from
the hole. The scattering integral (A3) is given by

t= [ dk,dk,dk;(2m)*8(k, +ky —k —k)
X { = A2Np (KN, (K
— AN (KN (k[ 14N (k)][ 14N (k3)]
+ A1+ N (R)J[1+N(kIN (ky)N (k3)} .
(B3)

The first term has the same form as the nonthermal case

in Appendix A and gives the same result (A7). We can
expand the remainder for small N, to give
2
1
§:*—4;r“n(“)n0+§m +8s > (B4)
where

Em=ns? [ dkidkydks(2m)*8(ky+k3—k —ky)

12B4%h (r)N,, (k)N,, (k)
Bor_ 1 8(6y)
po e —1 1
Nom(ks)e ePhe1_ 1 sind, (B35)
Eo=A; [ dkdk,dky(2m)*8(ky +ky—k —k;)
X llZthh(r)Nm(kl)Nm(kz)
Bo __
X Np(ky)eP£o=L 2O | (g
ePr? _1 sinf
For B~f3,, we take the frequency average to get
an [ 224 e 240 ¢ —h(Iehf(O), ®7)
™ f © £y =h (rnor 2 (6) 28 (B8)
3 b= o2 S 6
where f(0) is a purely numerical function,
f(9)=2% [ xdx [ xdx, [ dae*—1D~ ' —1)!
X (¥ —1)"le* (B9)

and x,=pfw,, x3=Pw; are determined by momentum
conservation.

The frequency-averaged flux terms have the same form
as given in Appendix A. If we replace f(6) by a constant,
we arrive at the simplified version of Boltzmann’s equa-
tion (45) and (46) with k;=Cp, ky=k3= C,3 where

77')\,12 (0)
T 48£(3) 10,
(B10)
c 772}\.22 (O)
27 12¢03) S0
Alternatively, if Bh < B, we can take the w << B, ~! limit

in (B5) to give B~ 'ky=B;, 'k3=C3B, !B where C; is
another constant of order A,°. This corresponds to the
fact that the number of particles scattered from the beam
to the medium equals the number scattered from the
medium to the beam.
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