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The properties of infinite-length cosmic strings are investigated using the full coupled equations
for the metric and the scalar and gauge fields which make up the string. It is argued that there ex-
ists a class of static cylindrically symmetric solutions of these equations representing an isolated
string. All of these solutions approach Minkowski spacetime minus a wedge. An exact formula is
given for the angle of light bending by the string. These results are substantially in agreement with
earlier treatments of cosmic strings, which used approximations for the stress energy of the string.

I. INTRODUCTION

There has been much interest in recent years in the sub-
ject of cosmic strings. Kibble et al.! have estimated the
production of strings in a phase transition in the early
universe. Zeldovich? has proposed that strings could be
seeds for galaxy formation. Vilenkin® has proposed that
strings could act as gravitational lenses.

An infinite-length cosmic string is a static cylindrically
symmetric configuration of a self-interacting scalar field
minimally coupled to a gauge field. The simplest case is
that of a single scalar field coupled to a U(1) gauge field.
The scalar field interacts with itself through the standard
“Mexican hat” potential. Since different values of the
field will minimize the potential, in a phase transition, the
scalar field will take on different values in different re-
gions of space. At the boundaries of these regions, the
scalar field will arrange itself so as to minimize the ener-
gy. If the set of values of the scalar field which minimize
the potential is not simply connected, this can result in a
configuration of the field which has nonzero energy but
for which there is no nearby state of lower energy. A
string is such a field configuration.

Since strings have stress energy, they couple to the
gravitational field. Thus one expects strings to have grav-
itational effects which should be calculable using
Einstein’s ‘equation. Various approaches to this problem
have been used. Vilenkin® approximated the stress energy
of the string as that of an infinitely thin line with positive
(8 function) energy density and equal negative pressure
along the axis. He then used the linearized Einstein equa-
tion to find an approximation to the metric with this
stress energy. Gott* approximated the stress energy as
that of a cylinder of finite radius with uniform energy
density and equal negative pressure along the axis. He
then solved the exact Einstein equation for the metric. In
both approaches, the spacetime in the exterior of the
string is Minkowski spacetime minus a wedge, where the
angular size of the wedge is equal to 87 times the mass
per unit length of the string.

There are two difficulties with these approaches. The
first has to do with the stress energy of the string. The
actual stress energy of the string has other components be-
sides the energy density and pressure along the axis. In
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addition, the energy density and pressure along the axis
are not uniform over the interior of the string. Without a
more exact treatment there is no way of knowing whether
the terms neglected in these approximations are impor-
tant. The second difficulty has to do with the scalar and
gauge fields. The string is, after all, just a configuration
of scalar and gauge fields. To find the gravitational field
it is not enough simply to assume a stress energy and
solve for the metric. The only consistent way to find the
metric is' simultaneously to solve the coupled Einstein-
scalar-gauge field equations: i.e., the curved space equa-
tions for the scalar and gauge fields with a metric which
is a solution of Einstein’s equation with stress energy
equal to the stress energy of the fields.

This approach will be taken in this paper. The field
equations for the scalar and gauge fields in flat space will
be treated in Sec. II. I will review what is known about
the solutions of these equations and present numerical
solutions for the fields and their stress energy. The full
coupled Einstein-scalar-gauge equations will be treated in
Sec. III. It will be argued that for sufficiently small 7
(the value of the magnitude of the scalar field which mini-
mizes the potential) there exists a solution of these equa-
tions representing an isolated string. The properties of the
solution will be discussed in Sec. IV. It will be shown that
far from the axis the spacetime approaches Minkowski
spacetime minus a wedge. Also an exact formula will be
derived for the angle of light bending by the string. I will
then argue that (a) the scalar and gauge fields are well ap-
proximated by their values in flat space, (b) the metric
components are well approximated by certain simple in-
tegrals involving the stress energy of the flat space string
solution, and (c) the angle of light bending by the string is
well approximated by 87 where p is the proper mass per
unit length of the string.

