
PHYSICAL REVIE& D VOLUME 32, NUMBER 6 1S SEPTEMBER 1985

Cosmological compactification
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Assuming that all infinitesimal Killing vectors integrate to form a group of finite isornetries,
cosmological compactification of a fifth dimension is discussed. It requires a positive cosmological
constant, while supporting both the big-bang singularity and the open character of ordinary space.
The constancy of the fine-structure constant is correlated with the smallness of the cosmological
constant.

compatible with the ordinary cosmological principle.
Given the spatial 3+1 split, what we want to understand
is why does the y coordinate compactify'? In other words,
can the geometry give us, under reasonable physical as-
sumptions, some clues concerning the underlying topolo-
gy? The scale functions R (t) and a (t) are determined by
the following Einstein equations:

R +k Ra+ = —,
' (p+A),

Ra
(2a)

R +k R Ra a+2—+2 +—= —8+A,
Ra a

(2b)

R +k R
R+—= —( —Q+A) . (2c)

p(t), P(t), and Q (t) are the normalized energy density and
pressures defined via

T „-diag(p, P, P, P, —Q), ———
and A denotes the cosmological constant. For pedagogi-
cal reasons, we first solve the above equations in an empty

The geometrical origin of local gauge invariance is
quite an old' yet extremely provocative idea. Its renais-
sance stems from the popularity of electronuclear unify-
ing theories, whose characteristic mass scale is in an in-
triguing vicinity to the Planck mass. The realization of
such an idea requires the compactification of extra dimen-
sions. Possible scenarios for this to happen involve an-
tisymmetric tensor fields or sophisticated scalars. Our
expanding Universe, and the theoretical role played by
grand unification in explaining its evolution, provide the
motivation for linking ' the Kaluza-Klein idea with
cosmology. It is the static Kaluza-Klein scheme that we
challenge, suggesting a possible cosmological origin for
corn pactification

We start by discussing an extended five-dimensional
Robertson-Walker (RW) metric

ds'= dt'+R'(t) — +a'(t)dy',dx dx

(1+ „'kr )—

(p=P =Q =0) five-dimensional space-time. The solution
1s

3k
gcosh2tot+risinh2cot+ for A) 0,

A

R'(t)= kt'+—gt+g for A=0,
3k

g cos2tot + ri sin2cot + for A (0,
A

a(t)- R(t),
dt

(4)

F"+ (a'a —a ) Y aT =0 . — (7)

If a'a —a ~const, F(y) must be y independent. Conse-
quently, only one Killing vector survives, corresponding
to trivial translations in y. But if a(t) is special, in the
sense that aa —a =const, the situation is completely dif-
ferent. Equation (7) then splits into

aa —a =p ~Y"+p Y=q, T=q/a (8)

with p, q being constant parameters, so that the metric (5)

where co = —,
i
A i, and g, q are fixed by initial conditions.

Two remarks are in order. (1) There exists a choice of pa-
rameters for which the Kasner metric is a limiting form
of the above solution, and (2) for A =0 and k (0, a (t) ex-
hibits asymptotic constancy.

We now analyze the local isometrics of the above solu-
tions. For the sake of simplicity, we momentarily content
ourselves with x =const surfaces, dealing with the residu-
al 1+1 metric

ds = dt +a (t)dy—

The form invariance of Eq. (5) is respected by the infini-
tesimal transformations y ~y +ra(y, t) and
+eP(y, t) provided

BP . Ba BP q Ba=aP+a = —a =0 .
Bt By By Bt

The solution can be written as a= —(a/a)Y(y)+T(t)
and p= F'(y), subject to the constraint
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becomes maximally symmetric. The crucial observation is
that the p ~ 0 case, with its corresponding scale

p = ,—Ac (8 —A )= —kc (14)

a (t) =ao cosh(mt +P), p =ao co (9)

exhibits Killing vectors periodic in y. It is this periodicity
which is hereby advocated as the possible origin of the ex-
tra dimension compactification.

At this stage, we find it necessary to assume that all in-
finitesimal Killing vectors integrate to give a group of fi-
nite isometrics. This is how local properties acquire glo-
bal significance, allowing us to identify the underlying
manifold as the surface

—u ) +u2 +u3 = I/co2 2 2 2 (10)

living in a flat Minkowski space (ds = —du
&

+du2 +du3 ). The parametrization associated with the
proper scale (9) is found to be

1
u ~

———sinhcot,
CO

so that p and k are necessarily of opposite signs. If
cosmological compactification is achieved, that is, p ~0,
the ordinary three-space must be open (k &0). Yet the
hyperbolic structure of a (t) is not a sufficient condition
for corn pactification. The additional requirement
8 —3 &0 will be shown to be related with the big-bang
singularity of the ordinary space.