II. STRINGS IN FLAT SPACE

The string fields considered in this paper consist of a
vector field 4, and a complex scalar field ® which will be
written ®=Re’¥ where R and 1 are real. In terms of
these fields the Lagrangian is

L =—3V°RV,R —5RUV, Y+ed,)(Vih+ed®)
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where F,, =V, A4, —V,A4, and A, 77, and e are constants.
(Note: we use units where Zi=c =G =1. We also use the
abstract index notation as described by Wald.)® Variation
of the Lagrangian with respect to the fields gives rise to
the following equations of motion,

VIRXV,+ed,)]=0, @)

VV,R —R[4MR*—17)+ (Vo h+ed, (VY+ed)]=0,
3)

Ve —4meR:(Vyh+ed,)=0 . @)

First we will examine these equations in Minkowski
spacetime. Using the usual time and cylindrical coordi-
nates (t,z,p,¢) the metric takes the form

ds?>= —dt*+dz*+dp*+p*d$* . (5)

We are looking for solutions of Egs. (2)—(4) whose stress
energy has cylindrical symmetry. We will assume that the
scalar and gauge fields have the form

¢=¢ > (7)
Aa=—‘1?—[P(p)~1]V,,¢ . (8)

With these choices Eq. (2) is automatically satisfied and
Eqgs. (3) and (4) become

pﬁ p‘;—R —R[#p*R*—72)+P] )
A 1,198 4rer?p (10)

These equations have three arbitrary constants A, 7, and
e. We can reduce the number of arbitrary constants to
one by the following definitions:

XEB' , (1n
n
r=Viyp, (12)
4re?
= 13)
a N (
Then Egs. (9) and (10) become
My LS =X[4r(X*-1)+P?], (14)
dr | dr
d | 1dp|_ .o
il L =aX“P . (15)

These equations have been studied extensively® and
though no closed-form solutions have been found, it has
been proven that there are solutions for X and P which
are smooth and for which P—0 and X—1 as r— « fas-
ter than any power of r. For each value of a Egs. (14)
and (15) can be numerically integrated to give X and P as
functions of ». The results of such a numerical integra-
tion for a=1 are shown in Fig. 1.
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FIG. 1. Magnitudes of the scalar and gauge fields.

The stress energy is given in terms of the fields by

Too=V,RVyR +RUV,p+ed, ) (Voh+edy)

1
+_4_‘1;Fachc+Lgab . (16)

For fields of the form given by Eqgs. (6)—(8), T, is diago-
nal in the coordinates (t,z,p,¢),

Top=0VatVpt +P,V,2Vpz +P,V,pVp

+p*PyVadVyd a7
where
1] (dr |
—_ —_ s —2R2P2 24 RZ_ 242
o P, > dp +p +2A( n*)
1 apr |’
-2
Ao? dp , (18)
! dR —2p2p2 2 .22
P=—| &5 | —p~2R2P2_2M(R2—
=7 dp p A 7°)
1 ap |’
)
wmef |ap | |7 19)
1 ar |’
Py=— |~ b +p?R*P*—2M(R>*—7?)?
1 ae |’
——p 2| = 20
+47Te2p dp @0

Thus the stress energy is given in terms of the solutions to
Egs. (14) and (15). Numerical results for the components
of the stress energy for a=1 are shown in Fig. 2.

It is instructive to compare the stress energy of the flat
space string with the approximate stress energy assumed
by Gott. Gott’s stress-energy has o constant inside the
string, 0=0 outside the string and P,=Py3=0 every-
where. In contrast, the flat-space string stress energy has
a nonconstant o, and P, and P4 about % the magnitude
of o.
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FIG. 2. Components of the stress-energy tensor in units of
Ant.

III. STRINGS IN CURVED SPACE

To find strings in curved space we will once again look
for static scalar and gauge fields whose stress energy has
cylindrical symmetry. In addition, we will assume that
the metric is static and has cylindrical symmetry. Thus
we seek a spacetime with three commuting Killing fields
all orthogonal to each other and hypersurface orthogonal.
One of the Killing fields is timelike; the other two are
spacelike. One of the spacelike Killing fields has closed
orbits. In addition, we will assume the existence of an
axis, i.e,, a set of points where the Killing field with
closed orbits vanishes. The normalization of the Killing
fields is arbitrary and will be chosen as follows: the Kil-
ling field with closed orbits will be chosen so that the pa-
rameter along a closed integral curve goes from 0 to 2.
The other two Killing fields will be chosen to have norm
1 or —1 on the axis.

We will choose coordinates ¢, z, p, and ¢ as follows: p
is geodesic distance from the axis in a direction orthogo-
nal to all the Killing fields. (3/9¢)° is the timelike Killing
field. (8/9¢)* is the spacelike Killing field with closed
orbits. (3/0z)? is the spacelike Killing field orthogonal to
the others. Note that our choice of normalization implies
that 0<¢ <27 and the points at =0 and ¢=2m are
identified. With this choice of coordinates the metric
takes the form

ds2=—eAdtz—}—eﬂdzz—{—ecdqﬁz+a’p2 , (21)

where 4, B, and C are functions of p only. Note that our
choice of the normalization of the Killing fields implies
that 4(0)=B(0)=0 and smoothness of the metric and
the normalization of (3/9¢)° implies that as p—0 we
have e€/p?— 1.

We define the following four orthonormal vector fields:

a
. 3
—p—A2 | Y
t%=e lat , 22)
. ,
pa=e—B/2 _a_] X (23)
oz

a
$o=e—C" 5%] , (24)
|8 |
pi= % (25)

The stress energy is given by Eq. (16) and the scalar and
gauge fields satisfy Egs. (2)—(4). We will once again as-
sume that the scalar and gauge fields have the form given
in Egs. (6)—(8). With this choice for the fields, once again
Eq. (2) is automatically satisfied. Equations (3) and (4)
become

d’R dR
ip? + (A +B+C1

=R[4MR*—n?)+e~“P%], (26)

d*p 1d

—7+———(A +B — C)————41re2R2P . 27
dp dp
The stress energy of the fields is
Top = 0047y + Py2uZy -+ Poub +Psbads » (28)
where
2
a=-p,=% 4—% +e~CR2P? 4 IMR2—7?)?
1 _c|dP
+—e - ) (29)
4rre? dp
1| [ar ]
p——| |88 | _,-cr2p2_ 2232
0= [dp e " “R*P*—2MR*—7?)
1 dP
- , 30
+ are? dp (30)
2
_1|_[4R —Cp2p2 2 2y
1 ap |’
—-c
—— 31
4re? dp] G
Einstein’s equation is
Ry =8m(T o — 5 Tgap) - (32)
The only nonzero components of Eq. (32) are '
2R, 7Tl = d ’: +~——(A +B +C)—
dp dp
=8m(P,+Py) , (33)
d’B
—2R,2% b= ———(A+B ==
dp2+2d (4 + +C) 4
=87r(Pp+P¢) , (34)
_2RBGr=L f+ (A +B +C)——
dp dp
=81T(—20+PP—P¢) N (35)
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2
—2R,p P = :Z;Z—(A +B4C)

2 2 2

1|44 4aB 4ac

2 dp dp dp
=8m(—20—P,+Py) . (36)

The full set of equations that we must solve for the metric
and the string fields are Egs. (26), (27), and (33)—(36).
Actually Eq. (36) is superfluous. We will now demon-
strate that Egs. (26), (27), and (33)—(35) along with the ex-
istence of an axis imply Eq. (36): define the tensor Q,, by

Qus=Rup —87(Top — T80 - .37
Then Egs. (33)—(35) imply
Qs =JVupVop , (38)

where J is a function of p. Equations (26) and (27) imply
conservation of stress energy. Conservation of stress ener-
gy and the Bianchi identity imply

VoQu =73 V5(Q,%) . (39)
Using Eq. (38) we obtain
dl 1 _d
Oi=|—+=J—(A+B+C) |Vpp, 40
VeQ.s dp+2Jdp( +B+C) |Vyp (40)
dJ
Vb(Qa“)=;,;pr . (41)
Thus we obtain
Y7L 4+B+0)=0, 42)
dp dp
J =ke —(A+B+C) , (43)

where k is a constant. Boundary conditions at the axis
then imply k=0. Thus Q,, =0 everywhere so Eq. (36) is
automatically satisfied given Eqs. (26), (27), and
(33)—(35).

We will now show that B =A. Subtracting Eq. (34)

from Eq. (33) we obtain

2
L 4+t 4Bl a+B+O=0, @4
dp® 2 dp dp
__d_d__(A —B)=I/('\e —(A+B+C)/2 , (45)
p

where K is a constant. Boundary conditions at the axis
imply £=0. Thus since 4 (0)=B(0) we obtain

B=4  (46)

everywhere. Equations (33) and (34) now give the same
information. Thus we now have only two independent
equations for the metric (34) and (35). Introducing the
quantity H=e4*¢/2 the metric equations, equations (34)
and (35), are equivalent to

4 |gdd

=8wH(P,+Py) , 47
dp dp 7r(p+¢) 47)

d’H
dp2
Equations (26), (27), (47), and (48) are the full set of
equations for the string. As in the flat-space case, no
closed-form solutions of these equations have been found.
However, I will now give a plausibility argument for the
existence of solutions: First we define X, 7, and a by Egs.
(11)—(13) and K by ‘K=VAnH. Then Egs. (47), (48),
(26), and (27) become