Next we study the effective four-dimensional world.
The Robertson-Walker cosmology can be extracted from
the five-dimensional Kaluza-Klein model, being aware of
the fact that now the four-dimensional action is

1 4 3 c)~Q Bpu
S4 ——— d x~g4 Rg+ +

K4 a 2 a

where R4 is the Riemann curvature scalar associated with
the metric

1
u 2

———coshcot cosVpy,
g» ——a (t) diag —1,R (t)

(1+ ,'kr )— (16)

1
u3 —— coshcot sinV—py .

Attached to each cosmic time t there is a circle of radius
(I/Vp )aocoshcot, parametrized by the angle ~py, re-
flecting the SO(2) subgroup of the initial SO(1,2).

Notice that the definition of the cosmic time is crucial.
Given the same manifold (10), a different parametriza-
tion, namely,

u
&

——(1/m)sinhcot' cosh''y',

3
jeff

2a
a
a 7a

so that the effective four-dimensional equation of state is

From the action (15), an effective energy-momentum ten-
sor T& can be read off given by

3 a A
Peff +

2a a a
(17)

A AP+ —=p ——.
a a

In order to interpret the four-dimensional metric (16) in
the usual Robertson-Walker way, i.e.,

d&s d&c
dS — d7 +RRw (7)

(1+—,'kr )
(19)

a redefinition of proper time is needed:

~=~a& f [cosh(cot +P)]'~ dt',

RRw ——a(t(r))R (t(r)) .

(20)

(21)

In the limit wt « 1, r= ~aot and

RRw (v)=c BA + A(~ +28 )
ao

up
——(1/co)sinhcot'sinh~p'y', u3 ——(1/co)coshcot',

gives rise to ds = —dt' +ao sinh cot'dy' . - Consequent-
ly, we obtain a'a —a = —p'= —ao co &0, so that the cor-
responding y' space turns out to be infinite for any t' In.
a group-theoretical language, the space defined by the new
cosmic time is associated with the noncompact SO(1,1) of
our SO(1,2).

We return now to the complete 1+(3+1) space-time.
Although the set of Killing vectors is more complicated
now, our former conclusions persist. In particular the
scale factor a (t) must again be of the form (9) if y period-
icity is to be a natural cosmological consequence. A
straightforward investigation of the solutions (3) and (4)
reveals that the desirable a (t) can only live in the A & 0
category, and furthermore requires an algebraic relation
between g and g, namely,

r '2
3k

(12)
ao

(22)

In turn, we find that R (t) and a (t) are of the same func-
tional form, only with exchanged amplitudes

R (t) =A coshwt +8 sinhwt,

a (t) =c (8 coshwt +A sinhwt),
(13)

where w = —,'A. The arbitrary parameter c can be as
small as desired. Note that

As we see, the scale function RRw grows like V v.
The time is ripe now to ask how does the traditional

Kaluza-Klein scheme fit into our discussion. Its associat-
ed vacuum is characterized by a static radius of compacti-
fication to account for the observed constancy of the
fine-structure constant. But a (t) =ao, that is p =0,
would not support the kind of compactification we want.
After all, unlike ds = dt +ao cosh wt dy—, only two
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out of the three Killing vectors associated with
ds = —dt +ao dy can be globally respected once y is
forced to compactify (the boost is lost of course), exhibit-
ing no built-in periodicity. Yet the gauge-coupling con-
stancy is a most desirable feature. For our cosmological
Kaluza-Klein version we find

Aa ~ o.' A= —A~ ———
Ra cx H

(23)

(H is the Hubble constant), meaning that the age of the
Universe must be small on the V'1/A scale, hence
coshwt —1. The observed constancy of a is thus correlated
with the fact that A is practically zero.

If we attempt to extend the idea to still higher dimen-
sions, our conclusions are likely to survive. Although
Einstein equations are more complicated for n & 1 ( n

denotes the total number of extra dimensions), a maximal-
ly symmetric solution that generalizes Eq. (13) always ex-
ists and is furthermore n independent save for

2A

(n +3)(n +2)

the empty space-time limit is therefore straightforwardly
traced.

Finally, we would like to summarize the main points of
this paper. Following the assumption that all local Kil-
ling vectors integrate to give a group of global isometrics,
the geometry, represented by the metric tensor, is capable
of probing the underlying topology. In particular we
derive solutions of Einstein equations, isotropic and
homogeneous in the usual sense, exhibiting cosmological
compactification of the extra dimension. A positive
cosmological constant appears as a necessary ingredient,
while our three-space must be open and recover from the
big-bang singularity. The constancy of the fine-structure
constant is correlated with the smallness of the cosmologi-
cal constant. The observation that an empty five-
dimensional space-time can be interpreted as a four-
dimensional Universe with a well-defined equation of
state has been exposed but is to be discussed in more detail
elsewhere.

We are grateful to Professor S. Shnider for useful com-
ments concerning differential geometry.
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