=47H(—20+3P,+Py) . (48)

Lk | _amp? |—4K (X2—1
dr dr ™ ( )
ar |’
+2a~le?K 1| == | |=0, (49
dr
2
‘fi If — 4y’ [~2e2AK"1P2X2—6K(X2—1)2
»
apr |’
+a~le?Ag -1 | =~ =0, (50)
dr
Kdi; Kid)rﬁj—X[4K2(X2—1)+e“P2]=o, (51)
e‘ZAKEd; [e“K“Z—f —aXP=0. (52)

We seek solutions of these equations representing an
isolated string; that is, solutions where, as p— oo, the
stress-energy goes to zero at an appropriate rate. Thus we
impose the conditions lim,_, X =1 and lim,_, P =0.
Smoothness of the metric and fields requires additional
boundary conditions at the axis.

Note that for =0 there is a solution: namely, 4 =4,
K:Ko, X=X0, P=P0, where A0=0, K0=r, and XO
and P, are X and P in the flat-space string solution. This
is reasonable since the 7—0 limit of the rescaled equa-
tions (49)—(52) corresponds to the G—0 limit of the
Einstein-scalar-gauge equations. In this limit we expect
gravity and the string fields to decouple yielding a flat-
space metric and string solution.

We now use the implicit function theorem to argue that
for sufficiently small 7 there is a solution of Egs.
(49)—(52). The implicit function theorem states the fol-
lowing: Let % and & be two Banach spaces, .o/ an open
subset of R X .#and f a continuously differentiable map-
ping from &/ into ¥. Let (xq,y9)E satisfy
f(x9,0)=0 and D,f(xq,yo) is a homeomorphism of %
onto & where D,f(xq,po) is the derivative of f with
respect to y evaluated at (xg,yg). Then there is an open
interval U containing x, in R and a continuous mapping
u of U into F such that u(xqy)=yg, (x,u(x))E o/ and
S(x,u(x))=0 for all xin U.

In our case let F be a Banach space of quadruples of
functions (A(r),K(r),X(r),P(r)) where 4(r)=A4 — Ay and
A is a function satisfying the appropriate boundary condi-
tions; and similarly for I?, :1}, and P. Note that we must
find an appropriate norm on . in order to make it into a
Banach space. Let f be the following map: given
(4,K,X,Pe7, f produces the quadruple of functions
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given by the left-hand sides of Egs. (49)—(52). Let & be a
Banach space of these quadruples of functions. Note that
the norms on % and & must be chosen so that boundary
conditions are satisfied and so that f is continuously dif-
ferentiable. '

With these definitions of &%, &, and f it follows that
the map D, f (xq,y0) given (84,8K,6X,6P)eF produces
a quadruple of functions which are the left-hand sides of
the linearized forms of Egs. (49)—(52) about the =0
solution. It also follows that the map u given by the im-
plicit function theorem is a one-parameter family of solu-
tions to Egs. (49)—(52).

To apply the implicit function theorem we must show
that D,f(xq,yo) is a homeomorphism, i.e., that it is one
to one, onto, and bicontinuous. An actual proof of con-
tinuity would involve constructing the Banach spaces
and ¥ and showing that D,f (x,,y0) is bicontinuous in
the induced topologies. We shall not attempt to do this
here. However, we will argue that D,f (x(,yo) should be
one to one and onto. To show that D,f (xy,y,) is one to
one we must show that solutions of the linearized equa-
tions are unique. To show that D,f(xg,y,) is onto we
must show that the linearized equations have solutions in
F for all sources in &. However, it is easy to show that
the linearized equations corresponding to Egs. (49) and
(50) can be integrated to yield unique solutions for all
sources. Furthermore, the linearized equations corre-
sponding to Egs. (51) and (52) are equivalent to a varia-
tional principle. Presumably the standard variational
principle techniques® could be used to show existence and
uniqueness of solutions to these equations. Thus it ap-
pears that D,f(xq,y) is one to one and onto. Hence if
we were able to define ¥ and & so that D,f(xq,yq) is
bicontinuous, the implicit function theorem would imply
the existence of a one-parameter family of solutions to
Eqgs. (49)—(52).

Note that although we have argued that solutions exist,
we have not shown that they are stable. A string might,
for example, be unstable against collapse in the p direction
or against collapse or expansion in the z direction. This
issue is presently under investigation.

IV. PROPERTIES OF THE STRING SOLUTION

For the remainder of the paper I will assume that string
solutions exist and will investigate some of their proper-
ties. We will make some fairly weak assumptions about
the behavior of the stress-energy as p—co: We will
assume that 0 Hodp converges. We will also assume

|
4 3047 9% 3 do, 3 do,
dp [61(6,—501)]= dp (6, — 491)+9¥ -———-dp i ——dp
del d62 3 d91
=%, P01 T2 dp

1327

that
lim H?*0=0. : (53)

p—
It follows from Egs. (29)—(31) that o> |P,| and
o> |P,|. Thus our assumptions imply that if o is re-
placed by P, or Py then the integral still converges and
Eq. (53) still holds.

Our first step will be to examine the behavior of the
metric as p— . We will then demonstrate that far from
the axis the metric approaches Minkowski space minus a
wedge. We will then derive a formula for the bending of
light by the string.

It will be useful to have the following consequence of
the conservation of stress energy:

0=p,V,T*
=V,(T%p,)— TV ,p

1.4 _1p GH dA
—H1-Z - P, A% _(o+P)EE | . (54
H dp (HP,)— |H Y dp (o+ ¢)dp (54)
Thus we obtain

d dH dA

2 — P, Py )HZ= =0 .

ap PP =Py (0 +PYH ;=0 (55)

We introduce the quantities 6; and 0, defined by
0, =024 (56)
dp
_dH

6,= dp (57)
Then Egs. (47), (48), and (55) can be written as

d01 ’

—(}‘;287TH(PP+P¢), (58)

do,

Gp ATH(=20+3P,+Py), (59)

d*‘;-(HPP)=P¢02—(a—I—P¢)0, . (60)
Integrating Egs. (58) and (59) we obtain

61= [ STH (P, +Py)dp’ , (61)

0r=1+ [/ 4wH (~20+3P,+Py)dp’ . (62)

By our assumptions 6; and 6, must approach constant
values as p— . Using Egs. (58)—(60) we obtain the fol-
lowing:

=0,87H (P,+Py)+6,[47H (—20+3P,+Py)~ 587H (P,+Py)]

=0,87H (P, +Py)+6,[47H (—20—2P,)]
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Boundary conditions at the axis imply
61(6,— 46,)=87H?P, . (64)
Dividing both sides by H we obtain

dA

4aH 3 dA
dp

— =8wHP, . 65
dp a7y THP, (65)

Let us call the constant values approached by 6, and 0, as
p— o ki and k,, respectively. By our assumptions and
Eq. (64) we obtain

ki(k,—+k)=0. (66)

Thus k; =0 or k, =%k2. Thus as p— oo the string must
approach either a vacuum metric which has 6;=0 or one
which has 6,=36,. This result has been obtained previ-
ously by Vilenkin® under the assumption that the metric is
boost symmetric, B =A (which we have now proved). As
we will show later 6;=0 corresponds to a flat metric.
0,= %92 corresponds to a nonflat metric which is an ana-
log of a Kasner metric. This metric has the property that
as p— oo the length of a closed integral curve of (3/3¢)°
approaches zero. Thus this metric does not represent an
isolated system and it is unlikely that this metric has any-
thing to do with any strings which may have formed in
our universe.

As I will argue later, for small 7, H and A should be
near their flat-space values. Thus k; should be near zero
and k, near 1. This rules out the k; =%k2 possibility.
For the remainder of this section we will focus on the case
where k;=0. Denote by H and A the values of H and A4,
respectively, for the vacuum metric which the string
metric approaches far from the axis. Then

4 _

=0, 67
dp (67)

dH
——=k, . 68
dp 2 (68)

Solving these equations we obtain

A=a,, (69)
H=k,p+a,, (70)

where ag and a,; are constants. Writing the metric expli-
citly we obtain

ds*=—e"dt? +-e™dz* +dp*+e “kyp-+a,)de? .
(71)

Changing variables to

(63)
T
t'=e""t, /=",
’ a9 ’ -
p'=p+5 > ¢'=kse “¢
2
we obtain
ds?= —dt'*+dz’*+dp' *+p'%d¢'? . (72)

Equation (72) is just the metric of flat space. Note
however that since ¢ ranges from 0 to 27, ¢’ will have a
different range. Thus the metric of equation (72) is not
Minkowski spacetime but Minkowski spacetime minus a
wedge. Thus initially parallel null geodesics which pass
on opposite sides of the string will cross and the angle of
light bending will be equal to the angular deficit A¢ of the
metric. Ford and Vilenkin’ give a formula for the angular
deficit for a class of static translation symmetric space-
times which are asymptotically Minkowski spacetime
minus a wedge. We will derive a different formula for A¢
as follows: Denote by / the length of an orbit of (3/3¢)°.
In a flat spacetime with angular deficit A¢ we have

I(Pz)-—l(pl):(277'——A¢)(P2—p1) . (73)

Since the string metric is approaching the flat metric as
p— oo We obtain

. dl
27— A¢dp=lim — . (74)
¢ p— o dp
However, by the definition of / we have
o 5 a b11/2
I=f o |8 |3g J % d¢
=27e¢"?
=2m(e "“H) . (75)
Thus we obtain
. d 4
27— A¢p= lim —(2me ~“H) , (76)
p— dp
.d 4
Ap=27 |1— lim “—(e—“H) | . 77
p—wdp

Using boundary conditions at the axis we obtain
© dz 4
Ap=—2r [ d—l72(e H)dp . (78)
Using Eqgs. (56)—(59) and (64) we obtain

d2

a4 apy_ A 4y
dp2(e H)= e (0,—0)]
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d6, do, _ _
=e~4 Fp— 7;‘ —H 19,e A(62—91)
d02 l d91 1 d91
—_ —A _H——l _ —[6 2____________
e dp -3 dp 0:1(6,—56)++H™'6, 2 dp
~4|4mH (=20 43P, + Py)—4mH (P, +Py)—8zHP, — | 22 _g-192 | _1g-192
=e TH(—20+3P,+Py)—4mH (P,+Py)— 8w =2 | dp =7
' 2
do
=_—8me “4Ho—+ e““—-—l—-—e_AH—IBI2 e H a4
dp p
— A4 1 d —A —A dA
8me “Ho ) dp(e 6,) dp (79)
I
Thus using equa;tlon (78) we obtain A= f H‘ldp f 87H (P +P¢)dp” 83)
— 2 —AH —Ae ©
Ap=8r [~ 2me "df,’+”[(e V19 _p+f dpf 47H (—20+3P,+P,)dp" . (84)

_AH

+5 )y

=87 fow 21re—AHadp+—72I~ f

dp

dA

...AH
dp

dp,

(80)

where the middle term dropped out since 8;=0 at p=0
and as p— 0. At this point it is useful to introduce the
proper mass per unit length u of the string. p is defined
as the integral of the energy density o over a ¢t =constant,
z =constant two-surface. Using the form of the metric
we obtain

,u:fow 2me~“Hodp . (81)
Thus we obtain
- s —ap |44
Ap=8mu+ 7 [TeH e dp. (82)

In Sec. III we saw that for n?=0 the string solution
was given by the flat-space string solution for R and P,
the scalar and gauge variables, and by 4 =0 and H =p
for the metric variables. This corresponds to the metric
of Minkowski spacetimé. Thus it seems reasonable that
for small 5? the string solution should be close to the
flat-space solution for both the field and metric variables.
In most models 7 is less than or of the order of the grand
unified mass. Since in our units the Planck mass is the
unit mass, 7 is a small number. In particular, 7% <10~*
for most grand unified strings.

Let us see if this approximation is self-consistent. Us-
ing Egs. (47) and (48) and the boundary conditions at the
axis we obtain integral equations for 4 and H:

Using the flat-space values for the string and metric vari-
ables on the right side of Egs. (83) and (84) we can obtain
“corrected” values for H and 4. For our approximation
to be self-consistent, the corrections must be small. Using
the flat-space solution, we find that the correction to A4
and the fractional correction to H are of order n°. Thus
our approximation is self-consistent.

Thus it seems likely that the string variables, X and P,
are well approximated by their values in flat space and
that the metric variables, H and A, are well approximated
by the right-hand sides of Eqgs. (84) and (83), respectively,
where all quantities in the integrals take on their flat-
space values. Using this approximation to evaluate the
two terms in Eq. (82) we find that the first term is of or-
der 1? and the second term is of order *. Thus to a good
approximation

Ap~8mu . (85)

This is the formula for the angular deficit found by Vilen-
kin and Gott using different methods. It is remarkable
that such simple approximations for the stress energy
should nonetheless give the correct answer for the angle of
light bending.
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